organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{4-[Bis(4-fluoro­phen­yl)meth­yl]piperazin-1-yl}ethanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 June 2012; accepted 20 June 2012; online 27 June 2012)

In the title compound, C19H20F2N2O, the six-membered piperazine group adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the two benzene rings is 73.4 (6)°. The mean plane of the ethanone group is twisted from the mean planes of the two benzene rings by 66.7 (8) and 86.2 (6)°. In the crystal, C—H⋯O and C—H⋯F inter­actions link the molecules, forming a three-dimensional structure.

Related literature

For the biological activity of piperazines, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]). For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For related structures, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783-o2784.],b[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587-o2588.]); Dai et al. (2012[Dai, Z.-H., Zhong, Y. & Wu, B. (2012). Acta Cryst. E68, o1077.]); Dayananda et al. (2012a[Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012a). Acta Cryst. E68, o968.],b[Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012b). Acta Cryst. E68, o1180.]); Zhong et al. (2011[Zhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3342.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20F2N2O

  • Mr = 330.37

  • Monoclinic, P 21 /n

  • a = 10.1701 (5) Å

  • b = 16.5521 (5) Å

  • c = 11.1690 (5) Å

  • β = 114.690 (5)°

  • V = 1708.27 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 173 K

  • 0.48 × 0.32 × 0.22 mm

Data collection
  • Oxford Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.802, Tmax = 1.000

  • 10536 measured reflections

  • 3297 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.155

  • S = 1.04

  • 3297 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.46 3.371 (2) 167
C15—H15⋯O1i 0.93 2.55 3.351 (3) 145
C18—H18⋯F2ii 0.93 2.54 3.319 (3) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011).

The crystal structures of 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl) benzoate (Betz et al., 2011a), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium picrate (Betz et al., 2011b), (E)-1-{4-[bis(4-fluorophenyl)methyl]piperazin-1-yl}-3-(4-ethoxyphenyl) prop-2-en-1-one (Zhong et al., 2011), 4-[bis(4-fluorophenyl) methyl]piperazin-1-ium bis(trichloroacetate) 0.4-hydrate (Dayananda et al., 2012a), 4-[bis(4-fluorophenyl)methyl] piperazin-1-ium 2-hydroxybenzoate 2-hydroxybenzoic acid monosolvate (Dayananda et al., 2012b) and 1-[bis(4-fluorophenyl) methyl]-4-[2-(2-methylphenoxy)ethyl]piperazine (Dai et al., 2012) have been reported. In the course of our studies on the salts of piperazines and in view of the importance of piperazines, this paper reports the crystal and molecular structure of the title compound, C19H20F2N2O, (I), which was accidentally obtained by the reaction of 4,4'-difluorobenzhydryl piperazine and acetyl salicylic acid.

In the asymmetric unit of the title compound, (I), the 6-membered piperazine group (N1/C3/C4/N2/C5/C6) adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.568 (9) Å, 172.2 (7)°, and 350.979 (8)° (Cremer & Pople, 1975), respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the two benzene rings is 73.4 (6)°. The mean plane of the ethanone group (C1/C2/O1/N1) is twisted from the mean planes of the two benzene rings by 66.7 (8)° and 86.2 (6)°. Weak C—H···O and C—H···F intermolecular interactions (Table 1) are observed providing increased stability with crystal packing (Fig. 2).

Related literature top

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For related structures, see: Betz et al. (2011a,b); Dai et al. (2012); Dayananda et al. (2012a,b); Zhong et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For reference bond-length data, see Allen et al. (1987).

Experimental top

4,4'-Difluorobenzhydryl piperazine was obtained from R. L. Fine Chem., Bengaluru, India. 4,4'-Difluorobenzhydryl piperazine (2.88 g, 0.01 mol) was dissolved in 10 ml of absolute ethanol and acetylsalicylic acid (1.81 g, 0.01 mol) was also dissolved in 10 ml of absolute ethanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 min. The mixture was kept aside for a day at room temperature. The compound formed was filtered and dried in a vacuum desiccator over phosphorous pentoxide. The compound was recrystallized from a mixture of toluene and dimethyl formamide by slow evaporation (m.p. 418–423 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93, 0.98 (CH) or 0.96 Å (CH3). The isotropic displacement parameters for these atoms were set to 1.19 to 1.20 (CH), 1.19 to 1.20 (CH2) or 1.50 (CH3) times Ueq of the parent atom.

Structure description top

4,4'-Difluorobenzhydryl piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011).

The crystal structures of 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium 2-(2-phenylethyl) benzoate (Betz et al., 2011a), 4-[bis(4-fluorophenyl)methyl]piperazin-1-ium picrate (Betz et al., 2011b), (E)-1-{4-[bis(4-fluorophenyl)methyl]piperazin-1-yl}-3-(4-ethoxyphenyl) prop-2-en-1-one (Zhong et al., 2011), 4-[bis(4-fluorophenyl) methyl]piperazin-1-ium bis(trichloroacetate) 0.4-hydrate (Dayananda et al., 2012a), 4-[bis(4-fluorophenyl)methyl] piperazin-1-ium 2-hydroxybenzoate 2-hydroxybenzoic acid monosolvate (Dayananda et al., 2012b) and 1-[bis(4-fluorophenyl) methyl]-4-[2-(2-methylphenoxy)ethyl]piperazine (Dai et al., 2012) have been reported. In the course of our studies on the salts of piperazines and in view of the importance of piperazines, this paper reports the crystal and molecular structure of the title compound, C19H20F2N2O, (I), which was accidentally obtained by the reaction of 4,4'-difluorobenzhydryl piperazine and acetyl salicylic acid.

In the asymmetric unit of the title compound, (I), the 6-membered piperazine group (N1/C3/C4/N2/C5/C6) adopts a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.568 (9) Å, 172.2 (7)°, and 350.979 (8)° (Cremer & Pople, 1975), respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angle between the mean planes of the two benzene rings is 73.4 (6)°. The mean plane of the ethanone group (C1/C2/O1/N1) is twisted from the mean planes of the two benzene rings by 66.7 (8)° and 86.2 (6)°. Weak C—H···O and C—H···F intermolecular interactions (Table 1) are observed providing increased stability with crystal packing (Fig. 2).

For the biological activity of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For related structures, see: Betz et al. (2011a,b); Dai et al. (2012); Dayananda et al. (2012a,b); Zhong et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For reference bond-length data, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak C—H···O and C—H···F intermolecular interactions. The remaining H atoms have been removed for clarity.
1-{4-[Bis(4-fluorophenyl)methyl]piperazin-1-yl}ethanone top
Crystal data top
C19H20F2N2OF(000) = 696
Mr = 330.37Dx = 1.285 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 4103 reflections
a = 10.1701 (5) Åθ = 4.4–71.2°
b = 16.5521 (5) ŵ = 0.79 mm1
c = 11.1690 (5) ÅT = 173 K
β = 114.690 (5)°Chunk, colourless
V = 1708.27 (14) Å30.48 × 0.32 × 0.22 mm
Z = 4
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
3297 independent reflections
Radiation source: Enhance (Cu) X-ray Source2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.1500 pixels mm-1θmax = 71.4°, θmin = 5.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1220
Tmin = 0.802, Tmax = 1.000l = 1313
10536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.7598P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H20F2N2OV = 1708.27 (14) Å3
Mr = 330.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.1701 (5) ŵ = 0.79 mm1
b = 16.5521 (5) ÅT = 173 K
c = 11.1690 (5) Å0.48 × 0.32 × 0.22 mm
β = 114.690 (5)°
Data collection top
Oxford Xcalibur Eos Gemini
diffractometer
3297 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2809 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.026
10536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3297 reflectionsΔρmin = 0.34 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5160 (2)0.80482 (10)0.24955 (14)0.0811 (5)
F20.86017 (18)1.06144 (9)0.55722 (15)0.0788 (5)
O10.29530 (17)0.50309 (9)0.41107 (15)0.0534 (4)
N10.40533 (18)0.62266 (10)0.42534 (15)0.0410 (4)
N20.48228 (15)0.75448 (8)0.30161 (13)0.0304 (3)
C10.3741 (3)0.57161 (13)0.6169 (2)0.0520 (5)
H1A0.32120.52980.63710.078*
H1B0.33820.62340.62800.078*
H1C0.47490.56740.67520.078*
C20.3555 (2)0.56254 (11)0.47665 (19)0.0395 (4)
C30.3933 (2)0.61611 (12)0.29096 (19)0.0465 (5)
H3A0.31420.58010.24060.056*
H3B0.48190.59350.29220.056*
C40.3666 (2)0.69801 (12)0.22666 (17)0.0406 (4)
H4A0.36050.69300.13800.049*
H4B0.27490.71890.22060.049*
C50.4817 (2)0.76336 (11)0.43201 (17)0.0363 (4)
H5A0.38860.78420.42220.044*
H5B0.55550.80190.48350.044*
C60.5101 (2)0.68390 (12)0.50348 (18)0.0426 (5)
H6A0.60720.66580.52130.051*
H6B0.50380.69090.58720.051*
C70.46380 (18)0.83174 (11)0.23205 (16)0.0333 (4)
H70.36630.85190.21200.040*
C80.47860 (19)0.82157 (11)0.10209 (17)0.0356 (4)
C90.5661 (2)0.76331 (12)0.0844 (2)0.0430 (4)
H90.61650.72760.15260.052*
C100.5799 (2)0.75726 (12)0.0344 (2)0.0508 (5)
H100.63880.71810.04650.061*
C110.5044 (3)0.81058 (13)0.1324 (2)0.0522 (5)
C120.4182 (3)0.86953 (15)0.1176 (2)0.0576 (6)
H120.36890.90550.18560.069*
C130.4060 (2)0.87437 (13)0.00127 (19)0.0472 (5)
H130.34770.91410.01290.057*
C140.5726 (2)0.89431 (11)0.31739 (16)0.0349 (4)
C150.5244 (2)0.96762 (12)0.34201 (19)0.0426 (4)
H150.42590.97910.30440.051*
C160.6209 (3)1.02416 (12)0.4218 (2)0.0522 (5)
H160.58831.07360.43840.063*
C170.7645 (3)1.00628 (13)0.4757 (2)0.0507 (5)
C180.8181 (2)0.93527 (13)0.4525 (2)0.0496 (5)
H180.91710.92510.48970.060*
C190.7207 (2)0.87896 (12)0.37212 (19)0.0419 (4)
H190.75460.83030.35440.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1304 (14)0.0839 (11)0.0563 (9)0.0159 (10)0.0658 (9)0.0004 (7)
F20.0951 (11)0.0602 (9)0.0724 (10)0.0414 (8)0.0264 (8)0.0204 (7)
O10.0659 (9)0.0428 (8)0.0519 (8)0.0214 (7)0.0250 (7)0.0029 (6)
N10.0530 (9)0.0380 (8)0.0314 (8)0.0133 (7)0.0170 (7)0.0030 (6)
N20.0345 (7)0.0299 (7)0.0268 (7)0.0034 (6)0.0128 (6)0.0012 (5)
C10.0722 (14)0.0438 (11)0.0454 (11)0.0056 (10)0.0300 (10)0.0073 (9)
C20.0417 (9)0.0368 (10)0.0405 (10)0.0024 (8)0.0177 (8)0.0035 (8)
C30.0651 (12)0.0400 (10)0.0374 (10)0.0168 (9)0.0245 (9)0.0084 (8)
C40.0477 (10)0.0448 (10)0.0278 (8)0.0129 (8)0.0143 (8)0.0043 (7)
C50.0448 (10)0.0348 (9)0.0278 (9)0.0085 (7)0.0137 (7)0.0037 (7)
C60.0516 (11)0.0410 (10)0.0305 (9)0.0107 (8)0.0126 (8)0.0011 (7)
C70.0355 (8)0.0342 (9)0.0315 (9)0.0023 (7)0.0152 (7)0.0004 (7)
C80.0410 (9)0.0347 (9)0.0334 (9)0.0048 (7)0.0181 (7)0.0038 (7)
C90.0492 (11)0.0379 (10)0.0447 (11)0.0022 (8)0.0224 (9)0.0050 (8)
C100.0624 (13)0.0402 (11)0.0652 (14)0.0035 (9)0.0420 (11)0.0045 (9)
C110.0776 (14)0.0523 (12)0.0429 (11)0.0011 (11)0.0411 (11)0.0009 (9)
C120.0765 (15)0.0617 (14)0.0387 (11)0.0184 (12)0.0281 (11)0.0106 (10)
C130.0594 (12)0.0488 (11)0.0398 (10)0.0111 (9)0.0271 (9)0.0023 (8)
C140.0449 (9)0.0345 (9)0.0265 (8)0.0055 (7)0.0161 (7)0.0033 (7)
C150.0501 (11)0.0404 (10)0.0392 (10)0.0029 (8)0.0206 (8)0.0048 (8)
C160.0821 (16)0.0304 (10)0.0503 (12)0.0004 (10)0.0338 (11)0.0008 (8)
C170.0689 (14)0.0413 (11)0.0399 (10)0.0249 (10)0.0207 (10)0.0024 (8)
C180.0448 (10)0.0541 (12)0.0472 (11)0.0080 (9)0.0165 (9)0.0082 (9)
C190.0500 (11)0.0349 (10)0.0442 (10)0.0001 (8)0.0232 (9)0.0015 (8)
Geometric parameters (Å, º) top
F1—C111.364 (2)C7—C141.524 (2)
F2—C171.367 (2)C7—C81.530 (2)
O1—C21.227 (2)C7—H70.9800
N1—C21.349 (2)C8—C131.372 (3)
N1—C31.458 (2)C8—C91.381 (3)
N1—C61.465 (2)C9—C101.396 (3)
N2—C41.462 (2)C9—H90.9300
N2—C51.466 (2)C10—C111.365 (3)
N2—C71.467 (2)C10—H100.9300
C1—C21.505 (3)C11—C121.368 (3)
C1—H1A0.9600C12—C131.386 (3)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—H130.9300
C3—C41.505 (3)C14—C151.378 (3)
C3—H3A0.9700C14—C191.393 (3)
C3—H3B0.9700C15—C161.379 (3)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.359 (3)
C5—C61.503 (3)C16—H160.9300
C5—H5A0.9700C17—C181.365 (3)
C5—H5B0.9700C18—C191.383 (3)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—H190.9300
C2—N1—C3119.85 (15)C14—C7—C8109.55 (14)
C2—N1—C6124.48 (15)N2—C7—H7108.2
C3—N1—C6113.10 (15)C14—C7—H7108.2
C4—N2—C5107.26 (13)C8—C7—H7108.2
C4—N2—C7111.08 (13)C13—C8—C9119.04 (17)
C5—N2—C7112.70 (13)C13—C8—C7118.44 (16)
C2—C1—H1A109.5C9—C8—C7122.48 (16)
C2—C1—H1B109.5C8—C9—C10120.84 (18)
H1A—C1—H1B109.5C8—C9—H9119.6
C2—C1—H1C109.5C10—C9—H9119.6
H1A—C1—H1C109.5C11—C10—C9118.04 (18)
H1B—C1—H1C109.5C11—C10—H10121.0
O1—C2—N1121.36 (17)C9—C10—H10121.0
O1—C2—C1121.08 (17)F1—C11—C10118.60 (19)
N1—C2—C1117.55 (16)F1—C11—C12118.8 (2)
N1—C3—C4110.18 (16)C10—C11—C12122.56 (19)
N1—C3—H3A109.6C11—C12—C13118.4 (2)
C4—C3—H3A109.6C11—C12—H12120.8
N1—C3—H3B109.6C13—C12—H12120.8
C4—C3—H3B109.6C8—C13—C12121.12 (19)
H3A—C3—H3B108.1C8—C13—H13119.4
N2—C4—C3111.16 (15)C12—C13—H13119.4
N2—C4—H4A109.4C15—C14—C19118.84 (17)
C3—C4—H4A109.4C15—C14—C7119.82 (17)
N2—C4—H4B109.4C19—C14—C7121.33 (16)
C3—C4—H4B109.4C14—C15—C16120.7 (2)
H4A—C4—H4B108.0C14—C15—H15119.7
N2—C5—C6111.14 (15)C16—C15—H15119.7
N2—C5—H5A109.4C17—C16—C15118.8 (2)
C6—C5—H5A109.4C17—C16—H16120.6
N2—C5—H5B109.4C15—C16—H16120.6
C6—C5—H5B109.4C16—C17—C18122.94 (19)
H5A—C5—H5B108.0C16—C17—F2118.9 (2)
N1—C6—C5111.02 (15)C18—C17—F2118.1 (2)
N1—C6—H6A109.4C17—C18—C19118.0 (2)
C5—C6—H6A109.4C17—C18—H18121.0
N1—C6—H6B109.4C19—C18—H18121.0
C5—C6—H6B109.4C18—C19—C14120.79 (19)
H6A—C6—H6B108.0C18—C19—H19119.6
N2—C7—C14111.23 (13)C14—C19—H19119.6
N2—C7—C8111.40 (14)
C3—N1—C2—O12.5 (3)C7—C8—C9—C10178.25 (18)
C6—N1—C2—O1163.00 (19)C8—C9—C10—C110.0 (3)
C3—N1—C2—C1178.49 (18)C9—C10—C11—F1179.4 (2)
C6—N1—C2—C117.9 (3)C9—C10—C11—C120.8 (4)
C2—N1—C3—C4145.48 (18)F1—C11—C12—C13179.4 (2)
C6—N1—C3—C451.9 (2)C10—C11—C12—C130.8 (4)
C5—N2—C4—C362.16 (19)C9—C8—C13—C120.6 (3)
C7—N2—C4—C3174.28 (15)C7—C8—C13—C12178.3 (2)
N1—C3—C4—N258.1 (2)C11—C12—C13—C80.1 (4)
C4—N2—C5—C660.94 (19)N2—C7—C14—C15124.60 (17)
C7—N2—C5—C6176.50 (14)C8—C7—C14—C15111.80 (18)
C2—N1—C6—C5147.07 (18)N2—C7—C14—C1955.1 (2)
C3—N1—C6—C551.2 (2)C8—C7—C14—C1968.5 (2)
N2—C5—C6—N156.0 (2)C19—C14—C15—C161.4 (3)
C4—N2—C7—C14172.68 (14)C7—C14—C15—C16178.28 (17)
C5—N2—C7—C1452.28 (18)C14—C15—C16—C170.0 (3)
C4—N2—C7—C864.78 (18)C15—C16—C17—C181.3 (3)
C5—N2—C7—C8174.82 (14)C15—C16—C17—F2178.55 (18)
N2—C7—C8—C13151.90 (17)C16—C17—C18—C191.1 (3)
C14—C7—C8—C1384.6 (2)F2—C17—C18—C19178.75 (18)
N2—C7—C8—C930.5 (2)C17—C18—C19—C140.4 (3)
C14—C7—C8—C993.0 (2)C15—C14—C19—C181.6 (3)
C13—C8—C9—C100.7 (3)C7—C14—C19—C18178.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.463.371 (2)167
C15—H15···O1i0.932.553.351 (3)145
C18—H18···F2ii0.932.543.319 (3)142
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC19H20F2N2O
Mr330.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.1701 (5), 16.5521 (5), 11.1690 (5)
β (°) 114.690 (5)
V3)1708.27 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.48 × 0.32 × 0.22
Data collection
DiffractometerOxford Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10536, 3297, 2809
Rint0.026
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.155, 1.04
No. of reflections3297
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.463.371 (2)167.4
C15—H15···O1i0.932.553.351 (3)144.9
C18—H18···F2ii0.932.543.319 (3)141.7
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y+2, z+1.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o2783–o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDai, Z.-H., Zhong, Y. & Wu, B. (2012). Acta Cryst. E68, o1077.  CSD CrossRef IUCr Journals Google Scholar
First citationDayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012a). Acta Cryst. E68, o968.  CSD CrossRef IUCr Journals Google Scholar
First citationDayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012b). Acta Cryst. E68, o1180.  CSD CrossRef IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Y., Zhang, X. P. & Wu, B. (2011). Acta Cryst. E67, o3342.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds