organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium nitrate

aKey Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
*Correspondence e-mail: fanyuhua301@163.com

(Received 22 May 2012; accepted 2 June 2012; online 13 June 2012)

In the title salt, C6H9N2+·NO3, the 2-amino-5-methyl­pyridinium cation and the nitrate anion are cyclically linked through pyridinium and amine N—H⋯O hydrogen bonds [graph set R43(12)]. These units are extended into a zigzag chain structure lying parallel to the a axis, through a second cyclic R22(8) association involving amine N—H⋯O and aromatic C—H⋯O hydrogen bonds to nitrate O-atom acceptors.

Related literature

For supra­molecular architectures, see: Wang et al. (2012[Wang, L., Xu, L. Y., Xue, R. F., Lu, X. F., Chen, R. X. & Tao, X. T. (2012). Sci. China Chem. 55, 138-144.]). For the potential of amine derivatives to form metal-organic frameworks, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Sherfinski & Marsh (1975[Sherfinski, J. S. & Marsh, R. E. (1975). Acta Cryst. B31, 1073-1076.]); Zaouali Zgolli et al. (2009[Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, o2755.]); Dai (2008[Dai, J. (2008). Acta Cryst. E64, o1899.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·NO3

  • Mr = 171.16

  • Monoclinic, C c

  • a = 8.7711 (7) Å

  • b = 15.7261 (13) Å

  • c = 6.8539 (5) Å

  • β = 117.455 (2)°

  • V = 838.92 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.49 × 0.38 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.977

  • 2040 measured reflections

  • 1251 independent reflections

  • 1077 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.08

  • 1251 reflections

  • 111 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.95 2.808 (4) 177
N2—H2A⋯O1 0.86 2.18 2.992 (4) 157
N2—H2B⋯O1ii 0.86 2.12 2.948 (4) 160
C2—H2⋯O3ii 0.93 2.45 3.304 (4) 153
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the area of predictable assembly of supramolecular architectures, more and more attention has been paid to crystals built from various organic components with specific functional groups (Wang et al., 2012). Because derivatives of the amino acids have the biological activity and amine derivatives have potential to form metal-organic frameworks (Manzur et al., 2007; Ismayilov et al., 2007; Austria et al., 2007), compounds having such functional groups have received considerable attention. The crystal structures of the molecules 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridine hydrochloride (Sherfinski & Marsh, 1975), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009), and 2-amino-5-cyanopyridinium nitrate (Dai, 2008) have been reported in the literature. We report here the single-crystal structure of the title salt, 2-amino-5-methylpyridium nitrate, C6H9N2+ . NO3-, which was the product obtained in the attempted preparation of a Schiff base SmIII complex using Sm(NO3)3 . 6H2O.

In the title salt (Fig. 1), the 2-amino-5-methylpyridinium cation and the nitrate anion are cyclically linked through pyridinium and amine N—H···O hydrogen bonds [graph set R34(12) (Etter et al., 1990)] (Table 1). These units are extended into a one-dimensional zigzag chain structure lying parallel to the a axis, through a second cyclic R22(8) association involving amine N—H···O and aromatic C—H···O hydrogen bonds to nitrate O-acceptors (Fig. 2).

Related literature top

For supramolecular architectures, see: Wang et al. (2012). For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For related structures, see: Nahringbauer & Kvick (1977); Sherfinski & Marsh (1975); Zaouali Zgolli et al. (2009); Dai (2008). For graph-set analysis, see: Etter et al. (1990).

Experimental top

2-Amino-5-methylpyridine (0.324 g, 3 mmol) and 1,3-dihydroxyacetone dimer (0.270 g, 1.5 mmol) were dissolved in methanol (10 ml) and this solution was stirred for 6 h at 333 K. Sm(NO3)3 . 6H2O (0.667 g, 1.5 mmol) was then added and the solution was stirred for a further 4 h. This solution was evaporated in air at room temperature, affording pale-yellow needle-shaped crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with the following constraints: C—H(aromatic) = 0.93 Å, C—H(methyl) = 0.96 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(N or aromatic C) or Uiso(H) = 1.5Ueq(methyl C).

Structure description top

In the area of predictable assembly of supramolecular architectures, more and more attention has been paid to crystals built from various organic components with specific functional groups (Wang et al., 2012). Because derivatives of the amino acids have the biological activity and amine derivatives have potential to form metal-organic frameworks (Manzur et al., 2007; Ismayilov et al., 2007; Austria et al., 2007), compounds having such functional groups have received considerable attention. The crystal structures of the molecules 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridine hydrochloride (Sherfinski & Marsh, 1975), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009), and 2-amino-5-cyanopyridinium nitrate (Dai, 2008) have been reported in the literature. We report here the single-crystal structure of the title salt, 2-amino-5-methylpyridium nitrate, C6H9N2+ . NO3-, which was the product obtained in the attempted preparation of a Schiff base SmIII complex using Sm(NO3)3 . 6H2O.

In the title salt (Fig. 1), the 2-amino-5-methylpyridinium cation and the nitrate anion are cyclically linked through pyridinium and amine N—H···O hydrogen bonds [graph set R34(12) (Etter et al., 1990)] (Table 1). These units are extended into a one-dimensional zigzag chain structure lying parallel to the a axis, through a second cyclic R22(8) association involving amine N—H···O and aromatic C—H···O hydrogen bonds to nitrate O-acceptors (Fig. 2).

For supramolecular architectures, see: Wang et al. (2012). For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For related structures, see: Nahringbauer & Kvick (1977); Sherfinski & Marsh (1975); Zaouali Zgolli et al. (2009); Dai (2008). For graph-set analysis, see: Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing showing the zigzag chain parallel to the a axis. Hydrogen bonds are shown as dashed lines.
2-Amino-5-methylpyridinium nitrate top
Crystal data top
C6H9N2+·NO3F(000) = 360
Mr = 171.16Dx = 1.355 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1097 reflections
a = 8.7711 (7) Åθ = 2.6–25.8°
b = 15.7261 (13) ŵ = 0.11 mm1
c = 6.8539 (5) ÅT = 298 K
β = 117.455 (2)°Needle, light-yellow
V = 838.92 (12) Å30.49 × 0.38 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1251 independent reflections
Radiation source: fine-focus sealed tube1077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.948, Tmax = 0.977k = 1518
2040 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1897P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1251 reflectionsΔρmax = 0.15 e Å3
111 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C6H9N2+·NO3V = 838.92 (12) Å3
Mr = 171.16Z = 4
Monoclinic, CcMo Kα radiation
a = 8.7711 (7) ŵ = 0.11 mm1
b = 15.7261 (13) ÅT = 298 K
c = 6.8539 (5) Å0.49 × 0.38 × 0.21 mm
β = 117.455 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1077 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.977Rint = 0.031
2040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.15 e Å3
1251 reflectionsΔρmin = 0.13 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3088 (3)0.46545 (15)0.4791 (4)0.0474 (6)
H10.23620.42460.42390.057*
N20.5229 (4)0.36493 (16)0.6464 (4)0.0593 (7)
H2A0.44820.32510.58820.071*
H2B0.62890.35240.72930.071*
N30.4592 (3)0.14462 (15)0.6312 (5)0.0583 (7)
O10.3527 (3)0.19547 (15)0.5007 (4)0.0897 (9)
O20.5816 (3)0.17188 (14)0.8011 (5)0.0823 (8)
O30.4431 (3)0.06826 (15)0.5931 (5)0.0912 (9)
C10.4743 (3)0.44596 (15)0.6084 (4)0.0450 (7)
C20.5894 (4)0.51441 (18)0.6972 (5)0.0499 (7)
H20.70540.50420.78820.060*
C30.5302 (4)0.59519 (18)0.6493 (5)0.0534 (8)
H30.60770.63990.70780.064*
C40.3574 (4)0.61376 (17)0.5153 (5)0.0507 (7)
C50.2500 (4)0.54681 (17)0.4312 (5)0.0519 (7)
H50.13400.55650.33900.062*
C60.2926 (5)0.7045 (2)0.4632 (7)0.0767 (11)
H6A0.17210.70420.36230.115*
H6B0.35390.73390.39820.115*
H6C0.31090.73280.59630.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0453 (13)0.0430 (12)0.0475 (15)0.0055 (9)0.0158 (11)0.0011 (9)
N20.0636 (15)0.0432 (13)0.0635 (17)0.0047 (11)0.0229 (14)0.0007 (11)
N30.0418 (12)0.0480 (14)0.0724 (17)0.0017 (11)0.0154 (13)0.0003 (13)
O10.0638 (16)0.0579 (14)0.094 (2)0.0036 (12)0.0086 (14)0.0108 (13)
O20.0610 (14)0.0595 (14)0.0835 (17)0.0097 (11)0.0034 (14)0.0153 (12)
O30.0633 (15)0.0508 (13)0.120 (2)0.0005 (11)0.0085 (16)0.0118 (13)
C10.0483 (17)0.0421 (14)0.0417 (17)0.0008 (12)0.0183 (13)0.0006 (12)
C20.0452 (14)0.0516 (16)0.0454 (17)0.0025 (13)0.0146 (14)0.0027 (13)
C30.0578 (17)0.0450 (15)0.058 (2)0.0104 (12)0.0268 (16)0.0094 (12)
C40.063 (2)0.0416 (15)0.0499 (18)0.0049 (13)0.0278 (16)0.0012 (13)
C50.0469 (16)0.0508 (15)0.0534 (19)0.0053 (13)0.0190 (14)0.0059 (12)
C60.090 (3)0.0451 (16)0.098 (3)0.0128 (16)0.046 (2)0.0119 (17)
Geometric parameters (Å, º) top
N1—C11.342 (4)C2—C31.354 (4)
N1—C51.362 (4)C2—H20.9300
N1—H10.8600C3—C41.394 (4)
N2—C11.331 (4)C3—H30.9300
N2—H2A0.8600C4—C51.351 (4)
N2—H2B0.8600C4—C61.516 (4)
N3—O31.223 (3)C5—H50.9300
N3—O21.241 (3)C6—H6A0.9600
N3—O11.241 (3)C6—H6B0.9600
C1—C21.408 (4)C6—H6C0.9600
C1—N1—C5123.2 (2)C2—C3—C4122.3 (3)
C1—N1—H1118.4C2—C3—H3118.8
C5—N1—H1118.4C4—C3—H3118.8
C1—N2—H2A120.0C5—C4—C3116.7 (2)
C1—N2—H2B120.0C5—C4—C6121.4 (3)
H2A—N2—H2B120.0C3—C4—C6121.8 (3)
O3—N3—O2120.3 (3)C4—C5—N1121.2 (3)
O3—N3—O1120.3 (3)C4—C5—H5119.4
O2—N3—O1119.4 (2)N1—C5—H5119.4
N2—C1—N1119.9 (3)C4—C6—H6A109.5
N2—C1—C2123.1 (3)C4—C6—H6B109.5
N1—C1—C2116.9 (2)H6A—C6—H6B109.5
C3—C2—C1119.6 (3)C4—C6—H6C109.5
C3—C2—H2120.2H6A—C6—H6C109.5
C1—C2—H2120.2H6B—C6—H6C109.5
C5—N1—C1—N2179.3 (3)C2—C3—C4—C51.0 (4)
C5—N1—C1—C20.4 (4)C2—C3—C4—C6179.9 (3)
N2—C1—C2—C3179.5 (3)C3—C4—C5—N11.1 (4)
N1—C1—C2—C30.2 (4)C6—C4—C5—N1179.8 (3)
C1—C2—C3—C40.6 (4)C1—N1—C5—C40.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.952.808 (4)177
N1—H1···O3i0.862.533.122 (4)127
N2—H2A···O10.862.182.992 (4)157
N2—H2B···O1ii0.862.122.948 (4)160
C2—H2···O3ii0.932.453.304 (4)153
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·NO3
Mr171.16
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)8.7711 (7), 15.7261 (13), 6.8539 (5)
β (°) 117.455 (2)
V3)838.92 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.38 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
2040, 1251, 1077
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.08
No. of reflections1251
No. of parameters111
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.952.808 (4)177
N2—H2A···O10.862.182.992 (4)157
N2—H2B···O1ii0.862.122.948 (4)160
C2—H2···O3ii0.932.453.304 (4)153
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The research was supported by the National Natural Science Foundation of China (grant Nos. 20971115 and 21071134).

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDai, J. (2008). Acta Cryst. E64, o1899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed Google Scholar
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherfinski, J. S. & Marsh, R. E. (1975). Acta Cryst. B31, 1073–1076.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, L., Xu, L. Y., Xue, R. F., Lu, X. F., Chen, R. X. & Tao, X. T. (2012). Sci. China Chem. 55, 138–144.  Web of Science CrossRef CAS Google Scholar
First citationZaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, o2755.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds