metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[benzyl N′-(3-phenyl­prop-2-enyl­­idene)di­thio­carbazato-κ2N′,S]mercury(II)

aDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh, bDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, cDepartment of Applied Chemistry, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Science, Via L. Giorgieri 1, 34127, Trieste, Italy
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 1 June 2012; accepted 7 June 2012; online 16 June 2012)

In the title compound, [Hg(C17H15N2S2)2], the HgII ion lies on a crystallographic twofold rotation axis giving a very distorted tetra­hedral coordination geometry best described as bis­phenoidal, being chelated by two deprotonated N,S Schiff base ligands through the azomethine nitro­gen and the thiol­ate sulfur donors. The dihedral angle between the two chelating ligand moieties is 79.75 (10)°. In the crystal, weak C—H⋯S inter­actions give rise to chains extending along the c axis.

Related literature

For the structures of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]); Tarafder, Islam et al. (2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]). For the corresponding ZnII complex, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518-m519.]). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd, and Hg) with the cinnamaldehyde Schiff base of S-methyl­dithio­carbazate, see: Liu et al. (2009[Liu, Y. H., Ye, J., Liu, X. L. & Guo, R. (2009). J. Coord. Chem. 62, 3488-3499.]); Abram et al. (2006[Abram, U., Castineiras, A., Garcia-Santos, I. & Rodriguez-Riobo, R. (2006). Eur. J. Inorg. Chem. pp. 3079-3087.]). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004[Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]); How et al. (2008[How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]); Maia et al. (2010[Maia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276-1282.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C17H15N2S2)2]

  • Mr = 823.49

  • Orthorhombic, P b c n

  • a = 36.3639 (6) Å

  • b = 10.11949 (10) Å

  • c = 8.77097 (10) Å

  • V = 3227.58 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.21 mm−1

  • T = 173 K

  • 0.37 × 0.15 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID CCD-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.194, Tmax = 0.249

  • 33943 measured reflections

  • 2957 independent reflections

  • 2829 reflections with I2 > 2σ(I2)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.20

  • 2957 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −2.04 e Å−3

Table 1
Selected bond lengths (Å)

Hg—S18 2.3668 (11)
Hg—N20 2.489 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S16i 0.95 2.75 3.692 (4) 172
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our interests in the chemistry of Schiff bases derived from S-benzyldithiocarbazate (Tarafder, Crouse et al., 2008; Tarafder, Islam et al., 2008) and on their metal complexes (Fun et al., 2008) due to their intriguing coordination behaviour, physico-chemical properties, and potential biological activities, the title compound, [Hg(C17H15N2S2)2] (Fig. 1), was synthesized. In the structure, the HgII ion lies on a crystallographic twofold axis and has a very distorted tetrahedral coordination geometry best described as bisphenoidal, being chelated by two deprotonated benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazate ligands through the azomethine nitrogen and the thiolate sulfur donors. The two chelating five-membered rings form a dihedral angle of 79.75 (10)°. The S–Hg–S' and N–Hg–N' bond angles, of 161.44 (4) and 92.57 (8)°, respectively, are closely comparable to those found in some Hg-thiosemicarbazone derivatives (Abram et al., 2006). The S(18)—C(17) and the C(17)—N(19) bond distances [1.751 (4) and 1.302 (4) Å] are slightly longer and shorter in comparison with the values found in the free ligand [1.6696 (18) and 1.334 (2) Å, respectively (Tarafder, Crouse et al., 2008)]. In the crystal packing the molecules are interconnected by weak C6—H6···S16 interactions [3.692 (4) Å] (Table 1), giving one-dimensional chain motifs extending along the c axis. The crystal is further stabilized by C–H···π interactions involving the phenyl ring of the 3-phenylprop-2-enylidene moiety.

Related literature top

For the structures of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008); Tarafder, Islam et al. (2008). For the corresponding ZnII complex, see: Fun et al. (2008). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd, and Hg) with the cinnamaldehyde Schiff base of S-methyldithiocarbazate, see: Liu et al. (2009); Abram et al. (2006). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004); How et al. (2008); Maia et al. (2010).

Experimental top

The Schiff base, benzyl N'-(3-phenylprop-2-enylidene)hydrazinecarbodithioate was prepared following the literature method (Tarafder, Islam et al., 2008). Mercury(II) chloride (0.068 g, 0.25 mmol) in absolute ethanol (20 ml) was added to a hot refluxing solution of the Schiff base (0.163 g, 0.5 mmol) also dissolved in hot absolute ethanol and the reflux was continued for 30 min. The yellow precipitate formed was filtered off, washed with hot ethanol and dried under vacuum over anhydrous CaCl2. Yield: 0.198 g (86%). 50 mg of the compound was dissolved in chloroform (15 ml) and allowed to stand at ambient temperature. Yellow microcrystals, obtained after 4 days, were redissolved in chloroform (15 ml) and mixed with toluene (5 ml) and again allowed to stand at room temperature. Yellow rectangular prism shaped single crystals (m.p. 472–473 K) suitable for X-ray analysis were formed after 7 days.

Refinement top

All H atoms were located geometrically and treated as riding atoms, with C—H = 0.95 Å for C(aromatic) and 0.99 Å, for C(methylene), with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak (1.76 eÅ-3) is located at 0.60 Å from C1.

Structure description top

In continuation of our interests in the chemistry of Schiff bases derived from S-benzyldithiocarbazate (Tarafder, Crouse et al., 2008; Tarafder, Islam et al., 2008) and on their metal complexes (Fun et al., 2008) due to their intriguing coordination behaviour, physico-chemical properties, and potential biological activities, the title compound, [Hg(C17H15N2S2)2] (Fig. 1), was synthesized. In the structure, the HgII ion lies on a crystallographic twofold axis and has a very distorted tetrahedral coordination geometry best described as bisphenoidal, being chelated by two deprotonated benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazate ligands through the azomethine nitrogen and the thiolate sulfur donors. The two chelating five-membered rings form a dihedral angle of 79.75 (10)°. The S–Hg–S' and N–Hg–N' bond angles, of 161.44 (4) and 92.57 (8)°, respectively, are closely comparable to those found in some Hg-thiosemicarbazone derivatives (Abram et al., 2006). The S(18)—C(17) and the C(17)—N(19) bond distances [1.751 (4) and 1.302 (4) Å] are slightly longer and shorter in comparison with the values found in the free ligand [1.6696 (18) and 1.334 (2) Å, respectively (Tarafder, Crouse et al., 2008)]. In the crystal packing the molecules are interconnected by weak C6—H6···S16 interactions [3.692 (4) Å] (Table 1), giving one-dimensional chain motifs extending along the c axis. The crystal is further stabilized by C–H···π interactions involving the phenyl ring of the 3-phenylprop-2-enylidene moiety.

For the structures of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008); Tarafder, Islam et al. (2008). For the corresponding ZnII complex, see: Fun et al. (2008). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd, and Hg) with the cinnamaldehyde Schiff base of S-methyldithiocarbazate, see: Liu et al. (2009); Abram et al. (2006). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004); How et al. (2008); Maia et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1995); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing (ellipsoids at the 50% probability level) of the title compound with atom labelling scheme of the independent moiety. For symmetry code: (i) -x + 1, y, -z + 3/2.
Bis[benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazato-κ2 N',S]mercury(II) top
Crystal data top
[Hg(C17H15N2S2)2]Dx = 1.695 Mg m3
Mr = 823.49Melting point = 472–473 K
Orthorhombic, PbcnCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2n 2abCell parameters from 33993 reflections
a = 36.3639 (6) Åθ = 3.7–68.3°
b = 10.11949 (10) ŵ = 11.21 mm1
c = 8.77097 (10) ÅT = 173 K
V = 3227.58 (7) Å3Prism, yellow
Z = 40.37 × 0.15 × 0.13 mm
F(000) = 1624.00
Data collection top
Rigaku R-AXIS RAPID CCD-detector
diffractometer
2829 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.113
ω scansθmax = 68.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 4341
Tmin = 0.194, Tmax = 0.249k = 1112
33943 measured reflectionsl = 1010
2957 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0485P)2 + 2.6351P]
where P = (Fo2 + 2Fc2)/3
2957 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 2.04 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Hg(C17H15N2S2)2]V = 3227.58 (7) Å3
Mr = 823.49Z = 4
Orthorhombic, PbcnCu Kα radiation
a = 36.3639 (6) ŵ = 11.21 mm1
b = 10.11949 (10) ÅT = 173 K
c = 8.77097 (10) Å0.37 × 0.15 × 0.13 mm
Data collection top
Rigaku R-AXIS RAPID CCD-detector
diffractometer
2957 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2829 reflections with F2 > 2.0σ(F2)
Tmin = 0.194, Tmax = 0.249Rint = 0.113
33943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.20Δρmax = 1.76 e Å3
2957 reflectionsΔρmin = 2.04 e Å3
195 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.50000.469781 (18)0.75000.02693 (12)
S160.62936 (2)0.39052 (10)0.66996 (11)0.0407 (3)
S180.56373 (3)0.50749 (11)0.78335 (13)0.0324 (2)
N190.56567 (6)0.2929 (3)0.5827 (3)0.0238 (6)
N200.52759 (6)0.2998 (3)0.5798 (3)0.0230 (5)
C20.71088 (9)0.2399 (4)0.5613 (5)0.0378 (8)
C30.74786 (9)0.2696 (4)0.5437 (6)0.0460 (10)
C40.75868 (9)0.3722 (4)0.4538 (5)0.0389 (9)
C50.73268 (11)0.4492 (5)0.3839 (5)0.0474 (10)
C60.69574 (10)0.4202 (4)0.4017 (5)0.0421 (9)
C70.68432 (8)0.3154 (3)0.4901 (4)0.0264 (7)
C80.41564 (8)0.1159 (3)0.3608 (4)0.0236 (6)
C90.39145 (8)0.2117 (3)0.4171 (4)0.0285 (7)
C100.35438 (9)0.2050 (4)0.3860 (4)0.0335 (8)
C110.34047 (10)0.1024 (4)0.2978 (5)0.0351 (8)
C120.36386 (15)0.0076 (7)0.2403 (4)0.0370 (11)
C130.40136 (14)0.0130 (5)0.2717 (5)0.0330 (10)
C140.64395 (9)0.2869 (4)0.5117 (4)0.0315 (7)
C150.45518 (8)0.1197 (3)0.3903 (4)0.0265 (7)
C170.58149 (8)0.3828 (3)0.6662 (4)0.0244 (7)
C210.47292 (9)0.2093 (3)0.4763 (4)0.0264 (7)
C220.51223 (10)0.2110 (3)0.4954 (4)0.0256 (7)
H20.70380.16700.62290.0453*
H30.76580.21790.59490.0552*
H40.78410.39030.43960.0467*
H50.74000.52250.32330.0568*
H60.67790.47350.35200.0505*
H90.40070.28220.47740.0342*
H100.33830.27070.42490.0402*
H110.31490.09760.27730.0421*
H120.35440.06170.17880.0444*
H130.41730.05330.23270.0396*
H14A0.64000.19240.53580.0378*
H14B0.63000.30900.41820.0378*
H150.46970.05260.34440.0318*
H210.45880.27480.52710.0317*
H220.52700.14650.44570.0307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.02006 (18)0.02382 (18)0.03692 (18)0.00000.00999 (6)0.0000
S160.0147 (4)0.0603 (6)0.0470 (5)0.0065 (4)0.0006 (4)0.0233 (5)
S180.0250 (5)0.0302 (4)0.0418 (5)0.0094 (4)0.0089 (5)0.0114 (4)
N190.0120 (12)0.0279 (13)0.0317 (13)0.0007 (10)0.0001 (10)0.0032 (11)
N200.0127 (12)0.0237 (12)0.0325 (13)0.0007 (10)0.0023 (10)0.0015 (11)
C20.0201 (17)0.0394 (19)0.054 (3)0.0006 (14)0.0029 (16)0.0114 (16)
C30.019 (2)0.052 (3)0.067 (3)0.0085 (16)0.0066 (16)0.0087 (19)
C40.0150 (17)0.056 (3)0.046 (2)0.0057 (15)0.0020 (14)0.0027 (17)
C50.031 (3)0.054 (3)0.057 (3)0.0087 (18)0.0024 (18)0.018 (2)
C60.0227 (18)0.049 (3)0.055 (3)0.0022 (16)0.0089 (16)0.0142 (18)
C70.0141 (15)0.0306 (15)0.0345 (16)0.0000 (12)0.0018 (12)0.0061 (14)
C80.0174 (15)0.0259 (15)0.0274 (15)0.0047 (12)0.0002 (12)0.0032 (12)
C90.0211 (16)0.0286 (16)0.0359 (17)0.0043 (13)0.0007 (13)0.0000 (13)
C100.0176 (16)0.0381 (18)0.0449 (19)0.0011 (13)0.0028 (14)0.0050 (15)
C110.0217 (18)0.047 (2)0.0365 (18)0.0069 (15)0.0034 (16)0.0086 (17)
C120.027 (3)0.040 (3)0.045 (3)0.012 (3)0.0067 (14)0.0019 (14)
C130.025 (3)0.033 (3)0.041 (2)0.0034 (18)0.0018 (16)0.0022 (15)
C140.0144 (16)0.0412 (17)0.0388 (18)0.0012 (13)0.0021 (13)0.0102 (16)
C150.0185 (15)0.0268 (15)0.0341 (16)0.0007 (12)0.0022 (13)0.0007 (13)
C170.0148 (15)0.0286 (16)0.0296 (15)0.0026 (12)0.0041 (12)0.0005 (12)
C210.0159 (17)0.0281 (15)0.0352 (16)0.0004 (12)0.0000 (13)0.0021 (13)
C220.0190 (17)0.0246 (14)0.0332 (17)0.0009 (12)0.0019 (14)0.0017 (14)
Geometric parameters (Å, º) top
Hg—S182.3668 (11)C10—C111.390 (6)
Hg—S18i2.3668 (11)C11—C121.378 (7)
Hg—N202.489 (3)C12—C131.392 (8)
Hg—N20i2.489 (3)C15—C211.344 (5)
S16—C141.819 (4)C21—C221.439 (5)
S16—C171.743 (3)C2—H20.950
S18—C171.751 (4)C3—H30.950
N19—N201.387 (3)C4—H40.950
N19—C171.302 (4)C5—H50.950
N20—C221.291 (4)C6—H60.950
C2—C31.387 (5)C9—H90.950
C2—C71.381 (5)C10—H100.950
C3—C41.362 (6)C11—H110.950
C4—C51.370 (6)C12—H120.950
C5—C61.384 (6)C13—H130.950
C6—C71.378 (5)C14—H14A0.990
C7—C141.508 (5)C14—H14B0.990
C8—C91.399 (5)C15—H150.950
C8—C131.402 (6)C21—H210.950
C8—C151.461 (5)C22—H220.950
C9—C101.377 (5)
S18—Hg—S18i161.44 (4)C15—C21—C22123.4 (3)
S18—Hg—N2077.93 (6)N20—C22—C21120.3 (3)
S18—Hg—N20i115.59 (6)C3—C2—H2119.735
S18i—Hg—N20115.59 (6)C7—C2—H2119.740
S18i—Hg—N20i77.93 (6)C2—C3—H3119.689
N20—Hg—N20i92.57 (8)C4—C3—H3119.649
C14—S16—C17104.53 (15)C3—C4—H4120.216
Hg—S18—C1799.93 (11)C5—C4—H4120.214
N20—N19—C17114.6 (3)C4—C5—H5120.049
Hg—N20—N19115.23 (17)C6—C5—H5120.064
Hg—N20—C22130.6 (2)C5—C6—H6119.331
N19—N20—C22114.1 (3)C7—C6—H6119.352
C3—C2—C7120.5 (4)C8—C9—H9119.641
C2—C3—C4120.7 (4)C10—C9—H9119.620
C3—C4—C5119.6 (4)C9—C10—H10119.893
C4—C5—C6119.9 (4)C11—C10—H10119.869
C5—C6—C7121.3 (4)C10—C11—H11120.030
C2—C7—C6118.0 (3)C12—C11—H11120.023
C2—C7—C14121.2 (3)C11—C12—H12119.828
C6—C7—C14120.7 (3)C13—C12—H12119.847
C9—C8—C13118.6 (4)C8—C13—H13119.940
C9—C8—C15122.5 (3)C12—C13—H13119.916
C13—C8—C15118.9 (4)S16—C14—H14A110.606
C8—C9—C10120.7 (3)S16—C14—H14B110.610
C9—C10—C11120.2 (4)C7—C14—H14A110.602
C10—C11—C12119.9 (4)C7—C14—H14B110.598
C11—C12—C13120.3 (5)H14A—C14—H14B108.752
C8—C13—C12120.1 (5)C8—C15—H15116.950
S16—C14—C7105.7 (3)C21—C15—H15116.938
C8—C15—C21126.1 (3)C15—C21—H21118.300
S16—C17—S18108.96 (17)C22—C21—H21118.323
S16—C17—N19118.9 (3)N20—C22—H22119.829
S18—C17—N19132.1 (3)C21—C22—H22119.850
S18—Hg—N20—N193.69 (13)Hg—N20—C22—C217.3 (4)
S18—Hg—N20—C22178.9 (2)N19—N20—C22—C21177.4 (3)
N20—Hg—S18—C171.67 (7)C3—C2—C7—C60.0 (6)
S18—Hg—N20i—N19i170.22 (12)C3—C2—C7—C14178.2 (4)
S18—Hg—N20i—C22i14.5 (3)C7—C2—C3—C41.2 (7)
N20i—Hg—S18—C1785.38 (8)C2—C3—C4—C52.0 (7)
S18i—Hg—N20—N19170.22 (12)C3—C4—C5—C61.8 (6)
S18i—Hg—N20—C2214.5 (3)C4—C5—C6—C70.6 (6)
N20—Hg—S18i—C17i85.38 (8)C5—C6—C7—C20.2 (6)
S18i—Hg—N20i—N19i3.69 (13)C5—C6—C7—C14178.4 (4)
S18i—Hg—N20i—C22i178.9 (2)C2—C7—C14—S1692.6 (4)
N20i—Hg—S18i—C17i1.67 (7)C6—C7—C14—S1685.5 (4)
N20—Hg—N20i—N19i111.94 (15)C9—C8—C13—C120.2 (5)
N20—Hg—N20i—C22i63.3 (2)C13—C8—C9—C100.2 (5)
N20i—Hg—N20—N19111.94 (15)C9—C8—C15—C212.4 (5)
N20i—Hg—N20—C2263.3 (2)C15—C8—C9—C10179.6 (3)
C14—S16—C17—S18166.34 (16)C13—C8—C15—C21178.1 (3)
C14—S16—C17—N1913.3 (3)C15—C8—C13—C12179.3 (3)
C17—S16—C14—C7167.73 (17)C8—C9—C10—C110.0 (5)
Hg—S18—C17—S16179.53 (13)C9—C10—C11—C120.5 (6)
Hg—S18—C17—N190.0 (3)C10—C11—C12—C130.9 (6)
N20—N19—C17—S16176.2 (2)C11—C12—C13—C80.8 (7)
N20—N19—C17—S183.3 (5)C8—C15—C21—C22177.1 (3)
C17—N19—N20—Hg4.6 (3)C15—C21—C22—N20180.0 (3)
C17—N19—N20—C22179.4 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S16ii0.952.753.692 (4)172
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Hg(C17H15N2S2)2]
Mr823.49
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)36.3639 (6), 10.11949 (10), 8.77097 (10)
V3)3227.58 (7)
Z4
Radiation typeCu Kα
µ (mm1)11.21
Crystal size (mm)0.37 × 0.15 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID CCD-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.194, 0.249
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
33943, 2957, 2829
Rint0.113
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.20
No. of reflections2957
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 2.04

Computer programs: RAPID-AUTO (Rigaku, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Hg—S182.3668 (11)Hg—N202.489 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S16i0.952.753.692 (4)172
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

MAAAAI and MSR are grateful to the Department of Chemistry, Rajshahi University of Engineering and Technolog, for the provision of laboratory facilities. THT thanks the Department of Chemistry, Rajshahi University, for supplying necessary chemicals. MCS acknowledges the Department of Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAbram, U., Castineiras, A., Garcia-Santos, I. & Rodriguez-Riobo, R. (2006). Eur. J. Inorg. Chem. pp. 3079–3087.  Web of Science CSD CrossRef Google Scholar
First citationChew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518–m519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHow, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y. H., Ye, J., Liu, X. L. & Guo, R. (2009). J. Coord. Chem. 62, 3488–3499.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276–1282.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1995). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds