organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-4-[(1E)-2-nitro­prop-1-en-1-yl]benzene

aHangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou 310000, People's Republic of China, bState Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and cJiaxing Zhonghua Chemical Industry Co. Ltd, Daqiao Town Nanhu District, Jiaxing 314006, People's Republic of China
*Correspondence e-mail: boyzb@163.com

(Received 8 May 2012; accepted 7 June 2012; online 13 June 2012)

The title compound, C10H11NO2, adopts an E conformation about the C=C bond. The C=C—C=C torsion angle is 32.5 (3)°. The crystal structure features weak inter­molecular C—H⋯O inter­actions.

Related literature

For background to the chemistry of nitro­alkenes, see: Ballini & Petrini (2004[Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017-1047.]); Berner et al. (2002[Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877-1894.]); Ono (2001[Ono, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.]). For a related structure, see: Yang et al. (2010[Yang, J.-K., Zheng, M., Luo, S.-P. & Li, Z.-B. (2010). Acta Cryst. E66, o1781.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO2

  • Mr = 177.20

  • Orthorhombic, P b c a

  • a = 11.0610 (5) Å

  • b = 7.5840 (4) Å

  • c = 22.6420 (11) Å

  • V = 1899.36 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.58 × 0.43 × 0.36 mm

Data collection
  • Rigaku R-AXIS-RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.941, Tmax = 0.969

  • 16972 measured reflections

  • 2162 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.00

  • 2162 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.55 3.369 (2) 147
C2—H2⋯O2ii 0.93 2.66 3.551 (3) 162
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Americas Corporation, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N- and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane (Yang et al., 2010). We report here the crystal structure of the title compound (Fig. 1).

The molecule adopts an E configuration with respect to the C8=C9 double bond. The torsion angle C9—C8—C1—C6 is 32.5 (3)°. In the crystal structure, the molecules interact through weak intermolecular C8—H8···O1i and C2—H2···O2ii hydrogen bonds (symmetry codes: i = -x+1, -y, -z+1; ii = x+1/2, -y+1/2, -z+1; Fig. 2 and Table 1).

Related literature top

For background to the chemistry of nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001). For a related structure, see: Yang et al. (2010).

Experimental top

To a solution of p-tolualdehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the final product. Single crystals were obtained by slow evaporation of a n-hexane/EtOAc (10:1, v/v) solution.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N- and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane (Yang et al., 2010). We report here the crystal structure of the title compound (Fig. 1).

The molecule adopts an E configuration with respect to the C8=C9 double bond. The torsion angle C9—C8—C1—C6 is 32.5 (3)°. In the crystal structure, the molecules interact through weak intermolecular C8—H8···O1i and C2—H2···O2ii hydrogen bonds (symmetry codes: i = -x+1, -y, -z+1; ii = x+1/2, -y+1/2, -z+1; Fig. 2 and Table 1).

For background to the chemistry of nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001). For a related structure, see: Yang et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the intermolecular interactions illustrated as dashed lines.
1-Methyl-4-[(1E)-2-nitroprop-1-en-1-yl]benzene top
Crystal data top
C10H11NO2F(000) = 752
Mr = 177.20Dx = 1.239 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9467 reflections
a = 11.0610 (5) Åθ = 3.2–27.4°
b = 7.5840 (4) ŵ = 0.09 mm1
c = 22.6420 (11) ÅT = 296 K
V = 1899.36 (16) Å3Chunk, yellow
Z = 80.58 × 0.43 × 0.36 mm
Data collection top
Rigaku R-AXIS-RAPID/ZJUG
diffractometer
2162 independent reflections
Radiation source: rotating anode1325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.941, Tmax = 0.969l = 2929
16972 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4885P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2162 reflectionsΔρmax = 0.15 e Å3
121 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (12)
Crystal data top
C10H11NO2V = 1899.36 (16) Å3
Mr = 177.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.0610 (5) ŵ = 0.09 mm1
b = 7.5840 (4) ÅT = 296 K
c = 22.6420 (11) Å0.58 × 0.43 × 0.36 mm
Data collection top
Rigaku R-AXIS-RAPID/ZJUG
diffractometer
2162 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1325 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.969Rint = 0.033
16972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
2162 reflectionsΔρmin = 0.17 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35993 (13)0.1487 (2)0.63005 (7)0.0487 (4)
C20.46387 (14)0.2326 (2)0.65095 (8)0.0577 (4)
H20.52480.26340.62460.069*
C30.47750 (16)0.2703 (2)0.71015 (8)0.0643 (5)
H30.54640.33000.72270.077*
C40.39139 (17)0.2218 (2)0.75151 (8)0.0614 (5)
C50.29031 (16)0.1324 (2)0.73072 (8)0.0615 (5)
H50.23180.09570.75750.074*
C60.27416 (14)0.0963 (2)0.67157 (7)0.0547 (4)
H60.20530.03630.65920.066*
C70.4073 (2)0.2610 (3)0.81617 (9)0.0938 (7)
H7A0.40470.15290.83820.141*
H7B0.34350.33740.82920.141*
H7C0.48390.31770.82230.141*
C80.34896 (14)0.1144 (2)0.56645 (7)0.0531 (4)
H80.42110.09630.54620.064*
C90.24878 (15)0.1058 (2)0.53415 (7)0.0524 (4)
C100.12094 (14)0.1404 (3)0.55103 (8)0.0676 (5)
H10A0.07910.03040.55570.101*
H10B0.08240.20870.52070.101*
H10C0.11890.20430.58760.101*
N10.26510 (15)0.0587 (2)0.47133 (7)0.0689 (4)
O10.36592 (15)0.0320 (3)0.45180 (6)0.1156 (7)
O20.17592 (15)0.0466 (3)0.44070 (7)0.1107 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (8)0.0448 (8)0.0577 (9)0.0026 (6)0.0012 (7)0.0014 (7)
C20.0443 (8)0.0582 (10)0.0705 (11)0.0013 (7)0.0040 (8)0.0051 (8)
C30.0588 (10)0.0554 (10)0.0788 (12)0.0025 (8)0.0221 (9)0.0002 (8)
C40.0758 (11)0.0482 (9)0.0602 (10)0.0081 (8)0.0150 (9)0.0001 (8)
C50.0675 (11)0.0592 (10)0.0576 (10)0.0005 (8)0.0030 (8)0.0056 (8)
C60.0527 (9)0.0527 (9)0.0587 (9)0.0081 (7)0.0020 (7)0.0009 (7)
C70.134 (2)0.0821 (14)0.0653 (12)0.0051 (14)0.0291 (13)0.0057 (10)
C80.0474 (8)0.0563 (9)0.0555 (9)0.0029 (7)0.0031 (7)0.0019 (7)
C90.0535 (8)0.0525 (9)0.0512 (8)0.0023 (7)0.0009 (7)0.0009 (7)
C100.0500 (9)0.0809 (12)0.0718 (11)0.0055 (9)0.0033 (8)0.0057 (9)
N10.0687 (10)0.0811 (11)0.0570 (9)0.0123 (8)0.0067 (8)0.0012 (8)
O10.0869 (11)0.197 (2)0.0625 (9)0.0435 (12)0.0054 (8)0.0159 (10)
O20.0889 (11)0.1695 (18)0.0737 (10)0.0049 (11)0.0255 (8)0.0238 (10)
Geometric parameters (Å, º) top
C1—C21.396 (2)C7—H7A0.9600
C1—C61.394 (2)C7—H7B0.9600
C1—C81.468 (2)C7—H7C0.9600
C2—C31.379 (2)C8—C91.329 (2)
C2—H20.9300C8—H80.9300
C3—C41.386 (3)C9—N11.478 (2)
C3—H30.9300C9—C101.488 (2)
C4—C51.390 (2)C10—H10A0.9600
C4—C71.504 (3)C10—H10B0.9600
C5—C61.378 (2)C10—H10C0.9600
C5—H50.9300N1—O21.2094 (19)
C6—H60.9300N1—O11.217 (2)
C2—C1—C6117.50 (15)H7A—C7—H7B109.5
C2—C1—C8118.77 (14)C4—C7—H7C109.5
C6—C1—C8123.69 (14)H7A—C7—H7C109.5
C3—C2—C1120.94 (16)H7B—C7—H7C109.5
C3—C2—H2119.5C9—C8—C1128.09 (14)
C1—C2—H2119.5C9—C8—H8116.0
C2—C3—C4121.78 (16)C1—C8—H8116.0
C2—C3—H3119.1C8—C9—N1116.07 (14)
C4—C3—H3119.1C8—C9—C10129.97 (15)
C3—C4—C5116.99 (16)N1—C9—C10113.95 (14)
C3—C4—C7121.66 (18)C9—C10—H10A109.5
C5—C4—C7121.35 (19)C9—C10—H10B109.5
C6—C5—C4122.02 (16)H10A—C10—H10B109.5
C6—C5—H5119.0C9—C10—H10C109.5
C4—C5—H5119.0H10A—C10—H10C109.5
C5—C6—C1120.70 (15)H10B—C10—H10C109.5
C5—C6—H6119.7O2—N1—O1121.78 (17)
C1—C6—H6119.7O2—N1—C9118.09 (16)
C4—C7—H7A109.5O1—N1—C9120.13 (15)
C4—C7—H7B109.5
C6—C1—C2—C33.5 (2)C8—C1—C6—C5179.77 (15)
C8—C1—C2—C3178.93 (15)C2—C1—C8—C9150.12 (16)
C1—C2—C3—C42.3 (3)C6—C1—C8—C932.5 (3)
C2—C3—C4—C50.2 (2)C1—C8—C9—N1176.58 (15)
C2—C3—C4—C7179.15 (17)C1—C8—C9—C104.9 (3)
C3—C4—C5—C61.4 (2)C8—C9—N1—O2178.77 (17)
C7—C4—C5—C6179.65 (17)C10—C9—N1—O22.5 (2)
C4—C5—C6—C10.1 (3)C8—C9—N1—O10.8 (3)
C2—C1—C6—C52.3 (2)C10—C9—N1—O1177.99 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.282.677 (2)105
C8—H8···O1i0.932.553.369 (2)147
C2—H2···O2ii0.932.663.551 (3)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H11NO2
Mr177.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.0610 (5), 7.5840 (4), 22.6420 (11)
V3)1899.36 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.43 × 0.36
Data collection
DiffractometerRigaku R-AXIS-RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.941, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
16972, 2162, 1325
Rint0.033
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.00
No. of reflections2162
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 2006), PROCESS-AUTO (Rigaku, 2006), CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.9302.553.369 (2)147
C2—H2···O2ii0.9302.663.551 (3)162
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Mr Jianming Gu for the single-crystal X-ray analysis. They are also grateful for financial support from the State Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology of Zhejiang University of Technology (GCTKF2012010).

References

First citationBallini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.  Web of Science CrossRef CAS Google Scholar
First citationBerner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOno, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Americas Corporation, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J.-K., Zheng, M., Luo, S.-P. & Li, Z.-B. (2010). Acta Cryst. E66, o1781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds