organic compounds
6-Methoxy-1,3-benzothiazol-2-amine
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät fur Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany.
*Correspondence e-mail: aamersaeed@yahoo.com
The title compound, C8H8N2OS, is almost planar, the C—C—O—C torsion angle associated with the methoxy group being 0.72 (1)°. Intermolecular amine N—H⋯N hydrogen-bonding interactions form inversion dimers [graph set R22(8)] which are extended into chains along the b axis through amine N—H⋯O hydrogen bonds.
Related literature
For information on various important biological activities of aminobenzothiazoles, see: Hutchinson et al. (2002); Benavides et al. (1985); La'cova et al. (1991). For their pharmaceutical applications, see: Suter & Zutter (1967); Sawhney et al. (1978); Bensimon et al. (1994); Foscolos et al. (1977); Shirke et al. (1990); Paget et al. (1969); Domino et al. (1952). For antimicrobial and pesticidal activities, see: Pattan et al. (2002); Kaufmann (1935). For related structures see: Saeed et al. (2007); Sun et al. (2011). For graph-set analysis, see: Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.
Supporting information
https://doi.org/10.1107/S1600536812028152/zs2217sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028152/zs2217Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812028152/zs2217Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S1600536812028152/zs2217Isup4.cml
A mixture of p-anisidine (3.7 g, 0.03 mol) and potassium thiocyanate (11.6 g, 0.12 mol) in AcOH (45 ml) was stirred at 20 °C for 10 minutes. A solution of bromine (1.5 ml, 0.03 mol) in AcOH (20 ml) was added over 20 min and the reaction mixture was stirred for 21 h at room temperature. The reaction mixture was poured into cold NH4OH (90 ml) and extracted with EtOAc. The organic phase was washed with water, dried, filtered and evaporated. The crude product obtained was recrystallized using ethanol as solvent. Yield = 83%; m.p. = 145-147 °C; IR (KBr) 3389 (NH), 2733 (C-S), 1644 (C=N), 1585 (C=C), 1442 (C-N) cm-1; 1H NMR (CDCl3, ? p.p.m.): 7.47 (1H, d, J = 8.7 Hz, H-1), 7.14 (1H, d, J = 2.4 Hz, H-2), 6.93 (1H, dd, J = 8.7,2.4 Hz, H-3), 5.41 (1H, bs, -NH), 3.81 (3H, s, -OCH3); 13 C NMR (CDCl3, ppm): 166.2 (S-C=N), 145.1 (C-9), 138.6 (C-6), 126.5 (C-8), 124.6 (C-4), 121.4 (C-5), 116.5 (C-7), 56.8 (-OCH3); EIMS (70 eV): m/z (%); [M+.] 180 (51%); Anal. Calcd. for C8H8N2OS; C, 52.33; H, 4.44; N, 15.55; S, 17.77. Found: C, 52.26; H, 4.35; N, 15.37; S, 17.61..
Hydrogen atoms were clearly identified in difference syntheses, and were refined at idealized positions [C—N = 0.88 Å; C—H(aromatic) = 0.93 Å and C—H(methyl) = 0.96 Å], riding on the nitrogen or carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(N, Car) or 1.5Ueq(Cmethyl). The hydrogen atoms were allowed to rotate but not to tip.
2-Aminobenzothiazoles display a broad spectrum of important pharmaceutical applications and a number of derivatives are therapeutic agents for the treatment of various diseases e.g. diabetes (Suter & Zutter, 1967); inflammation (Sawhney et al., 1978); amyotrophic lateral sclerosis (Bensimon et al., 1994); analgesia (Foscolos et al., 1977); tuberculosis (Shirke et al. 1990); viral infections (Paget et al., 1969), and as central muscle relaxants (Domino et al., 1952). Riluzole [6-(trifluoromethoxy)-2-benzothiazolamine] possesses potent anticonvulsant and neuroprotective effects (Benavides et al., 1985). 6-Nitro or 6-amino 2-substituted benzothiazoles and fluorobenzothiazoles possess significant antimicrobial activity (Pattan et al., 2002) and 6-ethoxy-2-amino benzothiazole is a strong local anesthetic agent (La'cova et al., 1991).
The title compound, C8H8N2OS, is almost planar (Fig. 1) with the C4—C5—O1—C8 torsion angle associated with the methoxy group = 0.72 (1)° and the amine hydrogen atoms lying in the molecular plane. Intermolecular amine N—H···N hydrogen-bonding interactions (Table 1) form centrosymmetric cyclic dimers [graph set R22(8): Etter et al., 1990] which are extended into one-dimensional chains along the b axis, through amine N—H···O hydrogen bonds (Fig. 2).
For information on various important biological activities of aminobenzothiazoles, see: Hutchinson et al. (2002); Benavides et al. (1985); La'cova et al. (1991). For their pharmaceutical applications, see: Suter & Zutter (1967); Sawhney et al. (1978); Bensimon et al. (1994); Foscolos et al. (1977); Shirke et al. (1990); Paget et al. (1969); Domino et al. (1952). For antimicrobial and pesticidal activities, see: Pattan et al. (2002); Kaufmann (1935). For related structures see: Saeed et al. (2007); Sun et al. (2011). For graph-set analysis, see: Etter et al. (1990).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.C8H8N2OS | Dx = 1.425 Mg m−3 |
Mr = 180.23 | Melting point = 418–420 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 3739 reflections |
a = 15.060 (2) Å | θ = 2.5–28.3° |
b = 6.6997 (11) Å | µ = 0.33 mm−1 |
c = 16.649 (3) Å | T = 130 K |
V = 1679.8 (5) Å3 | Prism, colourless |
Z = 8 | 0.47 × 0.23 × 0.14 mm |
F(000) = 752 |
Bruker SMART APEX CCD diffractometer | 2010 independent reflections |
Radiation source: sealed tube | 1771 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 27.9°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −19→19 |
Tmin = 0.859, Tmax = 0.955 | k = −8→8 |
14745 measured reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.5583P] where P = (Fo2 + 2Fc2)/3 |
2010 reflections | (Δ/σ)max = 0.001 |
110 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C8H8N2OS | V = 1679.8 (5) Å3 |
Mr = 180.23 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 15.060 (2) Å | µ = 0.33 mm−1 |
b = 6.6997 (11) Å | T = 130 K |
c = 16.649 (3) Å | 0.47 × 0.23 × 0.14 mm |
Bruker SMART APEX CCD diffractometer | 2010 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1771 reflections with I > 2σ(I) |
Tmin = 0.859, Tmax = 0.955 | Rint = 0.029 |
14745 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.40 e Å−3 |
2010 reflections | Δρmin = −0.20 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.67080 (2) | 0.21698 (5) | 0.37026 (2) | 0.02447 (13) | |
O1 | 0.68079 (6) | 0.55013 (14) | 0.09070 (6) | 0.0234 (2) | |
N1 | 0.56180 (7) | 0.50795 (17) | 0.40573 (6) | 0.0217 (2) | |
N2 | 0.58824 (8) | 0.28778 (19) | 0.51177 (7) | 0.0292 (3) | |
H2A | 0.5525 | 0.3536 | 0.5442 | 0.035* | |
H2B | 0.6160 | 0.1805 | 0.5290 | 0.035* | |
C1 | 0.60027 (9) | 0.3510 (2) | 0.43608 (8) | 0.0220 (3) | |
C2 | 0.58749 (8) | 0.53507 (19) | 0.32593 (8) | 0.0191 (3) | |
C3 | 0.56017 (9) | 0.6894 (2) | 0.27627 (8) | 0.0225 (3) | |
H3A | 0.5211 | 0.7892 | 0.2962 | 0.027* | |
C4 | 0.58993 (9) | 0.6982 (2) | 0.19719 (8) | 0.0220 (3) | |
H4A | 0.5710 | 0.8036 | 0.1630 | 0.026* | |
C5 | 0.64762 (8) | 0.55186 (19) | 0.16817 (8) | 0.0193 (3) | |
C6 | 0.67681 (8) | 0.3964 (2) | 0.21681 (8) | 0.0209 (3) | |
H6A | 0.7162 | 0.2973 | 0.1968 | 0.025* | |
C7 | 0.64648 (8) | 0.39071 (19) | 0.29540 (8) | 0.0193 (3) | |
C8 | 0.65274 (10) | 0.7074 (2) | 0.03804 (9) | 0.0281 (3) | |
H8A | 0.5878 | 0.7068 | 0.0340 | 0.042* | |
H8B | 0.6786 | 0.6867 | −0.0153 | 0.042* | |
H8C | 0.6726 | 0.8360 | 0.0595 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0272 (2) | 0.0253 (2) | 0.0208 (2) | 0.00985 (13) | 0.00107 (13) | 0.00191 (12) |
O1 | 0.0249 (5) | 0.0256 (5) | 0.0195 (5) | 0.0008 (4) | 0.0041 (4) | 0.0015 (4) |
N1 | 0.0242 (5) | 0.0232 (5) | 0.0177 (5) | 0.0041 (4) | −0.0009 (4) | −0.0017 (4) |
N2 | 0.0358 (7) | 0.0314 (7) | 0.0203 (6) | 0.0133 (5) | 0.0027 (5) | 0.0039 (5) |
C1 | 0.0220 (6) | 0.0253 (7) | 0.0187 (6) | 0.0030 (5) | −0.0011 (5) | −0.0028 (5) |
C2 | 0.0178 (6) | 0.0215 (6) | 0.0180 (6) | 0.0010 (5) | −0.0013 (5) | −0.0027 (5) |
C3 | 0.0230 (6) | 0.0224 (6) | 0.0223 (6) | 0.0058 (5) | 0.0005 (5) | −0.0014 (5) |
C4 | 0.0220 (6) | 0.0220 (6) | 0.0220 (7) | 0.0020 (5) | −0.0016 (5) | 0.0017 (5) |
C5 | 0.0177 (6) | 0.0222 (6) | 0.0181 (6) | −0.0034 (5) | 0.0012 (5) | −0.0020 (5) |
C6 | 0.0182 (6) | 0.0217 (6) | 0.0229 (7) | 0.0026 (5) | 0.0010 (5) | −0.0027 (5) |
C7 | 0.0182 (6) | 0.0196 (6) | 0.0202 (6) | 0.0018 (5) | −0.0027 (5) | −0.0012 (5) |
C8 | 0.0339 (8) | 0.0290 (8) | 0.0213 (7) | −0.0006 (6) | 0.0037 (6) | 0.0052 (6) |
S1—C7 | 1.7443 (13) | C3—C4 | 1.3920 (19) |
S1—C1 | 1.7705 (14) | C3—H3A | 0.9500 |
O1—C5 | 1.3832 (16) | C4—C5 | 1.3962 (18) |
O1—C8 | 1.4342 (17) | C4—H4A | 0.9500 |
N1—C1 | 1.3028 (18) | C5—C6 | 1.3908 (18) |
N1—C2 | 1.3956 (17) | C6—C7 | 1.3864 (18) |
N2—C1 | 1.3417 (18) | C6—H6A | 0.9500 |
N2—H2A | 0.8800 | C8—H8A | 0.9800 |
N2—H2B | 0.8800 | C8—H8B | 0.9800 |
C2—C3 | 1.3864 (18) | C8—H8C | 0.9800 |
C2—C7 | 1.4083 (18) | ||
C7—S1—C1 | 88.73 (6) | C5—C4—H4A | 120.1 |
C5—O1—C8 | 117.23 (10) | O1—C5—C6 | 114.99 (11) |
C1—N1—C2 | 110.55 (11) | O1—C5—C4 | 123.59 (12) |
C1—N2—H2A | 120.0 | C6—C5—C4 | 121.42 (12) |
C1—N2—H2B | 120.0 | C7—C6—C5 | 117.76 (12) |
H2A—N2—H2B | 120.0 | C7—C6—H6A | 121.1 |
N1—C1—N2 | 123.98 (13) | C5—C6—H6A | 121.1 |
N1—C1—S1 | 115.86 (10) | C6—C7—C2 | 121.99 (12) |
N2—C1—S1 | 120.15 (11) | C6—C7—S1 | 128.57 (10) |
C3—C2—N1 | 125.63 (12) | C2—C7—S1 | 109.44 (10) |
C3—C2—C7 | 118.96 (12) | O1—C8—H8A | 109.5 |
N1—C2—C7 | 115.41 (11) | O1—C8—H8B | 109.5 |
C2—C3—C4 | 120.01 (12) | H8A—C8—H8B | 109.5 |
C2—C3—H3A | 120.0 | O1—C8—H8C | 109.5 |
C4—C3—H3A | 120.0 | H8A—C8—H8C | 109.5 |
C3—C4—C5 | 119.86 (12) | H8B—C8—H8C | 109.5 |
C3—C4—H4A | 120.1 | ||
C2—N1—C1—N2 | 179.99 (13) | C3—C4—C5—C6 | −0.3 (2) |
C2—N1—C1—S1 | −0.87 (15) | O1—C5—C6—C7 | 179.48 (11) |
C7—S1—C1—N1 | 0.50 (11) | C4—C5—C6—C7 | 0.19 (19) |
C7—S1—C1—N2 | 179.67 (12) | C5—C6—C7—C2 | 0.6 (2) |
C1—N1—C2—C3 | −178.88 (13) | C5—C6—C7—S1 | −179.95 (10) |
C1—N1—C2—C7 | 0.90 (17) | C3—C2—C7—C6 | −1.2 (2) |
N1—C2—C3—C4 | −179.23 (12) | N1—C2—C7—C6 | 179.05 (12) |
C7—C2—C3—C4 | 1.0 (2) | C3—C2—C7—S1 | 179.27 (10) |
C2—C3—C4—C5 | −0.3 (2) | N1—C2—C7—S1 | −0.53 (15) |
C8—O1—C5—C6 | 180.00 (11) | C1—S1—C7—C6 | −179.51 (13) |
C8—O1—C5—C4 | −0.72 (18) | C1—S1—C7—C2 | 0.04 (10) |
C3—C4—C5—O1 | −179.55 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1i | 0.88 | 2.13 | 2.9774 (16) | 163 |
N2—H2B···O1ii | 0.88 | 2.10 | 2.9655 (16) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H8N2OS |
Mr | 180.23 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 130 |
a, b, c (Å) | 15.060 (2), 6.6997 (11), 16.649 (3) |
V (Å3) | 1679.8 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.47 × 0.23 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.859, 0.955 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14745, 2010, 1771 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.094, 1.06 |
No. of reflections | 2010 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.20 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1i | 0.88 | 2.13 | 2.9774 (16) | 162.5 |
N2—H2B···O1ii | 0.88 | 2.10 | 2.9655 (16) | 169.6 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
AS gratefully acknowledges a research grant from the Higher Education Commission of Pakistan under the project No. 4-279/PAK-US/HEC 2010-917 (Pakistan–US Science and Technology Cooperation Program).
References
Benavides, J., Camelin, J. C., Mitrani, N., Flamand, F., Uzan, A., Legrand, J. J., Guereny, C. & LeFur, G. (1985). Neuropharmacology, 24, 1085–1089. CrossRef CAS PubMed Web of Science Google Scholar
Bensimon, G., Lacomblez, L. & Meininger, V. (1994). N. Engl. J. Med. 330, 585–589. CrossRef CAS PubMed Web of Science Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Domino, E. F., Unna, K. R. & Kerwin, J. (1952). J. Pharmacol. Exp. Ther. 105, 486–490. PubMed CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Foscolos, G., Tsatsas, G., Champagnac, A. & Pommier, M. (1977). Ann. Pharm. Fr. 35, 295–297. CAS PubMed Web of Science Google Scholar
Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747. Web of Science CrossRef PubMed CAS Google Scholar
Kaufmann, H. P. (1935). Arch. Pharm. 273, 22–26. CrossRef CAS Google Scholar
La'cova, M., Chovancova, J., Hyblova, O. & Varkonda, S. (1991). Chem. Pap. Chem. Zvesti, 45, 411–414. CAS Google Scholar
Paget, C. J., Kisner, K., Stone, R. L. & DeLong, D. C. (1969). J. Med. Chem. 12, 1016–1018. CrossRef CAS PubMed Web of Science Google Scholar
Pattan, S. R., Babu, S. N. N. & Angadi, J. (2002). Indian J. Heterocycl. Chem. 11, 333–337. CAS Google Scholar
Saeed, A., Rafique, H. & Bolte, M. (2007). Acta Cryst. E63, o4247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sawhney, S. N., Arora, S. K., Singh, J. V., Bansal, O. P. & Singh, S. P. (1978). Indian J. Chem. Sect. B, 16, 605–609. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shirke, V. G., Bobade, K., Bhamaria, R. P., Khadse, B. G. & Sengupta, S. R. (1990). Indian Drugs, 27, 350–354. CAS Google Scholar
Sun, D., Li, Y.-H., Hao, H.-J., Liu, F.-J., Wen, Y.-M., Huang, R.-B. & Zheng, L.-S. (2011). Cryst. Growth Des. 11, 3323–3327. Web of Science CSD CrossRef CAS Google Scholar
Suter, H. & Zutter, H. (1967). Helv. Chim. Acta, 50, 1084–1090. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-Aminobenzothiazoles display a broad spectrum of important pharmaceutical applications and a number of derivatives are therapeutic agents for the treatment of various diseases e.g. diabetes (Suter & Zutter, 1967); inflammation (Sawhney et al., 1978); amyotrophic lateral sclerosis (Bensimon et al., 1994); analgesia (Foscolos et al., 1977); tuberculosis (Shirke et al. 1990); viral infections (Paget et al., 1969), and as central muscle relaxants (Domino et al., 1952). Riluzole [6-(trifluoromethoxy)-2-benzothiazolamine] possesses potent anticonvulsant and neuroprotective effects (Benavides et al., 1985). 6-Nitro or 6-amino 2-substituted benzothiazoles and fluorobenzothiazoles possess significant antimicrobial activity (Pattan et al., 2002) and 6-ethoxy-2-amino benzothiazole is a strong local anesthetic agent (La'cova et al., 1991).
The title compound, C8H8N2OS, is almost planar (Fig. 1) with the C4—C5—O1—C8 torsion angle associated with the methoxy group = 0.72 (1)° and the amine hydrogen atoms lying in the molecular plane. Intermolecular amine N—H···N hydrogen-bonding interactions (Table 1) form centrosymmetric cyclic dimers [graph set R22(8): Etter et al., 1990] which are extended into one-dimensional chains along the b axis, through amine N—H···O hydrogen bonds (Fig. 2).