metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(acetato-κ2O,O′)[2-(4-oxo-1,4-di­hydro­quinolin-1-yl)acetato-κO1]copper(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 17 July 2012; accepted 20 July 2012; online 28 July 2012)

In the title compound, [Cu(C11H8NO3)(CH3COO)(C10H8N2)]n, the CuII ion is six-coordinated by two N atoms from two 4,4′-bipyridine ligands, four O atoms from one acetate ligand, one 2-(4-oxo-1,4-dihydro­quinolin-1-yl)acetate ligand and one water mol­ecule in a distorted octa­hedral geometry. The 4,4′-bipyridine ligands inter­connect [Cu(C11H8NO3)(CH3COO)] units, giving rise to a chain along [010]. These chains are further linked to each other by O—H⋯O hydrogen bonds, leading to a two-dimensional supra­molecular network parallel to (100).

Related literature

For the structures of similar CdII and AgI complexes, see: Wang et al. (2010[Wang, J., Fan, J., Guo, L. Y., Yin, X., Wang, Z. H. & Zhang, W. G. (2010). Inorg. Chem. Commun. 13, 322-325.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H8NO3)(C2H3O2)(C10H8N2)]

  • Mr = 498.97

  • Triclinic, [P \overline 1]

  • a = 9.543 (2) Å

  • b = 11.121 (2) Å

  • c = 11.381 (2) Å

  • α = 70.03 (3)°

  • β = 71.27 (3)°

  • γ = 88.03 (3)°

  • V = 1071.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 K

  • 0.35 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.707, Tmax = 0.799

  • 5588 measured reflections

  • 3815 independent reflections

  • 3217 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.03

  • 3815 reflections

  • 305 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3i 0.83 (1) 1.98 (1) 2.795 (3) 166 (3)
O1W—H2W⋯O2 0.83 (1) 1.99 (2) 2.740 (4) 151 (2)
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained upon the reaction of 4-Oxo-1(4H) quinolineacetic acid, 4,4'-bipyridine and copper acetate. In the asymmetric unit of the title compound (I) (Fig. 1), each CuII ion is six-coordinated by two N atoms from two 4,4'-bipyridine ligands, four O atoms from one acetate ligand, one 4-Oxo-1(4H)quinolineacetate ligand and one water molecule in a distorted octahedral geometry. The Cu1-O5 bond distance is 2.720 (2)Å, indicative of a weak bond. Similar arrangements are observed in the structures of related mixed-ligand Cd(II) and Ag(I) complexes (Wang et al., 2010). 4,4'-bipyridine ligands interconnect [Cu(CH3COO)(C11H8NO3)] moieties, giving rise to a one-dimensional chain along [010]. These chains further link to each other by O—H···O hydrogen bonds (Table 1), leading to a 2D supramolecular network parallel to (100) (Fig. 2).

Related literature top

For the structures of similar CdII and AgI complexes, see: Wang et al. (2010).

Experimental top

The title complex was prepared by the addition of a stoichiometric amount of copper acetate (0.181 g; 1 mmol) and 4,4'-bipyridine (0.156 h; 1 mmol) to a hot water/ethanol (v/v = 1:1) solution (5 ml) of 4-Oxo-1(4H) quinolineacetic acid (0.203 g; 1 mmol). The pH was then adjusted to 7.0 to 8.0 with NaOH (10 mM/L). The resulting solution was filtered, and colorless crystals were obtained at room temperature on slow evaporation of the solvent over several days.

Refinement top

Hydrogen atoms were located in a difference Fourier map. C—H's were further placed at calculated positions (C—H = 0.95–0.99 Å); O—H were refined with restrained O—H = 0.83 (1) Å). In all cases, Uiso(H) were set to 1.2–1.5 times Ueq(C, O).

Structure description top

The title compound was obtained upon the reaction of 4-Oxo-1(4H) quinolineacetic acid, 4,4'-bipyridine and copper acetate. In the asymmetric unit of the title compound (I) (Fig. 1), each CuII ion is six-coordinated by two N atoms from two 4,4'-bipyridine ligands, four O atoms from one acetate ligand, one 4-Oxo-1(4H)quinolineacetate ligand and one water molecule in a distorted octahedral geometry. The Cu1-O5 bond distance is 2.720 (2)Å, indicative of a weak bond. Similar arrangements are observed in the structures of related mixed-ligand Cd(II) and Ag(I) complexes (Wang et al., 2010). 4,4'-bipyridine ligands interconnect [Cu(CH3COO)(C11H8NO3)] moieties, giving rise to a one-dimensional chain along [010]. These chains further link to each other by O—H···O hydrogen bonds (Table 1), leading to a 2D supramolecular network parallel to (100) (Fig. 2).

For the structures of similar CdII and AgI complexes, see: Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (i) x, 1 + y, z.".
[Figure 2] Fig. 2. The packing of the title structure.
catena-Poly[[(acetato-κ2O,O'')[2-(4-oxo-1,4- dihydroquinolin-1-yl)acetato-κO1]copper(II)]-µ-4,4'-bipyridine- κ2N:N'] top
Crystal data top
[Cu(C11H8NO3)(C2H3O2)(C10H8N2)]Z = 2
Mr = 498.97F(000) = 514
Triclinic, P1Dx = 1.547 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.543 (2) ÅCell parameters from 3600 reflections
b = 11.121 (2) Åθ = 1.3–28.0°
c = 11.381 (2) ŵ = 1.07 mm1
α = 70.03 (3)°T = 298 K
β = 71.27 (3)°Block, blue
γ = 88.03 (3)°0.35 × 0.26 × 0.22 mm
V = 1071.3 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3815 independent reflections
Radiation source: fine-focus sealed tube3217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scanθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.707, Tmax = 0.799k = 1312
5588 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.615P]
where P = (Fo2 + 2Fc2)/3
3815 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C11H8NO3)(C2H3O2)(C10H8N2)]γ = 88.03 (3)°
Mr = 498.97V = 1071.3 (5) Å3
Triclinic, P1Z = 2
a = 9.543 (2) ÅMo Kα radiation
b = 11.121 (2) ŵ = 1.07 mm1
c = 11.381 (2) ÅT = 298 K
α = 70.03 (3)°0.35 × 0.26 × 0.22 mm
β = 71.27 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3815 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3217 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.799Rint = 0.018
5588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
3815 reflectionsΔρmin = 0.29 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11865 (4)0.27261 (3)0.20437 (3)0.02973 (11)
O10.2694 (2)0.32890 (16)0.02845 (18)0.0357 (4)
O20.4718 (3)0.3200 (3)0.0881 (2)0.0671 (7)
O30.2324 (3)0.3238 (3)0.4737 (2)0.0694 (7)
O40.0535 (2)0.22122 (16)0.36609 (17)0.0357 (4)
O50.1717 (3)0.2636 (2)0.2207 (2)0.0624 (6)
N10.4365 (3)0.3819 (2)0.2305 (2)0.0394 (6)
N20.1132 (2)0.09355 (19)0.1985 (2)0.0319 (5)
N30.1123 (2)0.54349 (19)0.1965 (2)0.0295 (5)
C10.4073 (3)0.3444 (3)0.0058 (3)0.0391 (7)
C20.5017 (3)0.4057 (3)0.1394 (3)0.0452 (7)
H2A0.51560.49760.16080.054*
H2B0.59870.37260.15260.054*
C30.3660 (4)0.4747 (3)0.2956 (3)0.0499 (8)
H30.36530.55370.28440.060*
C40.2970 (4)0.4590 (3)0.3756 (3)0.0562 (9)
H40.25250.52770.41920.067*
C50.2900 (3)0.3401 (3)0.3956 (3)0.0474 (7)
C60.3541 (3)0.2366 (3)0.3155 (3)0.0395 (7)
C70.3422 (3)0.1112 (3)0.3155 (3)0.0494 (8)
H70.28860.09410.36420.059*
C80.4068 (4)0.0137 (3)0.2466 (3)0.0559 (9)
H80.39660.06890.24720.067*
C90.4884 (4)0.0404 (3)0.1749 (3)0.0559 (9)
H90.53640.02460.13040.067*
C100.4991 (3)0.1599 (3)0.1692 (3)0.0474 (7)
H100.55230.17510.11930.057*
C110.4307 (3)0.2601 (3)0.2377 (3)0.0377 (6)
C120.1719 (3)0.2234 (3)0.3354 (3)0.0393 (7)
C130.3133 (4)0.1725 (3)0.4495 (3)0.0604 (9)
H13A0.39630.18820.41750.091*
H13B0.32250.21500.51190.091*
H13C0.31170.08190.49190.091*
C140.0857 (3)0.0086 (2)0.3104 (3)0.0402 (7)
H140.07040.00560.38940.048*
C150.0791 (3)0.1324 (2)0.3141 (3)0.0399 (7)
H150.05850.19980.39460.048*
C160.1030 (3)0.1582 (2)0.1983 (2)0.0282 (5)
C170.1312 (3)0.0516 (2)0.0827 (3)0.0324 (6)
H170.14740.06310.00230.039*
C180.1352 (3)0.0702 (2)0.0862 (3)0.0345 (6)
H180.15390.13950.00740.041*
C190.1027 (3)0.2911 (2)0.1972 (2)0.0272 (5)
C200.0947 (3)0.3960 (2)0.3098 (3)0.0341 (6)
H200.08700.38330.38820.041*
C210.1165 (3)0.3182 (2)0.0836 (3)0.0370 (6)
H210.12190.25190.00530.044*
C220.1220 (3)0.4430 (2)0.0868 (3)0.0363 (6)
H220.13310.45840.00910.044*
C230.0982 (3)0.5181 (2)0.3063 (3)0.0346 (6)
H230.09030.58640.38380.041*
O1W0.2742 (3)0.2058 (2)0.3379 (2)0.0547 (6)
H1W0.271 (4)0.232 (3)0.399 (2)0.082*
H2W0.355 (2)0.232 (4)0.278 (2)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0389 (2)0.02133 (17)0.03041 (19)0.00295 (13)0.00988 (14)0.01232 (13)
O10.0385 (11)0.0323 (10)0.0359 (10)0.0001 (8)0.0065 (9)0.0165 (8)
O20.0590 (15)0.103 (2)0.0461 (14)0.0028 (14)0.0246 (12)0.0273 (13)
O30.0803 (18)0.0945 (19)0.0690 (16)0.0325 (15)0.0506 (15)0.0497 (15)
O40.0438 (11)0.0315 (10)0.0302 (10)0.0017 (8)0.0093 (9)0.0115 (8)
O50.0623 (15)0.0840 (17)0.0379 (13)0.0036 (13)0.0206 (12)0.0136 (12)
N10.0356 (13)0.0506 (14)0.0342 (13)0.0017 (11)0.0076 (11)0.0207 (11)
N20.0425 (13)0.0232 (11)0.0305 (12)0.0020 (10)0.0107 (10)0.0111 (9)
N30.0350 (12)0.0236 (10)0.0303 (12)0.0026 (9)0.0091 (10)0.0114 (9)
C10.0439 (17)0.0395 (15)0.0404 (16)0.0009 (13)0.0137 (14)0.0219 (13)
C20.0376 (16)0.0578 (19)0.0428 (17)0.0086 (14)0.0091 (14)0.0233 (15)
C30.056 (2)0.0464 (18)0.052 (2)0.0063 (16)0.0170 (17)0.0237 (15)
C40.064 (2)0.057 (2)0.059 (2)0.0206 (17)0.0325 (19)0.0248 (17)
C50.0435 (17)0.066 (2)0.0431 (17)0.0159 (15)0.0192 (15)0.0278 (16)
C60.0339 (15)0.0539 (18)0.0357 (15)0.0067 (13)0.0089 (13)0.0243 (14)
C70.0439 (18)0.065 (2)0.0473 (19)0.0033 (16)0.0119 (15)0.0328 (17)
C80.065 (2)0.0495 (19)0.052 (2)0.0059 (17)0.0100 (18)0.0242 (16)
C90.063 (2)0.053 (2)0.0460 (19)0.0169 (17)0.0156 (17)0.0135 (16)
C100.0442 (18)0.063 (2)0.0396 (17)0.0089 (15)0.0177 (15)0.0200 (15)
C110.0330 (15)0.0481 (16)0.0300 (14)0.0026 (13)0.0043 (12)0.0167 (13)
C120.0459 (17)0.0339 (15)0.0349 (16)0.0025 (13)0.0085 (13)0.0125 (12)
C130.051 (2)0.070 (2)0.051 (2)0.0039 (18)0.0039 (17)0.0207 (18)
C140.064 (2)0.0297 (14)0.0273 (14)0.0032 (13)0.0118 (14)0.0138 (12)
C150.067 (2)0.0244 (13)0.0267 (14)0.0032 (13)0.0134 (14)0.0086 (11)
C160.0316 (14)0.0248 (13)0.0306 (14)0.0030 (11)0.0109 (11)0.0121 (11)
C170.0465 (16)0.0278 (13)0.0275 (14)0.0048 (12)0.0149 (12)0.0127 (11)
C180.0491 (17)0.0243 (13)0.0302 (14)0.0019 (12)0.0152 (13)0.0074 (11)
C190.0307 (14)0.0231 (12)0.0290 (14)0.0035 (10)0.0099 (11)0.0104 (10)
C200.0492 (17)0.0281 (13)0.0265 (14)0.0058 (12)0.0106 (12)0.0132 (11)
C210.0605 (19)0.0248 (13)0.0293 (14)0.0065 (13)0.0207 (14)0.0084 (11)
C220.0569 (18)0.0272 (13)0.0325 (15)0.0066 (13)0.0206 (14)0.0146 (11)
C230.0470 (16)0.0246 (13)0.0270 (14)0.0046 (12)0.0074 (12)0.0075 (11)
O1W0.0623 (15)0.0609 (14)0.0543 (14)0.0106 (12)0.0273 (12)0.0295 (12)
Geometric parameters (Å, º) top
Cu1—O41.954 (2)C7—H70.9300
Cu1—O11.956 (2)C8—C91.396 (5)
Cu1—N3i2.016 (2)C8—H80.9300
Cu1—N22.018 (2)C9—C101.362 (4)
Cu1—O1W2.381 (2)C9—H90.9300
Cu1—O52.720 (2)C10—C111.399 (4)
O1—C11.263 (3)C10—H100.9300
O2—C11.231 (3)C12—C131.501 (4)
O3—C51.247 (3)C13—H13A0.9600
O4—C121.282 (3)C13—H13B0.9600
O5—C121.226 (3)C13—H13C0.9600
N1—C31.347 (4)C14—C151.366 (3)
N1—C111.389 (3)C14—H140.9300
N1—C21.464 (3)C15—C161.391 (3)
N2—C181.340 (3)C15—H150.9300
N2—C141.341 (3)C16—C171.392 (3)
N3—C231.338 (3)C16—C191.482 (3)
N3—C221.340 (3)C17—C181.371 (3)
N3—Cu1ii2.016 (2)C17—H170.9300
C1—C21.524 (4)C18—H180.9300
C2—H2A0.9700C19—C201.390 (3)
C2—H2B0.9700C19—C211.391 (3)
C3—C41.340 (4)C20—C231.371 (3)
C3—H30.9300C20—H200.9300
C4—C51.424 (4)C21—C221.376 (3)
C4—H40.9300C21—H210.9300
C5—C61.457 (4)C22—H220.9300
C6—C71.404 (4)C23—H230.9300
C6—C111.405 (4)O1W—H1W0.830 (10)
C7—C81.361 (4)O1W—H2W0.827 (10)
O4—Cu1—O1171.44 (8)C8—C9—H9119.4
O4—Cu1—N3i90.50 (9)C9—C10—C11120.6 (3)
O1—Cu1—N3i89.24 (9)C9—C10—H10119.7
O4—Cu1—N290.29 (9)C11—C10—H10119.7
O1—Cu1—N289.09 (9)N1—C11—C10121.7 (3)
N3i—Cu1—N2173.97 (8)N1—C11—C6119.2 (3)
O4—Cu1—O1W88.68 (8)C10—C11—C6119.1 (3)
O1—Cu1—O1W99.84 (8)O5—C12—O4123.0 (3)
N3i—Cu1—O1W97.50 (8)O5—C12—C13121.2 (3)
N2—Cu1—O1W88.49 (9)O4—C12—C13115.8 (3)
C1—O1—Cu1125.00 (18)C12—C13—H13A109.5
C12—O4—Cu1109.13 (16)C12—C13—H13B109.5
C3—N1—C11119.7 (2)H13A—C13—H13B109.5
C3—N1—C2119.5 (2)C12—C13—H13C109.5
C11—N1—C2120.4 (2)H13A—C13—H13C109.5
C18—N2—C14117.0 (2)H13B—C13—H13C109.5
C18—N2—Cu1122.92 (17)N2—C14—C15123.3 (2)
C14—N2—Cu1120.03 (17)N2—C14—H14118.4
C23—N3—C22117.0 (2)C15—C14—H14118.4
C23—N3—Cu1ii119.02 (17)C14—C15—C16120.4 (2)
C22—N3—Cu1ii124.00 (17)C14—C15—H15119.8
O2—C1—O1127.0 (3)C16—C15—H15119.8
O2—C1—C2117.2 (3)C15—C16—C17115.9 (2)
O1—C1—C2115.7 (2)C15—C16—C19122.1 (2)
N1—C2—C1113.5 (2)C17—C16—C19121.9 (2)
N1—C2—H2A108.9C18—C17—C16120.7 (2)
C1—C2—H2A108.9C18—C17—H17119.7
N1—C2—H2B108.9C16—C17—H17119.7
C1—C2—H2B108.9N2—C18—C17122.7 (2)
H2A—C2—H2B107.7N2—C18—H18118.6
C4—C3—N1123.5 (3)C17—C18—H18118.6
C4—C3—H3118.3C20—C19—C21116.1 (2)
N1—C3—H3118.3C20—C19—C16121.3 (2)
C3—C4—C5121.8 (3)C21—C19—C16122.6 (2)
C3—C4—H4119.1C23—C20—C19120.5 (2)
C5—C4—H4119.1C23—C20—H20119.7
O3—C5—C4123.5 (3)C19—C20—H20119.7
O3—C5—C6122.0 (3)C22—C21—C19120.1 (2)
C4—C5—C6114.5 (3)C22—C21—H21119.9
C7—C6—C11118.4 (3)C19—C21—H21119.9
C7—C6—C5120.7 (3)N3—C22—C21123.2 (2)
C11—C6—C5120.9 (3)N3—C22—H22118.4
C8—C7—C6122.1 (3)C21—C22—H22118.4
C8—C7—H7119.0N3—C23—C20123.1 (2)
C6—C7—H7119.0N3—C23—H23118.5
C7—C8—C9118.6 (3)C20—C23—H23118.5
C7—C8—H8120.7Cu1—O1W—H1W124 (3)
C9—C8—H8120.7Cu1—O1W—H2W97 (3)
C10—C9—C8121.2 (3)H1W—O1W—H2W109.3 (17)
C10—C9—H9119.4
N3i—Cu1—O1—C185.9 (2)C3—N1—C11—C61.5 (4)
N2—Cu1—O1—C199.9 (2)C2—N1—C11—C6173.5 (3)
O1W—Cu1—O1—C111.6 (2)C9—C10—C11—N1178.2 (3)
N3i—Cu1—O4—C1292.99 (17)C9—C10—C11—C61.7 (4)
N2—Cu1—O4—C1281.03 (17)C7—C6—C11—N1176.4 (2)
O1W—Cu1—O4—C12169.51 (17)C5—C6—C11—N14.3 (4)
O4—Cu1—N2—C18138.5 (2)C7—C6—C11—C103.5 (4)
O1—Cu1—N2—C1833.0 (2)C5—C6—C11—C10175.8 (3)
O1W—Cu1—N2—C18132.8 (2)Cu1—O4—C12—O56.1 (3)
O4—Cu1—N2—C1441.1 (2)Cu1—O4—C12—C13173.6 (2)
O1—Cu1—N2—C14147.5 (2)C18—N2—C14—C150.1 (4)
O1W—Cu1—N2—C1447.6 (2)Cu1—N2—C14—C15179.4 (2)
Cu1—O1—C1—O24.8 (4)N2—C14—C15—C160.7 (5)
Cu1—O1—C1—C2172.18 (17)C14—C15—C16—C170.8 (4)
C3—N1—C2—C1101.4 (3)C14—C15—C16—C19177.5 (3)
C11—N1—C2—C170.6 (3)C15—C16—C17—C180.3 (4)
O2—C1—C2—N1155.2 (3)C19—C16—C17—C18178.0 (2)
O1—C1—C2—N127.5 (4)C14—N2—C18—C170.4 (4)
C11—N1—C3—C44.6 (5)Cu1—N2—C18—C17179.9 (2)
C2—N1—C3—C4176.6 (3)C16—C17—C18—N20.2 (4)
N1—C3—C4—C51.5 (6)C15—C16—C19—C207.2 (4)
C3—C4—C5—O3176.7 (3)C17—C16—C19—C20171.1 (3)
C3—C4—C5—C64.1 (5)C15—C16—C19—C21175.5 (3)
O3—C5—C6—C75.3 (5)C17—C16—C19—C216.2 (4)
C4—C5—C6—C7173.8 (3)C21—C19—C20—C231.0 (4)
O3—C5—C6—C11174.0 (3)C16—C19—C20—C23178.4 (2)
C4—C5—C6—C116.9 (4)C20—C19—C21—C220.3 (4)
C11—C6—C7—C82.4 (4)C16—C19—C21—C22177.2 (3)
C5—C6—C7—C8176.9 (3)C23—N3—C22—C210.7 (4)
C6—C7—C8—C90.7 (5)Cu1ii—N3—C22—C21179.5 (2)
C7—C8—C9—C102.6 (5)C19—C21—C22—N31.1 (4)
C8—C9—C10—C111.4 (5)C22—N3—C23—C200.6 (4)
C3—N1—C11—C10178.4 (3)Cu1ii—N3—C23—C20179.2 (2)
C2—N1—C11—C106.5 (4)C19—C20—C23—N31.5 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3iii0.83 (1)1.98 (1)2.795 (3)166 (3)
O1W—H2W···O20.83 (1)1.99 (2)2.740 (4)151 (2)
Symmetry code: (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C11H8NO3)(C2H3O2)(C10H8N2)]
Mr498.97
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.543 (2), 11.121 (2), 11.381 (2)
α, β, γ (°)70.03 (3), 71.27 (3), 88.03 (3)
V3)1071.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.35 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.707, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
5588, 3815, 3217
Rint0.018
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.03
No. of reflections3815
No. of parameters305
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3i0.830 (10)1.983 (13)2.795 (3)166 (3)
O1W—H2W···O20.827 (10)1.988 (19)2.740 (4)151 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The work was supported by Zhongshan Polytechnic.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Fan, J., Guo, L. Y., Yin, X., Wang, Z. H. & Zhang, W. G. (2010). Inorg. Chem. Commun. 13, 322–325.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds