organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­anilinium perchlorate

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: cpu_cj@hotmail.com

(Received 26 April 2012; accepted 25 May 2012; online 16 June 2012)

In the crystal of the title compound, C6H7ClN+·ClO4, a layer-like structure parallel to the bc plane is formed through N—H⋯O hydrogen bonds between the cations and anions. These layers are connected by weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For general background to ferroelectric organic frameworks, see: Gray et al. (2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61-72.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]). For phase transitions of ferroelectric materials, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W., Chen, K., Chan, P. W. H., Zhu, J.-S., Huang, D. S. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). For related structures, see: Gray et al. (2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61-72.]); Balamurugan et al. (2010[Balamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109-o113.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·ClO4

  • Mr = 228.03

  • Monoclinic, P 21 /c

  • a = 11.069 (2) Å

  • b = 7.3093 (15) Å

  • c = 13.718 (5) Å

  • β = 125.737 (19)°

  • V = 900.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.869, Tmax = 0.869

  • 8912 measured reflections

  • 2060 independent reflections

  • 1749 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.089

  • S = 2.26

  • 2060 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.21 2.978 (2) 145
N1—H1A⋯O4 0.89 2.63 3.333 (3) 136
N1—H1B⋯O3ii 0.89 2.04 2.911 (2) 168
N1—H1C⋯O4iii 0.89 2.29 3.022 (2) 140
N1—H1C⋯O2 0.89 2.51 3.039 (3) 118
C3—H3⋯O1iv 0.93 2.70 3.331 (3) 126
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) x-1, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). As a part of our work to obtain potential ferroelectric phase-transition materials, we report herein the crystal structure of title compound. Unluckily, the title compound exhibited no dielectric anomalies in the temperature range 93 – 453 K, suggesting that it might be only a paraelectric material.

The title compound, C6H7ClN+.ClO4-, exhibits a two-dimensional layer-like structure parallel to the bc plane through intermolecular N—H···O hydrogen bonds between cations and anions (Fig. 1 & 2). Furthermore, the crystal structure is stabilized by weak C—H···O interactions which connect the two-dimensional layers.

The cation, C6H7ClN+, is reported in the literature with different counter-ions (Gray et al., 2002; Balamurugan et al., 2010).

Related literature top

For general background to ferroelectric organic frameworks, see: Gray et al. (2002); Fu et al. (2007); Ye et al. (2009). For phase transitions of ferroelectric materials, see: Ye et al. (2006); Zhang et al. (2008); Zhao et al. (2008). For related structures, see: Gray et al. (2002); Balamurugan et al. (2010).

Experimental top

For the preparation of the title compound, a water solution of perchloric acid (1 g) was added to the ethanol solution of 2-chlorobenzenamine. The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were calculated geometrically and allowed to ride on the parent atom with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C), and with N–H = 0.89 Å Uiso(H) = 1.2Ueq(N).

Structure description top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric–ferroelectric performance (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). As a part of our work to obtain potential ferroelectric phase-transition materials, we report herein the crystal structure of title compound. Unluckily, the title compound exhibited no dielectric anomalies in the temperature range 93 – 453 K, suggesting that it might be only a paraelectric material.

The title compound, C6H7ClN+.ClO4-, exhibits a two-dimensional layer-like structure parallel to the bc plane through intermolecular N—H···O hydrogen bonds between cations and anions (Fig. 1 & 2). Furthermore, the crystal structure is stabilized by weak C—H···O interactions which connect the two-dimensional layers.

The cation, C6H7ClN+, is reported in the literature with different counter-ions (Gray et al., 2002; Balamurugan et al., 2010).

For general background to ferroelectric organic frameworks, see: Gray et al. (2002); Fu et al. (2007); Ye et al. (2009). For phase transitions of ferroelectric materials, see: Ye et al. (2006); Zhang et al. (2008); Zhao et al. (2008). For related structures, see: Gray et al. (2002); Balamurugan et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
2-Chloroanilinium perchlorate top
Crystal data top
C6H7ClN+·ClO4F(000) = 464
Mr = 228.03Dx = 1.681 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2060 reflections
a = 11.069 (2) Åθ = 3.3–27.5°
b = 7.3093 (15) ŵ = 0.70 mm1
c = 13.718 (5) ÅT = 293 K
β = 125.737 (19)°Prism, colourless
V = 900.9 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2060 independent reflections
Radiation source: fine-focus sealed tube1749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.869, Tmax = 0.869l = 1717
8912 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
S = 2.26(Δ/σ)max < 0.001
2060 reflectionsΔρmax = 0.31 e Å3
119 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.231 (7)
Crystal data top
C6H7ClN+·ClO4V = 900.9 (4) Å3
Mr = 228.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.069 (2) ŵ = 0.70 mm1
b = 7.3093 (15) ÅT = 293 K
c = 13.718 (5) Å0.20 × 0.20 × 0.20 mm
β = 125.737 (19)°
Data collection top
Rigaku SCXmini
diffractometer
2060 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1749 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.869Rint = 0.040
8912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 2.26Δρmax = 0.31 e Å3
2060 reflectionsΔρmin = 0.38 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.30288 (8)0.34063 (9)0.34203 (6)0.0620 (3)
N10.12505 (19)0.1679 (2)0.41599 (16)0.0359 (5)
H1A0.09530.07670.36370.043*
H1B0.08080.15830.45300.043*
H1C0.10080.27430.37730.043*
C10.2866 (2)0.1583 (3)0.50492 (19)0.0316 (5)
C20.3452 (3)0.0700 (3)0.6122 (2)0.0421 (6)
H20.28240.01750.62870.051*
C30.4974 (3)0.0596 (3)0.6954 (2)0.0556 (7)
H30.53750.00050.76830.067*
C40.5902 (3)0.1370 (3)0.6702 (3)0.0584 (8)
H40.69280.13050.72670.070*
C50.5324 (3)0.2237 (3)0.5624 (3)0.0536 (7)
H50.59540.27420.54550.064*
C60.3789 (3)0.2350 (3)0.4790 (2)0.0391 (5)
Cl10.07943 (6)0.17797 (7)0.07815 (5)0.0349 (2)
O10.21439 (19)0.0998 (3)0.01753 (15)0.0676 (6)
O20.10292 (19)0.2780 (2)0.15577 (14)0.0545 (5)
O30.0235 (2)0.3048 (2)0.03403 (16)0.0582 (5)
O40.0262 (2)0.0368 (2)0.14591 (16)0.0658 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0771 (6)0.0615 (5)0.0639 (5)0.0132 (3)0.0506 (5)0.0054 (3)
N10.0367 (11)0.0319 (10)0.0425 (11)0.0002 (8)0.0251 (10)0.0026 (8)
C10.0303 (12)0.0283 (12)0.0360 (12)0.0023 (8)0.0192 (11)0.0060 (9)
C20.0420 (14)0.0435 (14)0.0394 (13)0.0055 (10)0.0229 (12)0.0035 (10)
C30.0513 (17)0.0539 (17)0.0420 (14)0.0032 (12)0.0163 (14)0.0065 (12)
C40.0341 (15)0.0604 (18)0.0604 (19)0.0024 (12)0.0161 (14)0.0211 (14)
C50.0423 (16)0.0518 (16)0.0750 (19)0.0159 (12)0.0389 (15)0.0235 (14)
C60.0457 (15)0.0315 (12)0.0499 (14)0.0057 (10)0.0335 (13)0.0077 (10)
Cl10.0385 (3)0.0308 (3)0.0353 (3)0.0012 (2)0.0214 (3)0.0015 (2)
O10.0539 (12)0.0806 (13)0.0458 (10)0.0245 (10)0.0163 (10)0.0160 (9)
O20.0699 (13)0.0548 (11)0.0535 (11)0.0007 (9)0.0443 (11)0.0075 (8)
O30.0762 (13)0.0476 (11)0.0782 (13)0.0014 (8)0.0606 (12)0.0120 (9)
O40.0618 (12)0.0375 (10)0.0780 (13)0.0180 (8)0.0294 (11)0.0155 (9)
Geometric parameters (Å, º) top
Cl2—C61.729 (2)C3—H30.9300
N1—C11.464 (3)C4—C51.376 (4)
N1—H1A0.8900C4—H40.9300
N1—H1B0.8899C5—C61.390 (3)
N1—H1C0.8900C5—H50.9300
C1—C21.374 (3)Cl1—O11.4107 (17)
C1—C61.381 (3)Cl1—O41.4237 (16)
C2—C31.379 (3)Cl1—O31.4309 (15)
C2—H20.9300Cl1—O21.4350 (16)
C3—C41.382 (4)
C1—N1—H1A109.4C5—C4—C3120.7 (2)
C1—N1—H1B109.4C5—C4—H4119.6
H1A—N1—H1B109.5C3—C4—H4119.6
C1—N1—H1C109.6C4—C5—C6119.3 (2)
H1A—N1—H1C109.5C4—C5—H5120.4
H1B—N1—H1C109.5C6—C5—H5120.4
C2—C1—C6120.6 (2)C1—C6—C5119.8 (2)
C2—C1—N1119.84 (19)C1—C6—Cl2119.82 (18)
C6—C1—N1119.5 (2)C5—C6—Cl2120.40 (19)
C1—C2—C3119.8 (2)O1—Cl1—O4109.51 (12)
C1—C2—H2120.1O1—Cl1—O3110.70 (11)
C3—C2—H2120.1O4—Cl1—O3110.62 (11)
C2—C3—C4119.9 (2)O1—Cl1—O2110.14 (11)
C2—C3—H3120.1O4—Cl1—O2108.70 (11)
C4—C3—H3120.1O3—Cl1—O2107.13 (11)
C6—C1—C2—C30.7 (3)N1—C1—C6—C5179.00 (19)
N1—C1—C2—C3179.39 (19)C2—C1—C6—Cl2178.46 (16)
C1—C2—C3—C40.3 (3)N1—C1—C6—Cl20.2 (3)
C2—C3—C4—C50.4 (4)C4—C5—C6—C10.5 (3)
C3—C4—C5—C60.8 (4)C4—C5—C6—Cl2179.23 (18)
C2—C1—C6—C50.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.212.978 (2)145
N1—H1A···O40.892.633.333 (3)136
N1—H1B···O3ii0.892.042.911 (2)168
N1—H1C···O4iii0.892.293.022 (2)140
N1—H1C···O20.892.513.039 (3)118
C3—H3···O1iv0.932.703.331 (3)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·ClO4
Mr228.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.069 (2), 7.3093 (15), 13.718 (5)
β (°) 125.737 (19)
V3)900.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.869, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
8912, 2060, 1749
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.089, 2.26
No. of reflections2060
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.212.978 (2)144.7
N1—H1A···O40.892.633.333 (3)136.4
N1—H1B···O3ii0.892.042.911 (2)167.8
N1—H1C···O4iii0.892.293.022 (2)139.7
N1—H1C···O20.892.513.039 (3)118.4
C3—H3···O1iv0.932.703.331 (3)126
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x1, y, z1.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University, Nanjing, China.

References

First citationBalamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109–o113.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61–72.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W., Chen, K., Chan, P. W. H., Zhu, J.-S., Huang, D. S. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds