metal-organic compounds
Poly[[pentaaqua(μ4-pyridine-2,4,6-tricarboxylato)(μ3-pyridine-2,4,6-tricarboxylato)diterbium(III)] monohydrate]
aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn
The three-dimensional title coordination polymer, {[Tb2(C8H2NO6)2(H2O)5]·H2O}n, was hydrothermally synthesized by reacting the corresponding rare-earth salt with pyridine-2,4,6-tricarboxylic acid (H3ptc). There are two independent TbIII atoms in the structure, one of which is nine-coordinated, forming a monocapped NO8 square-antiprism and the other is eight-coordinated exhibiting a 4,4-bicapped NO7 trigonal–prismatic environment. The complex units are interconnected through the ptc3− anions acting in different coordination modes, resulting in a three-dimensional coordination polymer. The features extensive O—H⋯O hydrogen bonds.
Related literature
For general background to the design and synthesis of metal organic frameworks (MOFs) with lanthanides, see: Wang et al. (2007); Fu & Xu (2008); Das et al. (2009). For related structures, see: Lin et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812032898/bg2463sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032898/bg2463Isup2.hkl
Pale green powder of TbCl3.nH2O was obtained by slow evaporation of a solution of Tb4O7(0.25 mmol, 0.185 g) dissolved in 10 ml HCl(1 M) under water boiling condition. The freshly prepared TbCl3.nH2O, H3ptc(0.054 g, 0.25 mmol), malonic acid(0.026 g, 0.25 mmol),15 ml H2O and 1 ml NaOH(1 M) were sealed in a 23 ml Teflon-lined stainless autoclave, which was heated at 453 K for three days and thereafter cooled slowly to room temperature, and Pale green crystals were seperated by filtering and washing.
H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
In recent years, the design and synthesis of metal organic frameworks (MOFs) with lanthanide have become an fascinating field due to their potential applications in luminescent materials, magnetic, catalyst and gas absorption (Wang et al., 2007). Multicarboxylic acids were widely used as organic linkers in the syntheses of MOFs such as phthalic acid, trimesic acid and pyromellitic acid. In addition, pyridine-2,4,6-tricarboxylato(H3ptc) is a good building unit for constructing MFOs due to the existence of both N and O atoms in the ligands (Fu et al., 2008). Another reason for choosing H3ptc is the inherent negative charge associated with them that helps in the charge compensation of the metal ion in the framework (Das et al., 2009). At the same time, Lanthanide complexes with aromatic
show higher thermal or luminescence stabilities for practical application than other lanthanide complex systems. Thus we design and synthesis the title compound prepared from Tb4O7 and pyridine-2, 4, 6-tricarboxylic acid.The
of [Tb2(H2O)5(ptc)2]n.nH2O consists of two Tb3+ ions (Tb1,Tb2), two ptc3- ions, five aqua ligands, and a lattice water as illustrated in Fig. 1. Its worth to mention,The Tb1 atoms is nine-coordinated fashion by three aqua ligands (O7, O8 and O9) as well as three ptc ligands to generate a distorted monocapped squarean-tiprismatic DyNO8 chromophore with d(Tb1—N1) = 2.517 (2) Å and d(Tb1—O) = 2.366–2.566 Å, and Tb2 is eight-coordinated fashion by two aqua ligands (O4 and O9) as well as three ptc ligands texhibit a 4,4-bicapped trigonal prismatic TbNO7 chromophore with d(Tb2—N2) = 2.486 (2) Å and d(Tb2—O) = 2.320–2.415 Å, respectively (Lin et al., 2011). Interestingly, the C7—O14 distance in pyridine-2, 4, 6-tricarboxylic acid is significantly shorter than that of corresponding C—O distance due to the the adjacent molecular's close packing. The three-dimensional polymer is constructed by the Tb2 building units through ptc3- anions in different coordination modes.For general background to the design and synthesis of metal organic frameworks (MOFs) with lanthanides, see: Wang et al., (2007); Fu et al. (2008); Das et al. (2009). For related structures, see: Lin et al. (2011)
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.Fig. 1. ORTEP view of the title compound, The dispalcement ellipsoids are drawn at 45% probability dispalcement ellipsoids. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x, y, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1/2, y - 1/2, -z + 3/2. | |
Fig. 2. the three-dimensional structure of title complex. |
[Tb2(C8H2NO6)2(H2O)5]·H2O | Z = 4 |
Mr = 842.15 | F(000) = 1600 |
Monoclinic, P21/n | Dx = 2.550 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 18.426 (4) Å | θ = 3.2–27.5° |
b = 6.9082 (14) Å | µ = 6.50 mm−1 |
c = 18.583 (4) Å | T = 293 K |
β = 111.98 (3)° | Block, colorless |
V = 2193.6 (8) Å3 | 0.38 × 0.34 × 0.31 mm |
Rigaku R-AXIS RAPID diffractometer | 4912 independent reflections |
Radiation source: fine-focus sealed tube | 4764 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 27.3°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −22→23 |
Tmin = 0.101, Tmax = 0.128 | k = −8→8 |
20352 measured reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.P)2 + 4.3115P] where P = (Fo2 + 2Fc2)/3 |
S = 1.20 | (Δ/σ)max = 0.002 |
4912 reflections | Δρmax = 1.07 e Å−3 |
344 parameters | Δρmin = −1.33 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00271 (8) |
[Tb2(C8H2NO6)2(H2O)5]·H2O | V = 2193.6 (8) Å3 |
Mr = 842.15 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 18.426 (4) Å | µ = 6.50 mm−1 |
b = 6.9082 (14) Å | T = 293 K |
c = 18.583 (4) Å | 0.38 × 0.34 × 0.31 mm |
β = 111.98 (3)° |
Rigaku R-AXIS RAPID diffractometer | 4912 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4764 reflections with I > 2σ(I) |
Tmin = 0.101, Tmax = 0.128 | Rint = 0.041 |
20352 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.045 | H-atom parameters constrained |
S = 1.20 | Δρmax = 1.07 e Å−3 |
4912 reflections | Δρmin = −1.33 e Å−3 |
344 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.373479 (7) | 0.223057 (19) | 0.377229 (7) | 0.00937 (5) | |
Tb2 | 0.375301 (8) | 0.251927 (17) | 0.896094 (8) | 0.00979 (5) | |
N1 | 0.42976 (13) | 0.3322 (3) | 0.27869 (13) | 0.0120 (4) | |
C1 | 0.38349 (15) | 0.4121 (4) | 0.21132 (16) | 0.0114 (5) | |
C2 | 0.40676 (16) | 0.4340 (4) | 0.14843 (16) | 0.0133 (5) | |
H2A | 0.3734 | 0.4880 | 0.1020 | 0.016* | |
C3 | 0.48211 (16) | 0.3717 (4) | 0.15760 (16) | 0.0118 (5) | |
C4 | 0.53247 (16) | 0.3018 (4) | 0.22990 (16) | 0.0124 (5) | |
H4A | 0.5838 | 0.2683 | 0.2381 | 0.015* | |
C5 | 0.50402 (16) | 0.2835 (4) | 0.28911 (17) | 0.0117 (5) | |
C6 | 0.30262 (16) | 0.4654 (4) | 0.20976 (16) | 0.0129 (5) | |
O1 | 0.25948 (12) | 0.5738 (3) | 0.15823 (12) | 0.0172 (4) | |
O2 | 0.28622 (12) | 0.3911 (3) | 0.26523 (12) | 0.0199 (5) | |
C7 | 0.50831 (16) | 0.3728 (4) | 0.08905 (15) | 0.0118 (5) | |
O3 | 0.45963 (13) | 0.3158 (3) | 0.02548 (12) | 0.0209 (4) | |
O4 | 0.57796 (12) | 0.4253 (3) | 0.10240 (12) | 0.0161 (4) | |
C8 | 0.55027 (16) | 0.2057 (4) | 0.36969 (16) | 0.0128 (5) | |
O5 | 0.62146 (12) | 0.1821 (4) | 0.39036 (13) | 0.0265 (5) | |
O6 | 0.50974 (12) | 0.1686 (3) | 0.41138 (12) | 0.0177 (4) | |
O7 | 0.36674 (12) | −0.0446 (3) | 0.29048 (12) | 0.0209 (5) | |
H7B | 0.3178 | −0.0743 | 0.2654 | 0.025* | |
H7A | 0.3876 | −0.0504 | 0.2574 | 0.025* | |
O8 | 0.40741 (13) | 0.5604 (3) | 0.39763 (14) | 0.0258 (5) | |
H8A | 0.4527 | 0.6096 | 0.4200 | 0.031* | |
H8B | 0.3682 | 0.5986 | 0.4083 | 0.031* | |
O9 | 0.37823 (13) | −0.0719 (3) | 0.45020 (12) | 0.0213 (5) | |
H9A | 0.4149 | −0.0984 | 0.4934 | 0.026* | |
H9B | 0.3420 | −0.1105 | 0.4649 | 0.026* | |
N2 | 0.38187 (14) | 0.2851 (3) | 0.76431 (14) | 0.0118 (5) | |
C9 | 0.31950 (16) | 0.3532 (4) | 0.70517 (16) | 0.0127 (5) | |
C10 | 0.31708 (17) | 0.3629 (4) | 0.62886 (16) | 0.0148 (6) | |
H10A | 0.2727 | 0.4069 | 0.5885 | 0.018* | |
C11 | 0.38337 (16) | 0.3044 (4) | 0.61552 (16) | 0.0134 (5) | |
C12 | 0.44858 (17) | 0.2370 (4) | 0.67751 (17) | 0.0124 (6) | |
H12A | 0.4938 | 0.2006 | 0.6699 | 0.015* | |
C13 | 0.44498 (17) | 0.2250 (4) | 0.75132 (17) | 0.0122 (5) | |
C14 | 0.25274 (16) | 0.4193 (4) | 0.72878 (16) | 0.0138 (5) | |
O10 | 0.19299 (12) | 0.4879 (3) | 0.67646 (12) | 0.0202 (4) | |
O11 | 0.26267 (12) | 0.3988 (3) | 0.79939 (12) | 0.0215 (5) | |
C15 | 0.38344 (17) | 0.3049 (4) | 0.53373 (16) | 0.0144 (5) | |
O12 | 0.44733 (13) | 0.2845 (3) | 0.52418 (13) | 0.0209 (5) | |
O13 | 0.31908 (12) | 0.3159 (3) | 0.47642 (12) | 0.0194 (4) | |
C16 | 0.50943 (16) | 0.1457 (4) | 0.82340 (16) | 0.0121 (5) | |
O14 | 0.57132 (12) | 0.0860 (3) | 0.81932 (12) | 0.0194 (4) | |
O15 | 0.49393 (12) | 0.1463 (3) | 0.88514 (11) | 0.0184 (4) | |
O16 | 0.39547 (13) | −0.0436 (3) | 0.97204 (12) | 0.0226 (5) | |
H16B | 0.4251 | −0.0676 | 1.0162 | 0.027* | |
H16A | 0.3898 | −0.1570 | 0.9529 | 0.027* | |
O17 | 0.28287 (12) | 0.3108 (4) | 0.95346 (13) | 0.0257 (5) | |
H17B | 0.2358 | 0.3132 | 0.9261 | 0.031* | |
H17A | 0.2806 | 0.2465 | 0.9929 | 0.031* | |
O18 | 0.21272 (15) | 0.6101 (4) | 0.42001 (15) | 0.0346 (6) | |
H18B | 0.2389 | 0.5106 | 0.4367 | 0.041* | |
H18A | 0.1688 | 0.5550 | 0.3908 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00889 (8) | 0.01244 (7) | 0.00678 (8) | 0.00037 (4) | 0.00293 (6) | 0.00027 (4) |
Tb2 | 0.00709 (8) | 0.01571 (8) | 0.00572 (8) | −0.00047 (4) | 0.00141 (6) | 0.00003 (4) |
N1 | 0.0092 (11) | 0.0155 (12) | 0.0108 (11) | 0.0008 (9) | 0.0032 (10) | 0.0015 (9) |
C1 | 0.0086 (13) | 0.0135 (13) | 0.0111 (13) | 0.0009 (10) | 0.0023 (11) | 0.0012 (10) |
C2 | 0.0116 (13) | 0.0156 (14) | 0.0097 (13) | 0.0002 (10) | 0.0005 (11) | 0.0028 (10) |
C3 | 0.0130 (13) | 0.0123 (13) | 0.0105 (13) | −0.0037 (10) | 0.0050 (11) | −0.0019 (9) |
C4 | 0.0102 (13) | 0.0136 (13) | 0.0129 (14) | −0.0026 (10) | 0.0040 (11) | −0.0009 (10) |
C5 | 0.0099 (13) | 0.0134 (13) | 0.0105 (14) | −0.0017 (10) | 0.0025 (12) | −0.0005 (10) |
C6 | 0.0095 (13) | 0.0166 (14) | 0.0106 (13) | 0.0004 (10) | 0.0016 (11) | −0.0001 (10) |
O1 | 0.0122 (10) | 0.0235 (11) | 0.0148 (10) | 0.0044 (8) | 0.0038 (9) | 0.0062 (8) |
O2 | 0.0130 (10) | 0.0310 (12) | 0.0174 (11) | 0.0059 (8) | 0.0076 (9) | 0.0106 (9) |
C7 | 0.0139 (13) | 0.0121 (13) | 0.0093 (13) | 0.0016 (10) | 0.0044 (11) | 0.0018 (9) |
O3 | 0.0208 (11) | 0.0298 (12) | 0.0091 (10) | −0.0040 (9) | 0.0022 (9) | −0.0026 (9) |
O4 | 0.0141 (10) | 0.0208 (11) | 0.0154 (10) | −0.0023 (8) | 0.0080 (9) | 0.0000 (8) |
C8 | 0.0106 (13) | 0.0146 (13) | 0.0114 (13) | 0.0002 (10) | 0.0021 (12) | −0.0003 (10) |
O5 | 0.0103 (11) | 0.0439 (15) | 0.0230 (13) | 0.0050 (9) | 0.0037 (10) | 0.0105 (10) |
O6 | 0.0130 (10) | 0.0271 (12) | 0.0133 (10) | 0.0051 (8) | 0.0051 (9) | 0.0060 (8) |
O7 | 0.0140 (10) | 0.0330 (12) | 0.0176 (11) | −0.0037 (9) | 0.0081 (9) | −0.0103 (9) |
O8 | 0.0238 (12) | 0.0199 (12) | 0.0321 (13) | −0.0043 (9) | 0.0086 (11) | −0.0055 (9) |
O9 | 0.0241 (12) | 0.0237 (11) | 0.0151 (11) | 0.0032 (9) | 0.0063 (10) | 0.0067 (8) |
N2 | 0.0100 (11) | 0.0143 (11) | 0.0097 (12) | −0.0011 (9) | 0.0022 (10) | −0.0004 (9) |
C9 | 0.0130 (13) | 0.0137 (13) | 0.0104 (13) | 0.0008 (10) | 0.0033 (11) | 0.0008 (10) |
C10 | 0.0136 (14) | 0.0191 (14) | 0.0092 (13) | 0.0036 (10) | 0.0013 (12) | 0.0026 (10) |
C11 | 0.0159 (14) | 0.0146 (13) | 0.0095 (14) | −0.0004 (11) | 0.0043 (12) | −0.0023 (10) |
C12 | 0.0125 (14) | 0.0157 (14) | 0.0096 (14) | 0.0016 (9) | 0.0049 (12) | −0.0007 (9) |
C13 | 0.0114 (14) | 0.0120 (13) | 0.0128 (14) | 0.0002 (10) | 0.0039 (12) | −0.0005 (10) |
C14 | 0.0130 (13) | 0.0150 (13) | 0.0127 (13) | 0.0021 (10) | 0.0038 (12) | −0.0001 (10) |
O10 | 0.0159 (10) | 0.0283 (12) | 0.0122 (10) | 0.0099 (9) | 0.0006 (9) | 0.0038 (8) |
O11 | 0.0154 (11) | 0.0391 (13) | 0.0102 (10) | 0.0086 (9) | 0.0052 (9) | 0.0039 (9) |
C15 | 0.0191 (15) | 0.0151 (14) | 0.0095 (13) | 0.0016 (11) | 0.0060 (12) | −0.0002 (10) |
O12 | 0.0166 (11) | 0.0344 (12) | 0.0119 (11) | 0.0012 (9) | 0.0056 (10) | −0.0019 (9) |
O13 | 0.0169 (11) | 0.0307 (12) | 0.0095 (10) | 0.0043 (9) | 0.0036 (9) | −0.0018 (9) |
C16 | 0.0107 (13) | 0.0140 (13) | 0.0099 (13) | −0.0010 (10) | 0.0021 (11) | −0.0005 (10) |
O14 | 0.0131 (10) | 0.0293 (12) | 0.0167 (11) | 0.0063 (8) | 0.0067 (9) | 0.0022 (8) |
O15 | 0.0125 (10) | 0.0332 (12) | 0.0091 (10) | 0.0071 (8) | 0.0035 (9) | 0.0043 (8) |
O16 | 0.0265 (12) | 0.0206 (11) | 0.0132 (11) | 0.0038 (9) | −0.0011 (10) | 0.0027 (8) |
O17 | 0.0107 (10) | 0.0488 (15) | 0.0182 (12) | 0.0049 (10) | 0.0060 (10) | 0.0052 (10) |
O18 | 0.0298 (14) | 0.0369 (15) | 0.0294 (14) | 0.0125 (11) | 0.0023 (12) | −0.0028 (11) |
Tb1—O1i | 2.508 (2) | O4—Tb2iii | 2.387 (2) |
Tb1—O2 | 2.400 (2) | C8—O5 | 1.232 (3) |
Tb1—O6 | 2.378 (2) | C8—O6 | 1.287 (3) |
Tb1—O7 | 2.426 (2) | O7—H7B | 0.8706 |
Tb1—O8 | 2.406 (2) | O7—H7A | 0.8392 |
Tb1—O9 | 2.431 (2) | O8—H8A | 0.8514 |
Tb1—O12 | 2.590 (2) | O8—H8B | 0.8583 |
Tb1—O13 | 2.489 (2) | O9—H9A | 0.8538 |
Tb1—N1 | 2.534 (2) | O9—H9B | 0.8526 |
Tb2—O3ii | 2.365 (2) | N2—C13 | 1.339 (4) |
Tb2—O4iii | 2.387 (2) | N2—C9 | 1.343 (4) |
Tb2—O10iv | 2.336 (2) | C9—C10 | 1.404 (4) |
Tb2—O11 | 2.403 (2) | C9—C14 | 1.523 (4) |
Tb2—O15 | 2.384 (2) | C10—C11 | 1.394 (4) |
Tb2—O16 | 2.430 (2) | C10—H10A | 0.9300 |
Tb2—O17 | 2.358 (2) | C11—C12 | 1.397 (4) |
Tb2—N2 | 2.507 (2) | C11—C15 | 1.520 (4) |
N1—C1 | 1.342 (3) | C12—C13 | 1.400 (4) |
N1—C5 | 1.351 (4) | C12—H12A | 0.9300 |
C1—C2 | 1.396 (4) | C13—C16 | 1.521 (4) |
C1—C6 | 1.525 (4) | C14—O10 | 1.257 (3) |
C2—C3 | 1.402 (4) | C14—O11 | 1.263 (3) |
C2—H2A | 0.9300 | O10—Tb2vii | 2.336 (2) |
C3—C4 | 1.402 (4) | C15—O12 | 1.262 (4) |
C3—C7 | 1.522 (4) | C15—O13 | 1.265 (4) |
C4—C5 | 1.390 (4) | C16—O14 | 1.241 (3) |
C4—H4A | 0.9300 | C16—O15 | 1.282 (3) |
C5—C8 | 1.517 (4) | O16—H16B | 0.8149 |
C6—O1 | 1.241 (3) | O16—H16A | 0.8500 |
C6—O2 | 1.285 (3) | O17—H17B | 0.8253 |
O1—Tb1v | 2.508 (2) | O17—H17A | 0.8714 |
C7—O3 | 1.250 (3) | O18—H18B | 0.8298 |
C7—O4 | 1.266 (3) | O18—H18A | 0.8749 |
O3—Tb2vi | 2.365 (2) | ||
O6—Tb1—O2 | 127.28 (7) | C2—C1—C6 | 124.2 (2) |
O6—Tb1—O8 | 85.70 (8) | C1—C2—C3 | 117.8 (2) |
O2—Tb1—O8 | 73.64 (8) | C1—C2—H2A | 121.1 |
O6—Tb1—O7 | 80.97 (7) | C3—C2—H2A | 121.1 |
O2—Tb1—O7 | 86.64 (8) | C2—C3—C4 | 119.5 (2) |
O8—Tb1—O7 | 142.08 (8) | C2—C3—C7 | 120.4 (2) |
O6—Tb1—O9 | 84.53 (7) | C4—C3—C7 | 120.0 (2) |
O2—Tb1—O9 | 139.62 (7) | C5—C4—C3 | 118.6 (3) |
O8—Tb1—O9 | 140.44 (8) | C5—C4—H4A | 120.7 |
O7—Tb1—O9 | 73.38 (8) | C3—C4—H4A | 120.7 |
O6—Tb1—O13 | 121.38 (7) | N1—C5—C4 | 121.7 (3) |
O2—Tb1—O13 | 101.12 (7) | N1—C5—C8 | 113.2 (2) |
O8—Tb1—O13 | 77.68 (8) | C4—C5—C8 | 125.1 (3) |
O7—Tb1—O13 | 138.92 (7) | O1—C6—O2 | 125.8 (3) |
O9—Tb1—O13 | 75.12 (7) | O1—C6—C1 | 120.0 (2) |
O6—Tb1—O1i | 146.61 (7) | O2—C6—C1 | 114.2 (2) |
O2—Tb1—O1i | 72.52 (7) | C6—O1—Tb1v | 137.01 (18) |
O8—Tb1—O1i | 127.62 (7) | C6—O2—Tb1 | 127.35 (17) |
O7—Tb1—O1i | 73.14 (7) | O3—C7—O4 | 126.3 (3) |
O9—Tb1—O1i | 68.26 (8) | O3—C7—C3 | 116.7 (2) |
O13—Tb1—O1i | 71.10 (7) | O4—C7—C3 | 117.0 (2) |
O6—Tb1—N1 | 64.09 (7) | C7—O3—Tb2vi | 170.3 (2) |
O2—Tb1—N1 | 63.37 (7) | C7—O4—Tb2iii | 127.23 (17) |
O8—Tb1—N1 | 70.91 (8) | O5—C8—O6 | 125.2 (3) |
O7—Tb1—N1 | 71.31 (7) | O5—C8—C5 | 119.6 (3) |
O9—Tb1—N1 | 135.54 (7) | O6—C8—C5 | 115.2 (2) |
O13—Tb1—N1 | 147.75 (8) | C8—O6—Tb1 | 126.89 (18) |
O1i—Tb1—N1 | 123.80 (7) | Tb1—O7—H7B | 108.7 |
O6—Tb1—O12 | 70.06 (7) | Tb1—O7—H7A | 126.8 |
O2—Tb1—O12 | 138.79 (8) | H7B—O7—H7A | 105.2 |
O8—Tb1—O12 | 70.86 (8) | Tb1—O8—H8A | 127.8 |
O7—Tb1—O12 | 134.56 (7) | Tb1—O8—H8B | 98.2 |
O9—Tb1—O12 | 69.76 (7) | H8A—O8—H8B | 121.3 |
O13—Tb1—O12 | 51.34 (7) | Tb1—O9—H9A | 123.7 |
O1i—Tb1—O12 | 114.86 (7) | Tb1—O9—H9B | 124.9 |
N1—Tb1—O12 | 121.18 (7) | H9A—O9—H9B | 94.1 |
O6—Tb1—C15 | 95.68 (8) | C13—N2—C9 | 119.7 (2) |
O2—Tb1—C15 | 123.08 (8) | C13—N2—Tb2 | 120.68 (19) |
O8—Tb1—C15 | 74.82 (8) | C9—N2—Tb2 | 119.46 (18) |
O7—Tb1—C15 | 141.56 (8) | N2—C9—C10 | 122.5 (2) |
O9—Tb1—C15 | 68.18 (8) | N2—C9—C14 | 113.9 (2) |
O13—Tb1—C15 | 25.73 (8) | C10—C9—C14 | 123.6 (2) |
O1i—Tb1—C15 | 91.86 (8) | C11—C10—C9 | 117.8 (3) |
N1—Tb1—C15 | 141.02 (8) | C11—C10—H10A | 121.1 |
O12—Tb1—C15 | 25.80 (8) | C9—C10—H10A | 121.1 |
O10iv—Tb2—O17 | 94.09 (8) | C10—C11—C12 | 119.4 (2) |
O10iv—Tb2—O3ii | 137.68 (8) | C10—C11—C15 | 120.4 (2) |
O17—Tb2—O3ii | 79.58 (8) | C12—C11—C15 | 120.2 (2) |
O10iv—Tb2—O15 | 91.41 (8) | C11—C12—C13 | 119.1 (3) |
O17—Tb2—O15 | 158.69 (7) | C11—C12—H12A | 120.5 |
O3ii—Tb2—O15 | 82.50 (8) | C13—C12—H12A | 120.5 |
O10iv—Tb2—O4iii | 148.23 (7) | N2—C13—C12 | 121.4 (3) |
O17—Tb2—O4iii | 98.76 (8) | N2—C13—C16 | 113.4 (2) |
O3ii—Tb2—O4iii | 73.56 (7) | C12—C13—C16 | 125.2 (2) |
O15—Tb2—O4iii | 87.06 (7) | O10—C14—O11 | 126.2 (3) |
O10iv—Tb2—O11 | 76.71 (8) | O10—C14—C9 | 117.3 (2) |
O17—Tb2—O11 | 72.40 (7) | O11—C14—C9 | 116.6 (2) |
O3ii—Tb2—O11 | 137.43 (8) | C14—O10—Tb2vii | 150.1 (2) |
O15—Tb2—O11 | 128.91 (7) | C14—O11—Tb2 | 124.96 (18) |
O4iii—Tb2—O11 | 79.69 (8) | O12—C15—O13 | 121.2 (3) |
O10iv—Tb2—O16 | 67.14 (8) | O12—C15—C11 | 119.3 (3) |
O17—Tb2—O16 | 82.04 (8) | O13—C15—C11 | 119.4 (2) |
O3ii—Tb2—O16 | 70.54 (8) | O12—C15—Tb1 | 63.24 (15) |
O15—Tb2—O16 | 81.17 (8) | O13—C15—Tb1 | 58.67 (14) |
O4iii—Tb2—O16 | 143.32 (7) | C11—C15—Tb1 | 168.1 (2) |
O11—Tb2—O16 | 133.68 (8) | C15—O12—Tb1 | 90.96 (18) |
O10iv—Tb2—N2 | 73.74 (7) | C15—O13—Tb1 | 95.60 (16) |
O17—Tb2—N2 | 137.12 (8) | O14—C16—O15 | 125.0 (3) |
O3ii—Tb2—N2 | 136.26 (8) | O14—C16—C13 | 119.9 (2) |
O15—Tb2—N2 | 64.13 (8) | O15—C16—C13 | 115.2 (2) |
O4iii—Tb2—N2 | 77.11 (7) | C16—O15—Tb2 | 126.57 (18) |
O11—Tb2—N2 | 64.84 (7) | Tb2—O16—H16B | 130.9 |
O16—Tb2—N2 | 126.24 (8) | Tb2—O16—H16A | 124.3 |
C1—N1—C5 | 119.5 (2) | H16B—O16—H16A | 99.5 |
C1—N1—Tb1 | 120.52 (17) | Tb2—O17—H17B | 119.8 |
C5—N1—Tb1 | 119.27 (18) | Tb2—O17—H17A | 124.3 |
N1—C1—C2 | 122.6 (2) | H17B—O17—H17A | 99.1 |
N1—C1—C6 | 113.1 (2) | H18B—O18—H18A | 98.3 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x, y, z−1; (vii) −x+1/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O14viii | 0.84 | 1.86 | 2.700 (3) | 174.4 |
O7—H7B···O2i | 0.87 | 1.80 | 2.651 (3) | 164.8 |
O8—H8A···O12iii | 0.85 | 1.89 | 2.741 (3) | 176.0 |
O8—H8B···O9ix | 0.86 | 2.39 | 2.844 (3) | 113.0 |
O9—H9A···O5viii | 0.85 | 2.56 | 3.057 (3) | 119.0 |
O9—H9A···O6viii | 0.85 | 1.86 | 2.711 (3) | 176.0 |
O9—H9B···O5viii | 0.85 | 2.56 | 3.057 (3) | 118.0 |
O16—H16A···O4viii | 0.85 | 2.30 | 3.101 (3) | 156.2 |
O16—H16B···O15x | 0.81 | 1.96 | 2.766 (3) | 171.0 |
O17—H17A···O18iv | 0.87 | 1.84 | 2.705 (4) | 173.9 |
O17—H17B···O5xi | 0.82 | 1.95 | 2.759 (3) | 163.6 |
O18—H18A···O14xii | 0.87 | 2.04 | 2.911 (4) | 175.7 |
O18—H18B···O13 | 0.83 | 1.92 | 2.745 (4) | 167.1 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2; (viii) −x+1, −y, −z+1; (ix) x, y+1, z; (x) −x+1, −y, −z+2; (xi) x−1/2, −y+1/2, z+1/2; (xii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Tb2(C8H2NO6)2(H2O)5]·H2O |
Mr | 842.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 18.426 (4), 6.9082 (14), 18.583 (4) |
β (°) | 111.98 (3) |
V (Å3) | 2193.6 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.50 |
Crystal size (mm) | 0.38 × 0.34 × 0.31 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.101, 0.128 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20352, 4912, 4764 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.646 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.045, 1.20 |
No. of reflections | 4912 |
No. of parameters | 344 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.07, −1.33 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.
Tb1—O1i | 2.508 (2) | Tb2—O3ii | 2.365 (2) |
Tb1—O2 | 2.400 (2) | Tb2—O4iii | 2.387 (2) |
Tb1—O6 | 2.378 (2) | Tb2—O10iv | 2.336 (2) |
Tb1—O7 | 2.426 (2) | Tb2—O11 | 2.403 (2) |
Tb1—O8 | 2.406 (2) | Tb2—O15 | 2.384 (2) |
Tb1—O9 | 2.431 (2) | Tb2—O16 | 2.430 (2) |
Tb1—O12 | 2.590 (2) | Tb2—O17 | 2.358 (2) |
Tb1—O13 | 2.489 (2) | Tb2—N2 | 2.507 (2) |
Tb1—N1 | 2.534 (2) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O14v | 0.84 | 1.86 | 2.700 (3) | 174.4 |
O7—H7B···O2i | 0.87 | 1.80 | 2.651 (3) | 164.8 |
O8—H8A···O12iii | 0.85 | 1.89 | 2.741 (3) | 176.0 |
O8—H8B···O9vi | 0.86 | 2.39 | 2.844 (3) | 113.0 |
O9—H9A···O5v | 0.85 | 2.56 | 3.057 (3) | 119.0 |
O9—H9A···O6v | 0.85 | 1.86 | 2.711 (3) | 176.0 |
O9—H9B···O5v | 0.85 | 2.56 | 3.057 (3) | 118.0 |
O16—H16A···O4v | 0.85 | 2.30 | 3.101 (3) | 156.2 |
O16—H16B···O15vii | 0.81 | 1.96 | 2.766 (3) | 171.0 |
O17—H17A···O18iv | 0.87 | 1.84 | 2.705 (4) | 173.9 |
O17—H17B···O5viii | 0.82 | 1.95 | 2.759 (3) | 163.6 |
O18—H18A···O14ix | 0.87 | 2.04 | 2.911 (4) | 175.7 |
O18—H18B···O13 | 0.83 | 1.92 | 2.745 (4) | 167.1 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y, −z+1; (vi) x, y+1, z; (vii) −x+1, −y, −z+2; (viii) x−1/2, −y+1/2, z+1/2; (ix) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
This project was supported by the K. C. Wong Magna Fund in Ningbo University.
References
Das, M. C., Ghosh, S. K., Saũdoand, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644–1658. Web of Science CSD CrossRef Google Scholar
Fu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lin, J.-L., Xu, W., Zhao, L. & Zheng, Y.-Q. (2011). Z. Naturforsch Teil B, 66, 570–576. CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the design and synthesis of metal organic frameworks (MOFs) with lanthanide have become an fascinating field due to their potential applications in luminescent materials, magnetic, catalyst and gas absorption (Wang et al., 2007). Multicarboxylic acids were widely used as organic linkers in the syntheses of MOFs such as phthalic acid, trimesic acid and pyromellitic acid. In addition, pyridine-2,4,6-tricarboxylato(H3ptc) is a good building unit for constructing MFOs due to the existence of both N and O atoms in the ligands (Fu et al., 2008). Another reason for choosing H3ptc is the inherent negative charge associated with them that helps in the charge compensation of the metal ion in the framework (Das et al., 2009). At the same time, Lanthanide complexes with aromatic carboxylic acids show higher thermal or luminescence stabilities for practical application than other lanthanide complex systems. Thus we design and synthesis the title compound prepared from Tb4O7 and pyridine-2, 4, 6-tricarboxylic acid.
The asymmetric unit of [Tb2(H2O)5(ptc)2]n.nH2O consists of two Tb3+ ions (Tb1,Tb2), two ptc3- ions, five aqua ligands, and a lattice water as illustrated in Fig. 1. Its worth to mention,The Tb1 atoms is nine-coordinated fashion by three aqua ligands (O7, O8 and O9) as well as three ptc ligands to generate a distorted monocapped squarean-tiprismatic DyNO8 chromophore with d(Tb1—N1) = 2.517 (2) Å and d(Tb1—O) = 2.366–2.566 Å, and Tb2 is eight-coordinated fashion by two aqua ligands (O4 and O9) as well as three ptc ligands texhibit a 4,4-bicapped trigonal prismatic TbNO7 chromophore with d(Tb2—N2) = 2.486 (2) Å and d(Tb2—O) = 2.320–2.415 Å, respectively (Lin et al., 2011). Interestingly, the C7—O14 distance in pyridine-2, 4, 6-tricarboxylic acid is significantly shorter than that of corresponding C—O distance due to the the adjacent molecular's close packing. The three-dimensional polymer is constructed by the Tb2 building units through ptc3- anions in different coordination modes.