metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bis[bis­­(4-meth­­oxy­phen­yl)phosphan­yl]ferrocene

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
*Correspondence e-mail: renxf@sues.edu.cn

(Received 22 April 2012; accepted 10 June 2012; online 16 June 2012)

In the crystal structure of the title substituted ferrocene complex, [Fe(C19H18O2P)2], the FeII atom lies on a twofold rotation axis, giving an eclipsed cyclo­penta­dienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe—C bond-length range of 2.0239 (15)–2.0521 (15) Å. In the ligand, the cyclo­penta­dienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenyl­phosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°.

Related literature

For the synthesis of the title compound from ferrocene, see: Ogasawara et al. (2002[Ogasawara, M., Takizawa, K. & Hayashi, T. (2002). Organometallics, 21, 4853-4861.]). For applications of the title compound, see: Gusev et al. (2006[Gusev, O. V., Peganova, T. A., Kalsin, A. M., Vologdin, N. V., Petrovskii, P. V., Lyssenko, K. A., Tsvetkov, A. V. & Beletskaya, I. P. (2006). Organometallics, 25, 2750-2760.]); Hamann & Hartwig (1998[Hamann, B. C. & Hartwig, J. F. (1998). J. Am. Chem. Soc. 120, 3694-3703.]); Casellato et al. (1988[Casellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583-590.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C19H18O2P)2]

  • Mr = 674.46

  • Monoclinic, C 2/c

  • a = 19.0790 (8) Å

  • b = 9.9445 (4) Å

  • c = 17.5663 (8) Å

  • β = 102.386 (1)°

  • V = 3255.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.761, Tmax = 0.831

  • 18254 measured reflections

  • 2869 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.04

  • 2869 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a substituted ferrocene complex [C38H36FeO4P2] which was synthesized in a reaction of 4-methoxyphenylmagnesium bromide with 1,1'-bis(dichlorophosphine)ferrocene. A previously reported synthesis involved the reaction of chlorobis(4-methoxyphenyl)phosphine with ferrocene (Ogasawara et al., 2002). A potential application of the compound is in metal-catalized organic reactions (Gusev et al., 2006; Hamann & Hartwig, 1998). The single-crystal structure determination of the compound was performed to provide the coordination geometry and structural conformation, which will allow the study of the mechanism of metal-catalized organic reactions.

In the structure of the title compound, the FeII lies on a twofold rotation axis giving an eclipsed cyclopentadienyl configuration (Fig. 1), with a cyclopentadienyl ring-centroid separation of 3.292 (7) Å and an Fe—C range of 2.0239 (15)–2.0521 (15) Å. These distances compare with 3.305 (3) and 2.033 (4)–2.064 (4) Å in a similar ferrocene complex (Casellato et al., 1988). In each ligand, the cyclopentadienyl ring forms dihedral angles of 60.36 (6)° and 82.93 (6)° with the two phenyl rings of the diphenylphosphine substituent group, while the dihedral angle between the phenyl rings is 67.4 (5)°.

Related literature top

For the synthesis of the title compound from ferrocene, see: Ogasawara et al. (2002). For applications of the title compound, see: Gusev et al. (2006); Hamann & Hartwig (1998); Casellato et al. (1988).

Experimental top

A solution of 4-methoxyphenylmagnesium bromide (1 M in THF, 12 ml, 12 mmol) was added dropwise over 5 min. at -78 °C to a stirred solution of 1,1'-bis(dichlorophosphanyl)ferrocene (776 mg, 2 mmol) in THF (15 ml) under argon. The mixture was warmed to 25 °C slowly and was stirred for an additional 12 h. The reaction was monitored by PNMR. The resulting mixture was quenched with water (2 ml) at 0 °C, and then filtered and washed with water (10×, 3 ml), methanol (5×, 2 ml) and diethyl ether (5×, 3 ml). The solid obtained was then dissolved in chloroform (5 ml) and the solution was passed through a short silica gel plug, and washed with chloroform (5×, 3 ml) to remove the residual salt. The solvent was removed and the resulting solid was dried under vacuum to give the title compound as a yellow solid (680 mg, 50.5% yield). Single crystals suitable for X-ray diffraction are obtained from a CH2Cl2-hexane solution via solvent evaporation at room temperature after two weeks.

Refinement top

All H-atoms were placed in calculated positions with C—H = 0.93 Å and were allowed to ride in the refinement, with U</>iso(H) = 1.2Ueq(C).

Structure description top

The title compound is a substituted ferrocene complex [C38H36FeO4P2] which was synthesized in a reaction of 4-methoxyphenylmagnesium bromide with 1,1'-bis(dichlorophosphine)ferrocene. A previously reported synthesis involved the reaction of chlorobis(4-methoxyphenyl)phosphine with ferrocene (Ogasawara et al., 2002). A potential application of the compound is in metal-catalized organic reactions (Gusev et al., 2006; Hamann & Hartwig, 1998). The single-crystal structure determination of the compound was performed to provide the coordination geometry and structural conformation, which will allow the study of the mechanism of metal-catalized organic reactions.

In the structure of the title compound, the FeII lies on a twofold rotation axis giving an eclipsed cyclopentadienyl configuration (Fig. 1), with a cyclopentadienyl ring-centroid separation of 3.292 (7) Å and an Fe—C range of 2.0239 (15)–2.0521 (15) Å. These distances compare with 3.305 (3) and 2.033 (4)–2.064 (4) Å in a similar ferrocene complex (Casellato et al., 1988). In each ligand, the cyclopentadienyl ring forms dihedral angles of 60.36 (6)° and 82.93 (6)° with the two phenyl rings of the diphenylphosphine substituent group, while the dihedral angle between the phenyl rings is 67.4 (5)°.

For the synthesis of the title compound from ferrocene, see: Ogasawara et al. (2002). For applications of the title compound, see: Gusev et al. (2006); Hamann & Hartwig (1998); Casellato et al. (1988).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for the title compound, with probability displacement ellipsoids drawn at the 50% level. For symmetry code (i): -x, y, -z+1/2.
1,1'-Bis[bis(4-methoxyphenyl)phosphanyl]ferrocene top
Crystal data top
[Fe(C19H18O2P)2]F(000) = 1408
Mr = 674.46Dx = 1.376 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9910 reflections
a = 19.0790 (8) Åθ = 2.3–28.3°
b = 9.9445 (4) ŵ = 0.60 mm1
c = 17.5663 (8) ÅT = 173 K
β = 102.386 (1)°Block, yellow
V = 3255.3 (2) Å30.48 × 0.46 × 0.32 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2869 independent reflections
Radiation source: fine-focus sealed tube2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.761, Tmax = 0.831k = 1111
18254 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0343P)2 + 3.7311P]
where P = (Fo2 + 2Fc2)/3
2869 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Fe(C19H18O2P)2]V = 3255.3 (2) Å3
Mr = 674.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.0790 (8) ŵ = 0.60 mm1
b = 9.9445 (4) ÅT = 173 K
c = 17.5663 (8) Å0.48 × 0.46 × 0.32 mm
β = 102.386 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2740 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.831Rint = 0.019
18254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
2869 reflectionsΔρmin = 0.18 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.11062 (3)0.25000.02319 (10)
P10.11216 (2)0.17867 (4)0.12853 (2)0.02453 (11)
O10.06477 (7)0.44156 (13)0.18422 (7)0.0424 (3)
O20.22904 (6)0.37992 (11)0.13592 (7)0.0382 (3)
C10.09423 (8)0.23741 (15)0.02723 (9)0.0248 (3)
C20.03081 (9)0.30448 (18)0.00579 (10)0.0366 (4)
H2A0.00760.30540.02090.044*
C30.02282 (10)0.3694 (2)0.07642 (11)0.0414 (4)
H3A0.02100.41400.09790.050*
C40.07794 (9)0.37024 (16)0.11638 (9)0.0302 (3)
C50.14120 (8)0.30234 (16)0.08555 (9)0.0298 (3)
H5A0.17910.30030.11290.036*
C60.14846 (8)0.23725 (16)0.01420 (9)0.0287 (3)
H6A0.19190.19120.00680.034*
C70.14856 (8)0.00986 (15)0.12251 (9)0.0250 (3)
C80.19314 (8)0.04129 (16)0.18999 (9)0.0280 (3)
H8A0.20580.01420.23490.034*
C90.21914 (8)0.17124 (16)0.19252 (9)0.0312 (3)
H9A0.24880.20490.23900.037*
C100.20173 (8)0.25261 (15)0.12684 (9)0.0281 (3)
C110.15920 (8)0.20285 (16)0.05856 (9)0.0298 (3)
H11A0.14840.25740.01310.036*
C120.13253 (8)0.07256 (16)0.05713 (9)0.0292 (3)
H12A0.10280.03920.01060.035*
C130.08978 (9)0.16360 (19)0.16939 (9)0.0356 (4)
H13A0.13410.20530.18080.043*
C140.02860 (9)0.23385 (17)0.15681 (9)0.0311 (3)
H14A0.02260.33380.15720.037*
C150.02275 (8)0.13737 (16)0.14232 (8)0.0261 (3)
C160.00775 (9)0.00717 (17)0.14745 (9)0.0314 (3)
H16A0.01580.08080.14110.038*
C170.07674 (9)0.02422 (19)0.16437 (9)0.0370 (4)
H17A0.11020.04970.17190.044*
C180.21229 (11)0.46909 (18)0.07098 (12)0.0456 (4)
H18A0.23510.55640.08540.068*
H18B0.23010.43130.02720.068*
H18C0.16020.48090.05570.068*
C190.11777 (11)0.4448 (3)0.22871 (12)0.0557 (6)
H19A0.10090.49950.27550.084*
H19B0.12750.35310.24400.084*
H19C0.16180.48420.19770.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02589 (17)0.02243 (17)0.02163 (17)0.0000.00595 (12)0.000
P10.0268 (2)0.0228 (2)0.0238 (2)0.00004 (14)0.00500 (15)0.00076 (15)
O10.0477 (7)0.0485 (7)0.0333 (6)0.0126 (6)0.0140 (5)0.0159 (6)
O20.0407 (7)0.0262 (6)0.0440 (7)0.0073 (5)0.0007 (5)0.0013 (5)
C10.0274 (7)0.0213 (7)0.0253 (7)0.0014 (6)0.0047 (6)0.0006 (6)
C20.0303 (8)0.0469 (10)0.0350 (9)0.0070 (7)0.0121 (7)0.0097 (8)
C30.0320 (9)0.0526 (11)0.0402 (10)0.0145 (8)0.0095 (7)0.0140 (8)
C40.0368 (9)0.0263 (8)0.0276 (8)0.0014 (6)0.0070 (7)0.0026 (6)
C50.0307 (8)0.0305 (8)0.0303 (8)0.0006 (6)0.0114 (6)0.0001 (7)
C60.0277 (7)0.0276 (8)0.0305 (8)0.0039 (6)0.0057 (6)0.0016 (6)
C70.0237 (7)0.0251 (7)0.0263 (7)0.0001 (6)0.0058 (6)0.0008 (6)
C80.0271 (7)0.0301 (8)0.0255 (7)0.0009 (6)0.0025 (6)0.0027 (6)
C90.0292 (8)0.0326 (9)0.0290 (8)0.0029 (6)0.0005 (6)0.0043 (7)
C100.0245 (7)0.0245 (7)0.0357 (8)0.0005 (6)0.0075 (6)0.0019 (6)
C110.0326 (8)0.0289 (8)0.0275 (8)0.0006 (6)0.0050 (6)0.0041 (6)
C120.0321 (8)0.0296 (8)0.0238 (8)0.0030 (7)0.0014 (6)0.0020 (6)
C130.0272 (8)0.0549 (11)0.0240 (8)0.0054 (7)0.0041 (6)0.0032 (7)
C140.0344 (8)0.0340 (9)0.0254 (8)0.0081 (7)0.0075 (6)0.0064 (7)
C150.0298 (8)0.0285 (8)0.0203 (7)0.0008 (6)0.0058 (6)0.0008 (6)
C160.0371 (9)0.0317 (8)0.0261 (8)0.0071 (7)0.0085 (7)0.0071 (6)
C170.0341 (9)0.0498 (10)0.0270 (8)0.0136 (8)0.0068 (7)0.0084 (7)
C180.0499 (11)0.0287 (9)0.0560 (12)0.0055 (8)0.0067 (9)0.0084 (8)
C190.0541 (12)0.0745 (15)0.0435 (11)0.0102 (11)0.0215 (9)0.0259 (11)
Geometric parameters (Å, º) top
Fe1—C142.0239 (15)C6—H6A0.9500
Fe1—C14i2.0239 (15)C7—C121.390 (2)
Fe1—C13i2.0436 (16)C7—C81.398 (2)
Fe1—C132.0437 (16)C8—C91.381 (2)
Fe1—C152.0467 (14)C8—H8A0.9500
Fe1—C15i2.0468 (14)C9—C101.390 (2)
Fe1—C172.0493 (16)C9—H9A0.9500
Fe1—C17i2.0493 (16)C10—C111.387 (2)
Fe1—C16i2.0521 (15)C11—C121.390 (2)
Fe1—C162.0521 (15)C11—H11A0.9500
P1—C151.8207 (16)C12—H12A0.9500
P1—C71.8284 (15)C13—C171.414 (3)
P1—C11.8341 (15)C13—C141.418 (2)
O1—C41.3630 (19)C13—H13A1.0000
O1—C191.405 (2)C14—C151.432 (2)
O2—C101.3653 (19)C14—H14A1.0000
O2—C181.426 (2)C15—C161.430 (2)
C1—C61.387 (2)C16—C171.420 (2)
C1—C21.394 (2)C16—H16A1.0000
C2—C31.378 (2)C17—H17A1.0000
C2—H2A0.9500C18—H18A0.9800
C3—C41.384 (2)C18—H18B0.9800
C3—H3A0.9500C18—H18C0.9800
C4—C51.388 (2)C19—H19A0.9800
C5—C61.391 (2)C19—H19B0.9800
C5—H5A0.9500C19—H19C0.9800
C14—Fe1—C14i105.47 (10)C6—C5—H5A120.4
C14—Fe1—C13i116.41 (7)C1—C6—C5122.08 (14)
C14i—Fe1—C13i40.79 (7)C1—C6—H6A119.0
C14—Fe1—C1340.80 (7)C5—C6—H6A119.0
C14i—Fe1—C13116.41 (7)C12—C7—C8118.15 (14)
C13i—Fe1—C13150.12 (11)C12—C7—P1124.75 (12)
C14—Fe1—C1541.20 (6)C8—C7—P1117.03 (11)
C14i—Fe1—C15126.51 (6)C9—C8—C7121.10 (14)
C13i—Fe1—C15107.13 (6)C9—C8—H8A119.5
C13—Fe1—C1568.81 (6)C7—C8—H8A119.5
C14—Fe1—C15i126.51 (6)C8—C9—C10119.85 (14)
C14i—Fe1—C15i41.20 (6)C8—C9—H9A120.1
C13i—Fe1—C15i68.81 (6)C10—C9—H9A120.1
C13—Fe1—C15i107.13 (6)O2—C10—C11124.73 (14)
C15—Fe1—C15i165.06 (9)O2—C10—C9115.18 (14)
C14—Fe1—C1768.53 (7)C11—C10—C9120.09 (14)
C14i—Fe1—C17150.90 (7)C10—C11—C12119.47 (14)
C13i—Fe1—C17167.79 (8)C10—C11—H11A120.3
C13—Fe1—C1740.43 (8)C12—C11—H11A120.3
C15—Fe1—C1768.65 (6)C11—C12—C7121.31 (14)
C15i—Fe1—C17118.24 (6)C11—C12—H12A119.3
C14—Fe1—C17i150.90 (7)C7—C12—H12A119.3
C14i—Fe1—C17i68.53 (7)C17—C13—C14108.14 (15)
C13i—Fe1—C17i40.43 (8)C17—C13—Fe170.00 (10)
C13—Fe1—C17i167.79 (8)C14—C13—Fe168.85 (9)
C15—Fe1—C17i118.24 (6)C17—C13—H13A125.9
C15i—Fe1—C17i68.64 (6)C14—C13—H13A125.9
C17—Fe1—C17i130.42 (11)Fe1—C13—H13A125.9
C14—Fe1—C16i165.87 (6)C13—C14—C15108.36 (15)
C14i—Fe1—C16i68.74 (7)C13—C14—Fe170.35 (9)
C13i—Fe1—C16i68.23 (7)C15—C14—Fe170.25 (9)
C13—Fe1—C16i129.00 (7)C13—C14—H14A125.8
C15—Fe1—C16i152.47 (6)C15—C14—H14A125.8
C15i—Fe1—C16i40.85 (6)Fe1—C14—H14A125.8
C17—Fe1—C16i109.86 (7)C16—C15—C14106.99 (14)
C17i—Fe1—C16i40.52 (7)C16—C15—P1128.17 (12)
C14—Fe1—C1668.74 (7)C14—C15—P1124.65 (12)
C14i—Fe1—C16165.87 (6)C16—C15—Fe169.78 (8)
C13i—Fe1—C16129.01 (7)C14—C15—Fe168.54 (8)
C13—Fe1—C1668.23 (7)P1—C15—Fe1122.87 (8)
C15—Fe1—C1640.85 (6)C17—C16—C15108.23 (15)
C15i—Fe1—C16152.47 (6)C17—C16—Fe169.63 (9)
C17—Fe1—C1640.52 (7)C15—C16—Fe169.37 (8)
C17i—Fe1—C16109.86 (7)C17—C16—H16A125.9
C16i—Fe1—C16119.82 (9)C15—C16—H16A125.9
C15—P1—C7100.31 (7)Fe1—C16—H16A125.9
C15—P1—C1102.46 (7)C13—C17—C16108.27 (15)
C7—P1—C1103.32 (7)C13—C17—Fe169.57 (9)
C4—O1—C19118.61 (14)C16—C17—Fe169.85 (9)
C10—O2—C18117.95 (13)C13—C17—H17A125.9
C6—C1—C2117.43 (14)C16—C17—H17A125.9
C6—C1—P1120.27 (11)Fe1—C17—H17A125.9
C2—C1—P1121.37 (12)O2—C18—H18A109.5
C3—C2—C1121.15 (15)O2—C18—H18B109.5
C3—C2—H2A119.4H18A—C18—H18B109.5
C1—C2—H2A119.4O2—C18—H18C109.5
C2—C3—C4120.68 (16)H18A—C18—H18C109.5
C2—C3—H3A119.7H18B—C18—H18C109.5
C4—C3—H3A119.7O1—C19—H19A109.5
O1—C4—C3115.40 (15)O1—C19—H19B109.5
O1—C4—C5125.18 (15)H19A—C19—H19B109.5
C3—C4—C5119.41 (15)O1—C19—H19C109.5
C4—C5—C6119.23 (14)H19A—C19—H19C109.5
C4—C5—H5A120.4H19B—C19—H19C109.5
C15—P1—C1—C6158.86 (12)C1—P1—C15—C16106.83 (14)
C7—P1—C1—C654.93 (14)C7—P1—C15—C14174.94 (13)
C15—P1—C1—C232.47 (15)C1—P1—C15—C1478.80 (14)
C7—P1—C1—C2136.39 (14)C7—P1—C15—Fe189.69 (10)
C6—C1—C2—C30.8 (3)C1—P1—C15—Fe1164.05 (9)
P1—C1—C2—C3168.20 (15)C14—Fe1—C15—C16118.64 (13)
C1—C2—C3—C40.3 (3)C14i—Fe1—C15—C16171.34 (10)
C19—O1—C4—C3178.81 (19)C13i—Fe1—C15—C16130.58 (10)
C19—O1—C4—C52.0 (3)C13—Fe1—C15—C1680.81 (10)
C2—C3—C4—O1177.80 (17)C15i—Fe1—C15—C16157.63 (9)
C2—C3—C4—C51.4 (3)C17—Fe1—C15—C1637.27 (10)
O1—C4—C5—C6177.74 (15)C17i—Fe1—C15—C1688.20 (11)
C3—C4—C5—C61.4 (2)C16i—Fe1—C15—C1655.0 (2)
C2—C1—C6—C50.8 (2)C14i—Fe1—C15—C1470.02 (15)
P1—C1—C6—C5168.32 (12)C13i—Fe1—C15—C14110.77 (10)
C4—C5—C6—C10.3 (2)C13—Fe1—C15—C1437.84 (10)
C15—P1—C7—C1277.75 (14)C15i—Fe1—C15—C1438.99 (9)
C1—P1—C7—C1227.83 (15)C17—Fe1—C15—C1481.37 (11)
C15—P1—C7—C899.24 (12)C17i—Fe1—C15—C14153.16 (10)
C1—P1—C7—C8155.18 (12)C16i—Fe1—C15—C14173.61 (13)
C12—C7—C8—C91.7 (2)C16—Fe1—C15—C14118.64 (13)
P1—C7—C8—C9175.54 (12)C14—Fe1—C15—P1118.25 (14)
C7—C8—C9—C100.9 (2)C14i—Fe1—C15—P148.23 (13)
C18—O2—C10—C110.6 (2)C13i—Fe1—C15—P17.48 (12)
C18—O2—C10—C9179.14 (15)C13—Fe1—C15—P1156.09 (12)
C8—C9—C10—O2178.84 (14)C15i—Fe1—C15—P179.27 (9)
C8—C9—C10—C110.9 (2)C17—Fe1—C15—P1160.38 (12)
O2—C10—C11—C12177.88 (14)C17i—Fe1—C15—P134.91 (12)
C9—C10—C11—C121.9 (2)C16i—Fe1—C15—P168.14 (18)
C10—C11—C12—C71.1 (2)C16—Fe1—C15—P1123.11 (14)
C8—C7—C12—C110.7 (2)C14—C15—C16—C170.31 (18)
P1—C7—C12—C11176.27 (12)P1—C15—C16—C17175.46 (12)
C14—Fe1—C13—C17119.74 (14)Fe1—C15—C16—C1758.97 (11)
C14i—Fe1—C13—C17157.13 (9)C14—C15—C16—Fe158.66 (10)
C13i—Fe1—C13—C17169.20 (10)P1—C15—C16—Fe1116.49 (12)
C15—Fe1—C13—C1781.54 (10)C14—Fe1—C16—C1781.42 (11)
C15i—Fe1—C13—C17113.69 (10)C14i—Fe1—C16—C17149.5 (3)
C17i—Fe1—C13—C1745.9 (4)C13i—Fe1—C16—C17171.18 (11)
C16i—Fe1—C13—C1773.95 (12)C13—Fe1—C16—C1737.41 (11)
C16—Fe1—C13—C1737.49 (10)C15—Fe1—C16—C17119.76 (14)
C14i—Fe1—C13—C1483.13 (13)C15i—Fe1—C16—C1747.99 (19)
C13i—Fe1—C13—C1449.46 (9)C17i—Fe1—C16—C17129.68 (13)
C15—Fe1—C13—C1438.20 (9)C16i—Fe1—C16—C1786.11 (10)
C15i—Fe1—C13—C14126.58 (10)C14—Fe1—C16—C1538.34 (9)
C17—Fe1—C13—C14119.74 (14)C14i—Fe1—C16—C1529.7 (3)
C17i—Fe1—C13—C14165.6 (3)C13i—Fe1—C16—C1569.06 (12)
C16i—Fe1—C13—C14166.31 (10)C13—Fe1—C16—C1582.34 (10)
C16—Fe1—C13—C1482.24 (10)C15i—Fe1—C16—C15167.75 (9)
C17—C13—C14—C151.07 (18)C17—Fe1—C16—C15119.76 (14)
Fe1—C13—C14—C1560.23 (10)C17i—Fe1—C16—C15110.57 (10)
C17—C13—C14—Fe159.16 (11)C16i—Fe1—C16—C15154.14 (10)
C14i—Fe1—C14—C13112.69 (11)C14—C13—C17—C160.88 (19)
C13i—Fe1—C14—C13154.99 (10)Fe1—C13—C17—C1659.33 (11)
C15—Fe1—C14—C13118.92 (14)C14—C13—C17—Fe158.45 (11)
C15i—Fe1—C14—C1372.72 (12)C15—C16—C17—C130.34 (19)
C17—Fe1—C14—C1337.24 (10)Fe1—C16—C17—C1359.15 (11)
C17i—Fe1—C14—C13173.79 (14)C15—C16—C17—Fe158.81 (11)
C16i—Fe1—C14—C1348.9 (3)C14—Fe1—C17—C1337.56 (10)
C16—Fe1—C14—C1380.90 (11)C14i—Fe1—C17—C1345.70 (18)
C14i—Fe1—C14—C15128.39 (10)C13i—Fe1—C17—C13153.8 (3)
C13i—Fe1—C14—C1586.09 (11)C15—Fe1—C17—C1381.98 (10)
C13—Fe1—C14—C15118.92 (14)C15i—Fe1—C17—C1383.40 (11)
C15i—Fe1—C14—C15168.36 (7)C17i—Fe1—C17—C13168.49 (10)
C17—Fe1—C14—C1581.68 (10)C16i—Fe1—C17—C13127.43 (10)
C17i—Fe1—C14—C1554.88 (18)C16—Fe1—C17—C13119.54 (14)
C16i—Fe1—C14—C15167.8 (3)C14—Fe1—C17—C1681.98 (11)
C16—Fe1—C14—C1538.02 (9)C14i—Fe1—C17—C16165.24 (13)
C13—C14—C15—C160.85 (17)C13i—Fe1—C17—C1634.3 (4)
Fe1—C14—C15—C1659.44 (10)C13—Fe1—C17—C16119.54 (14)
C13—C14—C15—P1176.22 (11)C15—Fe1—C17—C1637.56 (10)
Fe1—C14—C15—P1115.93 (11)C15i—Fe1—C17—C16157.06 (10)
C13—C14—C15—Fe160.29 (11)C17i—Fe1—C17—C1671.97 (10)
C7—P1—C15—C160.58 (15)C16i—Fe1—C17—C16113.03 (12)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C19H18O2P)2]
Mr674.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)19.0790 (8), 9.9445 (4), 17.5663 (8)
β (°) 102.386 (1)
V3)3255.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.48 × 0.46 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.761, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
18254, 2869, 2740
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.04
No. of reflections2869
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support by the National Natural Science Foundation of China (21102089), the Research Innovation Program of Shanghai Municipal Education Commission (12YZ155), the Special Scientific Foundation for Outstanding Young Teachers in Shanghai Higher Education Institutions (gjd10003, shgcjs023) and the Key Laboratory of Organofluorine Chemistry (Chinese Academy of Sciences).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasellato, U., Ajo, D., Valle, G., Corain, B., Longato, B. & Graziani, R. (1988). J. Crystallogr. Spectrosc. Res. 18, 583–590.  CSD CrossRef CAS Web of Science Google Scholar
First citationGusev, O. V., Peganova, T. A., Kalsin, A. M., Vologdin, N. V., Petrovskii, P. V., Lyssenko, K. A., Tsvetkov, A. V. & Beletskaya, I. P. (2006). Organometallics, 25, 2750–2760.  Web of Science CSD CrossRef CAS Google Scholar
First citationHamann, B. C. & Hartwig, J. F. (1998). J. Am. Chem. Soc. 120, 3694–3703.  Web of Science CrossRef CAS Google Scholar
First citationOgasawara, M., Takizawa, K. & Hayashi, T. (2002). Organometallics, 21, 4853–4861.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds