organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-2-hy­dr­oxy­benzaldehyde

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 6 July 2012; accepted 10 July 2012; online 18 July 2012)

The mol­ecule of the title compound, C7H5BrO2, is almost planar (r.m.s. deviation from the plane of all the non-H atoms = 0.0271 Å) and displays intra­molecular O—H⋯O hydrogen bonding between the phenol group and the aldehyde O atom. Packing is directed by weak inter­molecular C—H⋯Br inter­actions and π-stacking between nearly parallel mol­ecules [dihedral angle = 5.30 (6)° and centroid–centroid distance = 3.752 (1) Å].

Related literature

For information on the synthesis of the title compound, see: Hansen & Skattebol (2005[Hansen, T. V. & Skattebol, L. (2005). Org. Synth. 82, 64-68.]). For recent uses of the title compound in the synthesis of biologically active compounds, see: Velázquez et al. (2012[Velázquez, F., Venkatraman, S., Lesburg, C. A., Duca, J., Rosenblum, S. B., Kozlowski, R. A. & Njoroge, F. G. (2012). Org. Lett. 14, 556-559.]); Wang et al. (2012[Wang, X., Han, Z., Wang, Z. & Ding, K. (2012). Angew. Chem. Int. Ed. 51, 936-940.]); Zhang et al. (2012[Zhang, H., Liu, J.-J., Sun, J., Yang, X.-H., Zhao, T.-T., Lu, X., Gong, H.-B. & Zhu, H.-L. (2012). Bioorg. Med. Chem. 20, 3212-3218.]). For use of the title compound to prepare Schiff base ligands for metal coordination chemistry, see: Escudero-Adán et al. (2010[Escudero-Adán, E. C., Belmonte, M. M., Benet-Buchholz, J. & Kleij, A. W. (2010). Org. Lett. 12, 4592-4595.]); McGarrigle et al. (2004[McGarrigle, E. M., Murphy, D. M. & Gilheany, D. G. (2004). Tetrahedron Asymmetry, 15, 1343-1354.]); Tzubery & Tshuva (2012[Tzubery, A. & Tshuva, E. Y. (2012). Inorg. Chem. 51, 1796-1804.]). For related crystal structures, see: Balasubramani et al. (2011[Balasubramani, V., Vinuchakkaravarthy, T., Gopi, S., Narasimhan, S. & Velmurugan, D. (2011). Acta Cryst. E67, o3375.]); Fan, You, Liu, Qian & Huang (2008[Fan, Y., You, W., Liu, J.-L., Qian, H.-F. & Huang, W. (2008). Acta Cryst. E64, o1080.]); Fan, You, Qian, Liu & Huang (2008[Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2008). Acta Cryst. E64, o799.]) Iwasaki et al. (1976[Iwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264-1266.]); Kirchner et al. (2011[Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387-o390.]); Tang et al. (2010[Tang, B., Chen, G., Song, X., Cen, C. & Han, C. (2010). Acta Cryst. E66, o1912.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5BrO2

  • Mr = 201.02

  • Monoclinic, P 21 /c

  • a = 7.0282 (3) Å

  • b = 14.9715 (7) Å

  • c = 6.8472 (3) Å

  • β = 108.907 (1)°

  • V = 681.61 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 125 K

  • 0.22 × 0.08 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.354, Tmax = 0.842

  • 10788 measured reflections

  • 2074 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.04

  • 2074 reflections

  • 95 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond and C—H⋯Br interaction geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.79 (2) 1.90 (2) 2.6364 (16) 154 (2)
C4—H4⋯Br1i 0.95 3.05 3.798 (2) 137
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

The title compound, 3-bromo-2-hydroxybenzaldehyde, may be synthesized by reflux of 2-bromophenol with anhydrous magnesium dichloride, solid paraformaldehyde, and triethylamine in dry tetrahydrofuran (Hansen & Skattebol, 2005). Salicylaldehyde and its derivatives are commonly employed in the formation of Schiff bases for use as ligands in metal coordination chemistry. Schiff base complexes derived from 3-bromo-2-hydroxybenzaldehyde have been reported for several metals, including titanium (Tzubery & Tshuva, 2012), zinc (Escudero-Adán et al., 2010) and chromium (McGarrigle et al., 2004). 3-Bromo-2-hydroxybenzaldehyde is used as a synthetic reagent in the synthesis of biologically active compounds such as potential antiviral compounds (Velázquez et al., 2012), chiral aromatic spiroketals (Wang et al., 2012), and anticancer agents (Zhang et al., 2012).

The structure of the title compound (Fig. 1) shows that the molecule is planar, with a root mean square deviation from the plane of all atoms, excluding the aryl H atoms, of 0.0271 Å. The phenol is intramolecularly hydrogen bonded to the aldehyde group meta to it on the aryl ring, with an O···O distance of 2.6364 (16) Å and O—H···O angle of 154 (2)°. This intramolecular hydrogen bond is common to salicylaldehyde derivatives, having metrical parameters comparable to related structures (viz., 3,5-dibromo-2-hydroxybenzaldehyde (Fan, You, Qian, Liu & Huang, 2008); 3,5-dichloro-2-hydroxybenzaldehyde (Fan, You, Liu, Qian & Huang, 2008); 3-bromo-5-tert-butyl-2 -hydroxybenzaldehyde (Balasubramani et al., 2011); 2-hydroxy-3-methoxybenzaldehyde (Iwasaki et al., 1976); 2-hydroxy-3-nitrobenzaldehyde (Tang et al., 2010); hydroxybenzaldehyde (Kirchner et al., 2011). While O···O distances are rather similar in these structures (range: 2.597 (3)-2.713 (6)Å; Δ: 5%), O—H···O angles are slightly more uneven (range: 143 (2)-163 (2)Å, Δ: 13%) depending on the nature of intermolecular interactions involving the phenol and aldehyde substituents on neighbouring molecules.

Inspection of the molecular packing reveals that the crystal structure is organized by weak intermolecular C-H···Br interactions, with an H···Br distance of 3.05 Å and C—H···Br angle of 136.74°. There also exists an offset face-to-face π-stacking chain of molecues running parallel to the crystallographic c-axis, with an angle between the planes of the overlapping molecules of 5.30 (6)°. This π-stacking is characterized by a centroid-to-centroid distance of 3.752 (1) Å and centroid-to-plance distances of 3.346 (1) and 3.488 (1), resulting in a ring-offsets of 1.381 (2) and 1.697 (2) Å, respectively (Fig 2).

Related literature top

For information on the synthesis of the title compound, see: Hansen & Skattebol (2005). For recent uses of the title compound in the synthesis of biologically active compounds, see: Velázquez et al. (2012); Wang et al. (2012); Zhang et al. (2012). For use of the title compound to prepare Schiff base ligands for metal coordination chemistry, see: Escudero-Adán et al. (2010); McGarrigle et al. (2004); Tzubery & Tshuva (2012). For related crystal structures, see: Balasubramani et al. (2011); Fan, You, Liu, Qian & Huang (2008); Fan, You, Qian, Liu & Huang (2008) Iwasaki et al. (1976); Kirchner et al. (2011); Tang et al. (2010).

Experimental top

Crystalline 3-bromo-2-hydroxybenzaldehyde was purchased from Aldrich Chemical Company, USA.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl C-atoms. The hydrogen atom on oxygen was located in the difference map and refined freely. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Structure description top

The title compound, 3-bromo-2-hydroxybenzaldehyde, may be synthesized by reflux of 2-bromophenol with anhydrous magnesium dichloride, solid paraformaldehyde, and triethylamine in dry tetrahydrofuran (Hansen & Skattebol, 2005). Salicylaldehyde and its derivatives are commonly employed in the formation of Schiff bases for use as ligands in metal coordination chemistry. Schiff base complexes derived from 3-bromo-2-hydroxybenzaldehyde have been reported for several metals, including titanium (Tzubery & Tshuva, 2012), zinc (Escudero-Adán et al., 2010) and chromium (McGarrigle et al., 2004). 3-Bromo-2-hydroxybenzaldehyde is used as a synthetic reagent in the synthesis of biologically active compounds such as potential antiviral compounds (Velázquez et al., 2012), chiral aromatic spiroketals (Wang et al., 2012), and anticancer agents (Zhang et al., 2012).

The structure of the title compound (Fig. 1) shows that the molecule is planar, with a root mean square deviation from the plane of all atoms, excluding the aryl H atoms, of 0.0271 Å. The phenol is intramolecularly hydrogen bonded to the aldehyde group meta to it on the aryl ring, with an O···O distance of 2.6364 (16) Å and O—H···O angle of 154 (2)°. This intramolecular hydrogen bond is common to salicylaldehyde derivatives, having metrical parameters comparable to related structures (viz., 3,5-dibromo-2-hydroxybenzaldehyde (Fan, You, Qian, Liu & Huang, 2008); 3,5-dichloro-2-hydroxybenzaldehyde (Fan, You, Liu, Qian & Huang, 2008); 3-bromo-5-tert-butyl-2 -hydroxybenzaldehyde (Balasubramani et al., 2011); 2-hydroxy-3-methoxybenzaldehyde (Iwasaki et al., 1976); 2-hydroxy-3-nitrobenzaldehyde (Tang et al., 2010); hydroxybenzaldehyde (Kirchner et al., 2011). While O···O distances are rather similar in these structures (range: 2.597 (3)-2.713 (6)Å; Δ: 5%), O—H···O angles are slightly more uneven (range: 143 (2)-163 (2)Å, Δ: 13%) depending on the nature of intermolecular interactions involving the phenol and aldehyde substituents on neighbouring molecules.

Inspection of the molecular packing reveals that the crystal structure is organized by weak intermolecular C-H···Br interactions, with an H···Br distance of 3.05 Å and C—H···Br angle of 136.74°. There also exists an offset face-to-face π-stacking chain of molecues running parallel to the crystallographic c-axis, with an angle between the planes of the overlapping molecules of 5.30 (6)°. This π-stacking is characterized by a centroid-to-centroid distance of 3.752 (1) Å and centroid-to-plance distances of 3.346 (1) and 3.488 (1), resulting in a ring-offsets of 1.381 (2) and 1.697 (2) Å, respectively (Fig 2).

For information on the synthesis of the title compound, see: Hansen & Skattebol (2005). For recent uses of the title compound in the synthesis of biologically active compounds, see: Velázquez et al. (2012); Wang et al. (2012); Zhang et al. (2012). For use of the title compound to prepare Schiff base ligands for metal coordination chemistry, see: Escudero-Adán et al. (2010); McGarrigle et al. (2004); Tzubery & Tshuva (2012). For related crystal structures, see: Balasubramani et al. (2011); Fan, You, Liu, Qian & Huang (2008); Fan, You, Qian, Liu & Huang (2008) Iwasaki et al. (1976); Kirchner et al. (2011); Tang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the offset face-to-face π-stacking in the structure of the title compound (See text for details)
3-Bromo-2-hydroxybenzaldehyde top
Crystal data top
C7H5BrO2F(000) = 392
Mr = 201.02Dx = 1.959 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6585 reflections
a = 7.0282 (3) Åθ = 2.7–30.5°
b = 14.9715 (7) ŵ = 5.96 mm1
c = 6.8472 (3) ÅT = 125 K
β = 108.907 (1)°Plate, colourless
V = 681.61 (5) Å30.22 × 0.08 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2074 independent reflections
Radiation source: fine-focus sealed tube1815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 30.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker 2007)
h = 1010
Tmin = 0.354, Tmax = 0.842k = 2121
10788 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.1779P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max = 0.001
95 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H5BrO2V = 681.61 (5) Å3
Mr = 201.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0282 (3) ŵ = 5.96 mm1
b = 14.9715 (7) ÅT = 125 K
c = 6.8472 (3) Å0.22 × 0.08 × 0.03 mm
β = 108.907 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2074 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
1815 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.842Rint = 0.024
10788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
2074 reflectionsΔρmin = 0.25 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11374 (2)0.567091 (9)0.25208 (2)0.02342 (6)
O20.12613 (15)0.76969 (8)0.28306 (17)0.0236 (2)
H20.144 (4)0.8217 (17)0.294 (4)0.055 (8)*
C10.4646 (2)0.88799 (9)0.3840 (2)0.0228 (3)
H10.58390.92290.42290.027*
O10.30259 (19)0.92736 (7)0.33528 (18)0.0284 (2)
C60.3410 (2)0.64329 (9)0.3299 (2)0.0170 (2)
C70.3132 (2)0.73579 (9)0.3323 (2)0.0166 (2)
C30.6776 (2)0.75351 (10)0.4401 (2)0.0202 (3)
H30.79250.79130.47810.024*
C50.5322 (2)0.60728 (9)0.3814 (2)0.0192 (3)
H50.54800.54430.37760.023*
C20.4853 (2)0.79087 (9)0.38599 (19)0.0177 (2)
C40.7016 (2)0.66178 (10)0.4385 (2)0.0219 (3)
H40.83230.63630.47600.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01950 (8)0.01875 (8)0.03050 (9)0.00399 (5)0.00602 (6)0.00323 (5)
O20.0177 (5)0.0199 (5)0.0302 (6)0.0043 (4)0.0037 (4)0.0004 (4)
C10.0317 (8)0.0177 (6)0.0188 (6)0.0035 (6)0.0080 (6)0.0005 (5)
O10.0383 (7)0.0187 (5)0.0275 (6)0.0039 (4)0.0095 (5)0.0031 (4)
C60.0183 (6)0.0165 (6)0.0158 (6)0.0017 (5)0.0049 (5)0.0020 (5)
C70.0168 (6)0.0177 (6)0.0144 (6)0.0022 (5)0.0040 (5)0.0002 (5)
C30.0190 (7)0.0241 (7)0.0175 (6)0.0041 (5)0.0059 (5)0.0014 (5)
C50.0222 (7)0.0172 (6)0.0181 (6)0.0027 (5)0.0062 (5)0.0014 (5)
C20.0222 (6)0.0169 (6)0.0134 (6)0.0018 (5)0.0050 (5)0.0005 (5)
C40.0174 (6)0.0265 (7)0.0208 (6)0.0037 (5)0.0048 (5)0.0009 (5)
Geometric parameters (Å, º) top
Br1—C61.8933 (13)C7—C21.4107 (19)
O2—C71.3466 (16)C3—C41.384 (2)
O2—H20.79 (2)C3—C21.397 (2)
C1—O11.2284 (19)C3—H30.9500
C1—C21.4609 (19)C5—C41.391 (2)
C1—H10.9500C5—H50.9500
C6—C51.3836 (19)C4—H40.9500
C6—C71.3993 (19)
C7—O2—H2103.8 (18)C4—C3—H3119.8
O1—C1—C2124.12 (14)C2—C3—H3119.8
O1—C1—H1117.9C6—C5—C4121.02 (13)
C2—C1—H1117.9C6—C5—H5119.5
C5—C6—C7120.67 (13)C4—C5—H5119.5
C5—C6—Br1119.87 (10)C3—C2—C7120.60 (13)
C7—C6—Br1119.45 (10)C3—C2—C1119.08 (13)
O2—C7—C6119.90 (12)C7—C2—C1120.32 (13)
O2—C7—C2122.02 (12)C3—C4—C5119.28 (13)
C6—C7—C2118.08 (12)C3—C4—H4120.4
C4—C3—C2120.32 (13)C5—C4—H4120.4
C5—C6—C7—O2179.59 (12)O2—C7—C2—C3178.81 (12)
Br1—C6—C7—O21.18 (17)C6—C7—C2—C31.59 (19)
C5—C6—C7—C20.79 (19)O2—C7—C2—C11.71 (19)
Br1—C6—C7—C2178.43 (9)C6—C7—C2—C1177.89 (12)
C7—C6—C5—C40.6 (2)O1—C1—C2—C3178.64 (13)
Br1—C6—C5—C4179.81 (11)O1—C1—C2—C70.9 (2)
C4—C3—C2—C71.0 (2)C2—C3—C4—C50.4 (2)
C4—C3—C2—C1178.47 (13)C6—C5—C4—C31.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.79 (2)1.90 (2)2.6364 (16)154 (2)
C4—H4···Br1i0.953.053.798 (2)137
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H5BrO2
Mr201.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)125
a, b, c (Å)7.0282 (3), 14.9715 (7), 6.8472 (3)
β (°) 108.907 (1)
V3)681.61 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.22 × 0.08 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2007)
Tmin, Tmax0.354, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
10788, 2074, 1815
Rint0.024
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.04
No. of reflections2074
No. of parameters95
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.79 (2)1.90 (2)2.6364 (16)154 (2)
C4—H4···Br1i0.953.053.798 (2)136.74
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBalasubramani, V., Vinuchakkaravarthy, T., Gopi, S., Narasimhan, S. & Velmurugan, D. (2011). Acta Cryst. E67, o3375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEscudero-Adán, E. C., Belmonte, M. M., Benet-Buchholz, J. & Kleij, A. W. (2010). Org. Lett. 12, 4592–4595.  Web of Science PubMed Google Scholar
First citationFan, Y., You, W., Liu, J.-L., Qian, H.-F. & Huang, W. (2008). Acta Cryst. E64, o1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2008). Acta Cryst. E64, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHansen, T. V. & Skattebol, L. (2005). Org. Synth. 82, 64–68.  CAS Google Scholar
First citationIwasaki, F., Tanaka, I. & Aihara, A. (1976). Acta Cryst. B32, 1264–1266.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387–o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcGarrigle, E. M., Murphy, D. M. & Gilheany, D. G. (2004). Tetrahedron Asymmetry, 15, 1343–1354.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, B., Chen, G., Song, X., Cen, C. & Han, C. (2010). Acta Cryst. E66, o1912.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTzubery, A. & Tshuva, E. Y. (2012). Inorg. Chem. 51, 1796–1804.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVelázquez, F., Venkatraman, S., Lesburg, C. A., Duca, J., Rosenblum, S. B., Kozlowski, R. A. & Njoroge, F. G. (2012). Org. Lett. 14, 556–559.  Web of Science PubMed Google Scholar
First citationWang, X., Han, Z., Wang, Z. & Ding, K. (2012). Angew. Chem. Int. Ed. 51, 936–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H., Liu, J.-J., Sun, J., Yang, X.-H., Zhao, T.-T., Lu, X., Gong, H.-B. & Zhu, H.-L. (2012). Bioorg. Med. Chem. 20, 3212–3218.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds