organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4,6-Di­chloro-1,3,5-triazin-2-yl)-2,2-di­methyl-1,3-oxazolidine

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: Huzhiyong@nuc.edu.cn

(Received 1 May 2012; accepted 12 June 2012; online 20 June 2012)

In the title compound, C8H10Cl2N4O, the dichloro-substituted triazine ring and the quasi-plane of the five-membered dimethyl-substituted oxazolidine unit, in which the O atom lies 0.228 (1) Å out of the least-squares plane, are close to being coplanar [dihedral angle = 4.99 (10)°]. In the crystal, mol­ecules are linked by inter­molecular C—H⋯Cl inter­actions, forming chains extend along the a axis. Also present are weak ππ inter­actions between triazine rings [minimum ring centroid separation = 3.7427 (11) Å].

Related literature

For the properties of 1,3,5-triazines, see: Xue et al. (2011[Xue, C., Zhu, H., Zhang, T., Cao, D. & Hu, Z. (2011). Colloid Surf. A, 375, 141-146.]); Zhao et al. (2010[Zhao, S., Zhu, H., Li, X., Hu, Z. & Cao, D. (2010). J. Colloid Interface Sci. 350, 480-485.]). For the chemistry and synthesis of the title compound, see: Li et al. (2010[Li, X., Hu, Z., Zhu, H., Zhao, S. & Cao, D. (2010). J. Surfactants Deterg. 13, 353-359.]); Yang et al. (2010[Yang, G., Yang, Z., Zhou, L., Zhu, R. & Liu, C. (2010). J. Mol. Catal. A, 316, 112-117.]); Rankin et al. (2002[Rankin, K. N., Gauld, J. W. & Boyd, R. J. (2002). J. Phys. Chem. A, 106, 5155-5159.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10Cl2N4O

  • Mr = 249.10

  • Monoclinic, P 21 /n

  • a = 8.1943 (10) Å

  • b = 11.0948 (17) Å

  • c = 11.8333 (18) Å

  • β = 94.383 (14)°

  • V = 1072.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 113 K

  • 0.20 × 0.20 × 0.06 mm

Data collection
  • Rigaku Saturn724 CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.966

  • 13220 measured reflections

  • 2547 independent reflections

  • 1592 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.088

  • S = 0.97

  • 2547 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl2i 0.99 2.78 3.522 (2) 132
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

2,4,6-Trichloro-1,3,5-triazine, because of the excellent and different reactivity of each chlorine atom, can react with organic amines or compounds containing active hydrogen to form compounds that have various substituent groups (Li et al., 2010); Xue et al., 2011; Zhao et al., 2010). The Aldol reaction is also particularly useful in organic synthesis for the facile formation of C—C bonds. A similar mechanism to that of the Aldol reaction is involved in the reaction of acetone with N-yl-2-iminoethanol (Yang et al., 2010; Rankin et al., 2002). The title compound C8H10Cl2N4O was the product from a combination of such reactions and the structure is reported here.

In this compound (Fig. 1), the dichloro-substituted triazine ring and the quasi-plane of the five-membered dimethyl-substituted oxazolidine moiety, in which the O-atom lies 0.228 (1) Å out of the l.s. plane, are close to coplanar [dihedral angle, 4.99 (10)°]. An intramolecular methyl C—H···Ntriazine interaction is present. The crystal packing is stabilized by a single intermolecular C2—H···Cl2i interaction (Table 1), giving chains which extend along a (Fig. 2). Also present are weak ππ interactions between triazine rings [minimum ring centroid separation, 3.7427 (11) Å].

Related literature top

For the properties of 1,3,5-triazines, see: Xue et al. (2011); Zhao et al. (2010). For the chemistry and synthesis of the title compound, see: Li et al. (2010); Yang et al. (2010); Rankin et al. (2002).

Experimental top

The title compound was prepared in a two-step synthesis: 1:1 Stoichiometric quantities of 2,4,6-trichloro-1,3,5-triazine and ethanolamine were first reacted in an ice bath (Xue et al., 2011). The intermediate product from the first step was then reacted with acetone in the presence of base as a catalyst in an Aldol reaction (Yang et al., 2010; Rankin et al., 2002). Single crystals suitable for X-ray diffraction were obtained by evaporation of a solution of the title compound in toluene at room temperature.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.98 Å (methyl) and 0.99 Å (methylene), and with Uiso(H) = 1.2Ueq (methylene C) and 1.5Ueq(methyl C).

Structure description top

2,4,6-Trichloro-1,3,5-triazine, because of the excellent and different reactivity of each chlorine atom, can react with organic amines or compounds containing active hydrogen to form compounds that have various substituent groups (Li et al., 2010); Xue et al., 2011; Zhao et al., 2010). The Aldol reaction is also particularly useful in organic synthesis for the facile formation of C—C bonds. A similar mechanism to that of the Aldol reaction is involved in the reaction of acetone with N-yl-2-iminoethanol (Yang et al., 2010; Rankin et al., 2002). The title compound C8H10Cl2N4O was the product from a combination of such reactions and the structure is reported here.

In this compound (Fig. 1), the dichloro-substituted triazine ring and the quasi-plane of the five-membered dimethyl-substituted oxazolidine moiety, in which the O-atom lies 0.228 (1) Å out of the l.s. plane, are close to coplanar [dihedral angle, 4.99 (10)°]. An intramolecular methyl C—H···Ntriazine interaction is present. The crystal packing is stabilized by a single intermolecular C2—H···Cl2i interaction (Table 1), giving chains which extend along a (Fig. 2). Also present are weak ππ interactions between triazine rings [minimum ring centroid separation, 3.7427 (11) Å].

For the properties of 1,3,5-triazines, see: Xue et al. (2011); Zhao et al. (2010). For the chemistry and synthesis of the title compound, see: Li et al. (2010); Yang et al. (2010); Rankin et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear (Rigaku/MSC, 2000); data reduction: CrystalClear (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for the title compound, with atoms shown as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis of the unit cell.
3-(4,6-Dichloro-1,3,5-triazin-2-yl)-2,2-dimethyl-1,3-oxazolidine top
Crystal data top
C8H10Cl2N4OF(000) = 512
Mr = 249.10Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4131 reflections
a = 8.1943 (10) Åθ = 1.7–27.9°
b = 11.0948 (17) ŵ = 0.58 mm1
c = 11.8333 (18) ÅT = 113 K
β = 94.383 (14)°Plate, colorless
V = 1072.7 (3) Å30.20 × 0.20 × 0.06 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
2547 independent reflections
Radiation source: rotating anode1592 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.058
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 2.5°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.892, Tmax = 0.966l = 1515
13220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C8H10Cl2N4OV = 1072.7 (3) Å3
Mr = 249.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1943 (10) ŵ = 0.58 mm1
b = 11.0948 (17) ÅT = 113 K
c = 11.8333 (18) Å0.20 × 0.20 × 0.06 mm
β = 94.383 (14)°
Data collection top
Rigaku Saturn724 CCD-detector
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1592 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.966Rint = 0.058
13220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.97Δρmax = 0.40 e Å3
2547 reflectionsΔρmin = 0.40 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76979 (6)0.25777 (5)0.13199 (4)0.02482 (15)
Cl20.23647 (6)0.16452 (5)0.06027 (4)0.02427 (15)
O10.85464 (15)0.10346 (12)0.36264 (11)0.0234 (3)
N10.77455 (18)0.01989 (14)0.21633 (12)0.0186 (4)
N20.76821 (19)0.12912 (14)0.05072 (13)0.0183 (4)
N30.51066 (18)0.20524 (14)0.02873 (12)0.0181 (4)
N40.52080 (18)0.09188 (15)0.14388 (13)0.0192 (4)
C10.9986 (2)0.04035 (19)0.33452 (16)0.0256 (5)
H1A1.09330.09570.33420.031*
H1B1.02560.02560.38910.031*
C20.9532 (2)0.00951 (19)0.21618 (16)0.0244 (5)
H2A1.00480.08890.20530.029*
H2B0.98490.04670.15670.029*
C30.7163 (2)0.03406 (17)0.32222 (15)0.0196 (4)
C40.5752 (2)0.12112 (18)0.30178 (17)0.0250 (5)
H4A0.60030.17920.24320.037*
H4B0.47580.07640.27670.037*
H4C0.55790.16420.37220.037*
C50.6822 (2)0.06585 (18)0.40536 (16)0.0273 (5)
H5A0.65390.03020.47710.041*
H5B0.59070.11530.37370.041*
H5C0.77980.11630.41890.041*
C60.6855 (2)0.08098 (17)0.13663 (15)0.0181 (4)
C70.6724 (2)0.18873 (17)0.02348 (16)0.0184 (4)
C80.4475 (2)0.15203 (17)0.05908 (16)0.0182 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0252 (3)0.0285 (3)0.0215 (3)0.0004 (2)0.0066 (2)0.0066 (2)
Cl20.0191 (3)0.0262 (3)0.0279 (3)0.0008 (2)0.0043 (2)0.0039 (2)
O10.0207 (8)0.0221 (8)0.0271 (8)0.0000 (6)0.0000 (6)0.0085 (6)
N10.0181 (9)0.0191 (9)0.0188 (9)0.0009 (7)0.0032 (7)0.0050 (7)
N20.0205 (9)0.0181 (9)0.0167 (9)0.0003 (7)0.0034 (7)0.0010 (7)
N30.0209 (9)0.0167 (9)0.0168 (9)0.0000 (7)0.0017 (7)0.0003 (7)
N40.0184 (9)0.0188 (9)0.0206 (9)0.0011 (7)0.0024 (7)0.0023 (7)
C10.0209 (11)0.0289 (12)0.0268 (12)0.0012 (9)0.0008 (9)0.0063 (10)
C20.0207 (12)0.0276 (12)0.0254 (12)0.0030 (9)0.0046 (9)0.0053 (9)
C30.0207 (11)0.0206 (11)0.0174 (10)0.0003 (8)0.0012 (8)0.0040 (9)
C40.0267 (12)0.0257 (12)0.0222 (11)0.0075 (9)0.0000 (9)0.0054 (9)
C50.0307 (12)0.0289 (12)0.0229 (11)0.0010 (10)0.0047 (9)0.0022 (10)
C60.0229 (11)0.0140 (10)0.0177 (10)0.0018 (8)0.0029 (8)0.0011 (8)
C70.0244 (12)0.0156 (10)0.0156 (10)0.0022 (8)0.0037 (8)0.0031 (8)
C80.0195 (11)0.0158 (10)0.0194 (11)0.0016 (8)0.0027 (8)0.0053 (8)
Geometric parameters (Å, º) top
Cl1—C71.7402 (19)C1—C21.525 (2)
Cl2—C81.7360 (19)C1—H1A0.9900
O1—C31.422 (2)C1—H1B0.9900
O1—C11.432 (2)C2—H2A0.9900
N1—C61.333 (2)C2—H2B0.9900
N1—C21.469 (2)C3—C41.512 (2)
N1—C31.499 (2)C3—C51.522 (2)
N2—C71.311 (2)C4—H4A0.9800
N2—C61.372 (2)C4—H4B0.9800
N3—C81.333 (2)C4—H4C0.9800
N3—C71.335 (2)C5—H5A0.9800
N4—C81.312 (2)C5—H5B0.9800
N4—C61.364 (2)C5—H5C0.9800
C3—O1—C1107.84 (14)N1—C3—C5109.60 (15)
C6—N1—C2122.07 (16)C4—C3—C5113.10 (16)
C6—N1—C3127.05 (16)C3—C4—H4A109.5
C2—N1—C3110.53 (14)C3—C4—H4B109.5
C7—N2—C6112.84 (16)H4A—C4—H4B109.5
C8—N3—C7110.25 (16)C3—C4—H4C109.5
C8—N4—C6113.21 (16)H4A—C4—H4C109.5
O1—C1—C2104.09 (15)H4B—C4—H4C109.5
O1—C1—H1A110.9C3—C5—H5A109.5
C2—C1—H1A110.9C3—C5—H5B109.5
O1—C1—H1B110.9H5A—C5—H5B109.5
C2—C1—H1B110.9C3—C5—H5C109.5
H1A—C1—H1B109.0H5A—C5—H5C109.5
N1—C2—C1101.55 (15)H5B—C5—H5C109.5
N1—C2—H2A111.5N1—C6—N4119.43 (17)
C1—C2—H2A111.5N1—C6—N2116.57 (17)
N1—C2—H2B111.5N4—C6—N2124.00 (17)
C1—C2—H2B111.5N2—C7—N3129.93 (18)
H2A—C2—H2B109.3N2—C7—Cl1115.56 (14)
O1—C3—N1101.59 (14)N3—C7—Cl1114.51 (14)
O1—C3—C4106.75 (16)N4—C8—N3129.73 (18)
N1—C3—C4114.19 (15)N4—C8—Cl2115.62 (14)
O1—C3—C5110.98 (15)N3—C8—Cl2114.65 (14)
C3—O1—C1—C239.6 (2)C2—N1—C6—N23.1 (3)
C6—N1—C2—C1167.26 (17)C3—N1—C6—N2175.65 (16)
C3—N1—C2—C16.4 (2)C8—N4—C6—N1178.75 (17)
O1—C1—C2—N126.7 (2)C8—N4—C6—N20.9 (3)
C1—O1—C3—N134.21 (18)C7—N2—C6—N1179.35 (17)
C1—O1—C3—C4154.11 (15)C7—N2—C6—N41.0 (3)
C1—O1—C3—C582.24 (18)C6—N2—C7—N32.3 (3)
C6—N1—C3—O1170.59 (17)C6—N2—C7—Cl1177.47 (13)
C2—N1—C3—O116.15 (19)C8—N3—C7—N21.4 (3)
C6—N1—C3—C456.1 (3)C8—N3—C7—Cl1178.37 (13)
C2—N1—C3—C4130.64 (18)C6—N4—C8—N32.1 (3)
C6—N1—C3—C572.0 (2)C6—N4—C8—Cl2177.73 (14)
C2—N1—C3—C5101.30 (18)C7—N3—C8—N41.1 (3)
C2—N1—C6—N4177.19 (17)C7—N3—C8—Cl2178.75 (13)
C3—N1—C6—N44.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl2i0.992.783.522 (2)132
C4—H4B···N40.982.493.025 (3)114
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H10Cl2N4O
Mr249.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.1943 (10), 11.0948 (17), 11.8333 (18)
β (°) 94.383 (14)
V3)1072.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.20 × 0.06
Data collection
DiffractometerRigaku Saturn724 CCD-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
13220, 2547, 1592
Rint0.058
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 0.97
No. of reflections2547
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: CrystalClear (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl2i0.992.783.522 (2)132
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Shanxi Province for financial support.

References

First citationLi, X., Hu, Z., Zhu, H., Zhao, S. & Cao, D. (2010). J. Surfactants Deterg. 13, 353–359.  Web of Science CrossRef CAS Google Scholar
First citationRankin, K. N., Gauld, J. W. & Boyd, R. J. (2002). J. Phys. Chem. A, 106, 5155–5159.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C., Zhu, H., Zhang, T., Cao, D. & Hu, Z. (2011). Colloid Surf. A, 375, 141–146.  Web of Science CrossRef CAS Google Scholar
First citationYang, G., Yang, Z., Zhou, L., Zhu, R. & Liu, C. (2010). J. Mol. Catal. A, 316, 112–117.  CrossRef CAS Google Scholar
First citationZhao, S., Zhu, H., Li, X., Hu, Z. & Cao, D. (2010). J. Colloid Interface Sci. 350, 480–485.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds