organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3,5-Bis(4-meth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4,6-bis­­(4-meth­­oxy­phen­yl)pyrimidine

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 1 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title compound, C35H32N4O4, the pyrazole ring forms a dihedral angle of 15.04 (8)° with the adjacent pyrimidine ring. The pyrimidine ring forms dihedral angles of 9.95 (8) and 1.86 (7)° with its adjacent meth­oxy-substituted benzene rings, whereas the equivalent angles are 80.24 (9) and 11.55 (9)° for the pyrazole ring and its adjacent benzene rings. The crystal packing features ππ inter­actions, the centroid–centroid distance between the pyrimidine and methoxyphenyl rings being 3.604 (1) Å. The pyrazole ring is nearly planar, with a maximum deviation of 0.020 (3) Å for the –CH2– carbon.

Related literature

For biological importance of substituted pyrimidines, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Baktır et al. (2011[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262-o1263.]); Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Pharm. Chem. 3, 232-240.]); Betz et al. (2012[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o476-o477.]). For related literature on substituted pyrimidines and their derivatives, see: Calabresi et al. (1975[Calabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.]); El-Hashash et al. (1993[El-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect. B, 32, 449-451.]); Fun et al. (2012[Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o807-o808.]).

[Scheme 1]

Experimental

Crystal data
  • C35H32N4O4

  • Mr = 572.65

  • Monoclinic, P 21 /n

  • a = 21.637 (2) Å

  • b = 5.9532 (4) Å

  • c = 24.749 (2) Å

  • β = 109.519 (10)°

  • V = 3004.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.887, Tmax = 1.000

  • 12486 measured reflections

  • 5824 independent reflections

  • 3423 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.05

  • 5824 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known. Some substituted pyrimidines and their derivatives have been reported to possess antimicrobial and antifungal activities (El-Hashash et al., 1993). It has incidental antiviral activity against herpes and vaccinia infections (Calabresi et al., 1975). With the development of clinically useful pyrimidine based antitumor and antiviral drugs there has been noticeable interest in synthetic manipulations of pyrimidines. In view of the biological importance of pyrimidines and in continuation of work on synthesis of various derivatives of chalcone (Samshuddin et al., 2011; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011; Betz et al., 2012), the title compound is prepared and its crystal structure is reported.

The molecule comprises of the pyrimidine ring, pyrazole ring, and four methoxy substituted benzene rings. All bond lengths and angles are normal and correspond to those observed in related structure (Fun et al., 2012). The six bond lengths in the pyrimidine ring lie in the range 1.337 (2)–1.396 (3) Å. The pyrimidine ring and pyrazole ring are individually planar with maximum deviations from the respective least-squares planes of: 0.010 (2) Å for C1 and 0.021 (3) Å for C26. Three intramolecular interactions C8—H8···N2, C20—H20···N6 and C41—H41···N24 are observed which lock the molecular conformation and thus eliminating conformational flexibility (Fig. 1). The pyrazole ring forms a dihedral angle of 15.04 (8)° with the adjacent pyrimidine ring (maximum deviation = -0.0176 (2) Å at atom C27). The pyrimidine ring forms dihedral angles of 9.95 (8) and 1.86 (7)° with its adjacent methoxy-substituted benzene rings (C15···C20 & C7···C12, respectively), whereas for pyrazole ring these angles are 80.24 (9) and 11.55 (9)° (C28···C33 & C36···C41, respectively). Molecules in the crystal are packed together to form layers, which appear to be extending diagonally along the ac plane (Fig. 2). Examination of non-bonded contacts reveals no classical intermolecular hydrogen bonds. The crystal structure is stabilized by ππ interaction between the pyrimidine ring of the molecule at (x, y, z) and benzene ring (C7···C12) at (1 - x, -y, 1 - z) [centroid separation = 3.604 (1) Å, interplanar spacing = 3.45 Å and centroid shift = 1.06 Å].

Related literature top

For the synthesis of different derivatives of chalcones, see: Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011); Samshuddin et al. (2011); Betz et al. (2012). For related literature, see: Calabresi et al. (1975); El-Hashash et al. (1993); Fun et al. (2012).

Experimental top

A mixture of 4,4'-dimethoxy chalcone (2.68 g, 0.01 mol) and amino guanidine hydrochloride (0.065 g, 0.005 mol) in 25 ml e thanol was refluxed for 24 hrs in the presence of sodium ethoxide (2 ml). The reaction mixture was cooled to room temperature and refrigerated overnight. The solid product obtained was filtered and recrystallized from ethanol, affording a yellow powder. Single crystals were grown from DMF by slow evaporation method and the yield of the compound was 64% (m.p. 502 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known. Some substituted pyrimidines and their derivatives have been reported to possess antimicrobial and antifungal activities (El-Hashash et al., 1993). It has incidental antiviral activity against herpes and vaccinia infections (Calabresi et al., 1975). With the development of clinically useful pyrimidine based antitumor and antiviral drugs there has been noticeable interest in synthetic manipulations of pyrimidines. In view of the biological importance of pyrimidines and in continuation of work on synthesis of various derivatives of chalcone (Samshuddin et al., 2011; Fun et al., 2010; Jasinski et al., 2010; Baktır et al., 2011; Betz et al., 2012), the title compound is prepared and its crystal structure is reported.

The molecule comprises of the pyrimidine ring, pyrazole ring, and four methoxy substituted benzene rings. All bond lengths and angles are normal and correspond to those observed in related structure (Fun et al., 2012). The six bond lengths in the pyrimidine ring lie in the range 1.337 (2)–1.396 (3) Å. The pyrimidine ring and pyrazole ring are individually planar with maximum deviations from the respective least-squares planes of: 0.010 (2) Å for C1 and 0.021 (3) Å for C26. Three intramolecular interactions C8—H8···N2, C20—H20···N6 and C41—H41···N24 are observed which lock the molecular conformation and thus eliminating conformational flexibility (Fig. 1). The pyrazole ring forms a dihedral angle of 15.04 (8)° with the adjacent pyrimidine ring (maximum deviation = -0.0176 (2) Å at atom C27). The pyrimidine ring forms dihedral angles of 9.95 (8) and 1.86 (7)° with its adjacent methoxy-substituted benzene rings (C15···C20 & C7···C12, respectively), whereas for pyrazole ring these angles are 80.24 (9) and 11.55 (9)° (C28···C33 & C36···C41, respectively). Molecules in the crystal are packed together to form layers, which appear to be extending diagonally along the ac plane (Fig. 2). Examination of non-bonded contacts reveals no classical intermolecular hydrogen bonds. The crystal structure is stabilized by ππ interaction between the pyrimidine ring of the molecule at (x, y, z) and benzene ring (C7···C12) at (1 - x, -y, 1 - z) [centroid separation = 3.604 (1) Å, interplanar spacing = 3.45 Å and centroid shift = 1.06 Å].

For the synthesis of different derivatives of chalcones, see: Fun et al. (2010); Jasinski et al. (2010); Baktır et al. (2011); Samshuddin et al. (2011); Betz et al. (2012). For related literature, see: Calabresi et al. (1975); El-Hashash et al. (1993); Fun et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with thermal ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the b-axis.
2-[3,5-Bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]- 4,6-bis(4-methoxyphenyl)pyrimidine top
Crystal data top
C35H32N4O4F(000) = 1208
Mr = 572.65Dx = 1.266 Mg m3
Monoclinic, P21/nMelting point: 502 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 21.637 (2) ÅCell parameters from 4664 reflections
b = 5.9532 (4) Åθ = 3.1–32.2°
c = 24.749 (2) ŵ = 0.08 mm1
β = 109.519 (10)°T = 293 K
V = 3004.7 (5) Å3Needle, white
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
5824 independent reflections
Radiation source: fine-focus sealed tube3423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scanh = 2622
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 77
Tmin = 0.887, Tmax = 1.000l = 3029
12486 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0751P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5824 reflectionsΔρmax = 0.16 e Å3
393 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0036 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C35H32N4O4V = 3004.7 (5) Å3
Mr = 572.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 21.637 (2) ŵ = 0.08 mm1
b = 5.9532 (4) ÅT = 293 K
c = 24.749 (2) Å0.3 × 0.2 × 0.2 mm
β = 109.519 (10)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
5824 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3423 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.028
12486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
5824 reflectionsΔρmin = 0.15 e Å3
393 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.94094 (10)0.2692 (3)0.65771 (9)0.0460 (5)
N20.97976 (8)0.4493 (3)0.66528 (7)0.0468 (4)
C30.97863 (9)0.5581 (3)0.61747 (8)0.0435 (5)
C40.93798 (10)0.4855 (3)0.56368 (9)0.0501 (5)
H40.93720.56130.53060.060*
C50.89887 (9)0.2986 (3)0.56049 (8)0.0443 (5)
N60.89964 (8)0.1872 (3)0.60806 (7)0.0475 (4)
C71.02191 (9)0.7565 (3)0.62675 (8)0.0440 (5)
C81.05920 (11)0.8194 (4)0.68218 (9)0.0607 (6)
H81.05670.73290.71270.073*
C91.09970 (12)1.0049 (4)0.69371 (9)0.0619 (6)
H91.12341.04280.73140.074*
C101.10489 (10)1.1338 (3)0.64922 (9)0.0486 (5)
C111.06833 (11)1.0755 (4)0.59376 (9)0.0590 (6)
H111.07101.16260.56340.071*
C121.02815 (10)0.8910 (3)0.58281 (9)0.0547 (6)
H121.00440.85460.54500.066*
O131.14306 (8)1.3213 (3)0.65618 (6)0.0673 (5)
C141.17755 (15)1.3895 (5)0.71345 (11)0.0891 (9)
H14A1.14751.40020.73440.134*
H14B1.19751.53330.71310.134*
H14C1.21091.28100.73150.134*
C150.85339 (10)0.2065 (3)0.50591 (8)0.0467 (5)
C160.83848 (11)0.3217 (4)0.45394 (9)0.0578 (6)
H160.85890.45830.45270.069*
C170.79427 (12)0.2366 (4)0.40474 (10)0.0656 (7)
H170.78520.31630.37070.079*
C180.76293 (11)0.0351 (4)0.40476 (9)0.0565 (6)
C190.77751 (12)0.0839 (4)0.45515 (10)0.0634 (6)
H190.75740.22150.45580.076*
C200.82231 (11)0.0022 (3)0.50497 (9)0.0589 (6)
H200.83180.07960.53880.071*
O210.71861 (9)0.0292 (3)0.35312 (7)0.0772 (5)
C220.68206 (15)0.2275 (5)0.35211 (12)0.0921 (9)
H22A0.71130.35380.36220.138*
H22B0.65110.24910.31430.138*
H22C0.65910.21400.37910.138*
N230.94146 (8)0.1510 (3)0.70559 (7)0.0532 (5)
C270.90703 (10)0.0654 (3)0.70347 (8)0.0497 (5)
H270.91610.16460.67540.060*
C260.94213 (11)0.1561 (4)0.76440 (9)0.0589 (6)
H26A0.91120.18430.78440.071*
H26B0.96580.29360.76330.071*
C250.98826 (10)0.0304 (3)0.79219 (9)0.0512 (5)
N240.98766 (9)0.1968 (3)0.75857 (7)0.0516 (4)
C280.83408 (10)0.0386 (3)0.68865 (8)0.0466 (5)
C290.79248 (11)0.1969 (4)0.65509 (10)0.0594 (6)
H290.80990.31490.64020.071*
C300.72521 (12)0.1855 (4)0.64285 (10)0.0668 (7)
H300.69800.29460.62000.080*
C310.69907 (11)0.0116 (4)0.66471 (9)0.0562 (6)
C320.73989 (12)0.1499 (4)0.69814 (9)0.0603 (6)
H320.72230.26850.71270.072*
C330.80649 (11)0.1356 (3)0.70990 (9)0.0550 (6)
H330.83360.24520.73260.066*
O340.63314 (8)0.0149 (3)0.65443 (8)0.0832 (6)
C350.59055 (14)0.1475 (6)0.61983 (16)0.1181 (12)
H35A0.58950.13170.58090.177*
H35B0.54720.12640.62150.177*
H35C0.60590.29500.63350.177*
C361.03203 (11)0.0316 (3)0.85193 (9)0.0538 (6)
C371.02482 (14)0.1251 (5)0.89076 (11)0.0897 (9)
H370.99250.23460.87860.108*
C381.06520 (16)0.1204 (5)0.94740 (11)0.1114 (13)
H381.05940.22620.97290.134*
C391.11359 (13)0.0376 (4)0.96645 (10)0.0758 (7)
C401.12168 (12)0.1934 (4)0.92856 (10)0.0691 (7)
H401.15450.30140.94090.083*
C411.08110 (12)0.1895 (4)0.87217 (10)0.0639 (6)
H411.08700.29660.84700.077*
O421.15190 (11)0.0266 (4)1.02335 (8)0.1112 (8)
C431.20421 (18)0.1810 (5)1.04362 (12)0.1177 (13)
H43A1.23420.16081.02290.177*
H43B1.22670.15571.08370.177*
H43C1.18730.33141.03800.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (12)0.0489 (11)0.0462 (12)0.0054 (10)0.0206 (10)0.0098 (9)
N20.0513 (10)0.0458 (9)0.0446 (10)0.0002 (8)0.0177 (8)0.0078 (8)
C30.0433 (11)0.0430 (11)0.0447 (12)0.0081 (9)0.0155 (9)0.0088 (9)
C40.0552 (13)0.0519 (12)0.0435 (12)0.0034 (10)0.0169 (10)0.0124 (9)
C50.0438 (12)0.0453 (11)0.0441 (12)0.0104 (9)0.0149 (9)0.0071 (9)
N60.0482 (10)0.0526 (9)0.0419 (10)0.0018 (8)0.0155 (8)0.0061 (8)
C70.0402 (11)0.0468 (11)0.0455 (12)0.0065 (9)0.0150 (9)0.0073 (9)
C80.0665 (15)0.0661 (14)0.0468 (13)0.0097 (12)0.0153 (11)0.0152 (11)
C90.0662 (15)0.0674 (14)0.0475 (13)0.0134 (12)0.0127 (11)0.0052 (11)
C100.0464 (12)0.0481 (12)0.0526 (13)0.0012 (9)0.0182 (10)0.0058 (10)
C110.0711 (15)0.0593 (13)0.0480 (13)0.0093 (12)0.0218 (11)0.0112 (10)
C120.0629 (14)0.0584 (13)0.0411 (12)0.0061 (11)0.0152 (10)0.0063 (10)
O130.0763 (11)0.0639 (10)0.0612 (10)0.0188 (8)0.0222 (9)0.0029 (7)
C140.104 (2)0.0834 (17)0.0679 (18)0.0364 (16)0.0122 (16)0.0077 (14)
C150.0478 (12)0.0482 (11)0.0442 (12)0.0069 (10)0.0155 (10)0.0061 (9)
C160.0634 (14)0.0560 (12)0.0500 (13)0.0029 (11)0.0134 (11)0.0090 (11)
C170.0752 (16)0.0707 (15)0.0461 (14)0.0014 (13)0.0137 (12)0.0164 (11)
C180.0568 (14)0.0633 (14)0.0434 (13)0.0049 (11)0.0089 (11)0.0014 (10)
C190.0789 (17)0.0503 (12)0.0550 (14)0.0058 (12)0.0145 (12)0.0029 (11)
C200.0714 (16)0.0534 (12)0.0470 (13)0.0014 (11)0.0134 (11)0.0087 (10)
O210.0823 (12)0.0822 (11)0.0512 (10)0.0099 (10)0.0010 (9)0.0016 (8)
C220.105 (2)0.0825 (19)0.0681 (18)0.0162 (17)0.0016 (16)0.0098 (14)
N230.0575 (11)0.0594 (10)0.0409 (10)0.0143 (9)0.0140 (9)0.0064 (8)
C270.0565 (13)0.0490 (12)0.0466 (12)0.0042 (10)0.0212 (10)0.0023 (9)
C260.0574 (14)0.0606 (13)0.0562 (14)0.0063 (11)0.0155 (11)0.0113 (11)
C250.0530 (13)0.0541 (12)0.0490 (13)0.0014 (10)0.0204 (10)0.0089 (10)
N240.0581 (11)0.0560 (10)0.0401 (10)0.0057 (9)0.0158 (8)0.0038 (8)
C280.0556 (13)0.0496 (11)0.0373 (11)0.0038 (10)0.0191 (10)0.0021 (9)
C290.0582 (15)0.0548 (12)0.0684 (15)0.0033 (11)0.0252 (12)0.0180 (11)
C300.0598 (15)0.0649 (14)0.0764 (17)0.0112 (12)0.0236 (13)0.0224 (12)
C310.0538 (14)0.0636 (13)0.0544 (13)0.0031 (11)0.0223 (11)0.0043 (11)
C320.0676 (16)0.0597 (13)0.0557 (14)0.0069 (12)0.0234 (12)0.0110 (11)
C330.0622 (15)0.0533 (12)0.0472 (13)0.0055 (11)0.0153 (11)0.0088 (10)
O340.0555 (11)0.0960 (13)0.0997 (14)0.0022 (9)0.0278 (10)0.0225 (10)
C350.0585 (18)0.125 (3)0.166 (3)0.0159 (18)0.032 (2)0.044 (2)
C360.0547 (13)0.0593 (13)0.0459 (13)0.0015 (11)0.0149 (10)0.0080 (10)
C370.092 (2)0.0934 (19)0.0640 (17)0.0369 (16)0.0006 (15)0.0306 (14)
C380.122 (3)0.125 (2)0.0598 (18)0.052 (2)0.0063 (18)0.0448 (17)
C390.0825 (19)0.0872 (17)0.0469 (14)0.0161 (15)0.0075 (13)0.0133 (13)
C400.0721 (16)0.0742 (15)0.0548 (15)0.0168 (13)0.0128 (12)0.0081 (12)
C410.0732 (16)0.0665 (14)0.0499 (14)0.0136 (13)0.0177 (12)0.0128 (11)
O420.1200 (17)0.1355 (17)0.0529 (11)0.0441 (14)0.0047 (11)0.0269 (11)
C430.137 (3)0.123 (2)0.0618 (19)0.050 (2)0.0081 (19)0.0032 (17)
Geometric parameters (Å, º) top
C1—N21.337 (2)N23—N241.385 (2)
C1—N61.347 (2)N23—C271.480 (2)
C1—N231.375 (2)C27—C281.505 (3)
N2—C31.342 (2)C27—C261.542 (3)
C3—C41.396 (3)C27—H270.9800
C3—C71.477 (3)C26—C251.498 (3)
C4—C51.384 (3)C26—H26A0.9700
C4—H40.9300C26—H26B0.9700
C5—N61.346 (2)C25—N241.291 (2)
C5—C151.485 (3)C25—C361.465 (3)
C7—C81.390 (3)C28—C291.374 (3)
C7—C121.393 (3)C28—C331.385 (3)
C8—C91.379 (3)C29—C301.386 (3)
C8—H80.9300C29—H290.9300
C9—C101.377 (3)C30—C311.374 (3)
C9—H90.9300C30—H300.9300
C10—O131.364 (2)C31—O341.372 (3)
C10—C111.380 (3)C31—C321.379 (3)
C11—C121.371 (3)C32—C331.374 (3)
C11—H110.9300C32—H320.9300
C12—H120.9300C33—H330.9300
O13—C141.423 (3)O34—C351.411 (3)
C14—H14A0.9600C35—H35A0.9600
C14—H14B0.9600C35—H35B0.9600
C14—H14C0.9600C35—H35C0.9600
C15—C201.386 (3)C36—C411.381 (3)
C15—C161.397 (3)C36—C371.385 (3)
C16—C171.370 (3)C37—C381.382 (3)
C16—H160.9300C37—H370.9300
C17—C181.378 (3)C38—C391.369 (4)
C17—H170.9300C38—H380.9300
C18—O211.372 (2)C39—C401.371 (3)
C18—C191.376 (3)C39—O421.376 (3)
C19—C201.387 (3)C40—C411.379 (3)
C19—H190.9300C40—H400.9300
C20—H200.9300C41—H410.9300
O21—C221.416 (3)O42—C431.414 (3)
C22—H22A0.9600C43—H43A0.9600
C22—H22B0.9600C43—H43B0.9600
C22—H22C0.9600C43—H43C0.9600
N2—C1—N6127.81 (18)N23—C27—C28113.01 (16)
N2—C1—N23117.79 (18)N23—C27—C26101.11 (15)
N6—C1—N23114.39 (17)C28—C27—C26114.17 (17)
C1—N2—C3115.99 (17)N23—C27—H27109.4
N2—C3—C4120.76 (18)C28—C27—H27109.4
N2—C3—C7115.14 (17)C26—C27—H27109.4
C4—C3—C7124.09 (17)C25—C26—C27102.96 (16)
C5—C4—C3118.79 (18)C25—C26—H26A111.2
C5—C4—H4120.6C27—C26—H26A111.2
C3—C4—H4120.6C25—C26—H26B111.2
N6—C5—C4121.15 (18)C27—C26—H26B111.2
N6—C5—C15115.10 (18)H26A—C26—H26B109.1
C4—C5—C15123.74 (18)N24—C25—C36120.68 (19)
C5—N6—C1115.48 (17)N24—C25—C26114.29 (18)
C8—C7—C12116.12 (19)C36—C25—C26125.03 (18)
C8—C7—C3119.82 (18)C25—N24—N23107.92 (17)
C12—C7—C3124.06 (18)C29—C28—C33117.68 (19)
C9—C8—C7122.6 (2)C29—C28—C27119.77 (18)
C9—C8—H8118.7C33—C28—C27122.47 (18)
C7—C8—H8118.7C28—C29—C30121.8 (2)
C10—C9—C8119.8 (2)C28—C29—H29119.1
C10—C9—H9120.1C30—C29—H29119.1
C8—C9—H9120.1C31—C30—C29119.4 (2)
O13—C10—C9124.22 (19)C31—C30—H30120.3
O13—C10—C11116.93 (18)C29—C30—H30120.3
C9—C10—C11118.8 (2)O34—C31—C30123.6 (2)
C12—C11—C10120.9 (2)O34—C31—C32116.7 (2)
C12—C11—H11119.6C30—C31—C32119.7 (2)
C10—C11—H11119.6C33—C32—C31120.0 (2)
C11—C12—C7121.8 (2)C33—C32—H32120.0
C11—C12—H12119.1C31—C32—H32120.0
C7—C12—H12119.1C32—C33—C28121.36 (19)
C10—O13—C14116.95 (18)C32—C33—H33119.3
O13—C14—H14A109.5C28—C33—H33119.3
O13—C14—H14B109.5C31—O34—C35117.50 (19)
H14A—C14—H14B109.5O34—C35—H35A109.5
O13—C14—H14C109.5O34—C35—H35B109.5
H14A—C14—H14C109.5H35A—C35—H35B109.5
H14B—C14—H14C109.5O34—C35—H35C109.5
C20—C15—C16117.00 (19)H35A—C35—H35C109.5
C20—C15—C5120.63 (18)H35B—C35—H35C109.5
C16—C15—C5122.34 (18)C41—C36—C37117.3 (2)
C17—C16—C15121.0 (2)C41—C36—C25121.93 (19)
C17—C16—H16119.5C37—C36—C25120.8 (2)
C15—C16—H16119.5C38—C37—C36120.7 (2)
C16—C17—C18121.3 (2)C38—C37—H37119.6
C16—C17—H17119.4C36—C37—H37119.6
C18—C17—H17119.4C39—C38—C37121.0 (2)
O21—C18—C19125.3 (2)C39—C38—H38119.5
O21—C18—C17115.70 (19)C37—C38—H38119.5
C19—C18—C17119.0 (2)C38—C39—C40119.2 (2)
C18—C19—C20119.7 (2)C38—C39—O42116.7 (2)
C18—C19—H19120.1C40—C39—O42124.1 (2)
C20—C19—H19120.1C39—C40—C41119.8 (2)
C15—C20—C19122.0 (2)C39—C40—H40120.1
C15—C20—H20119.0C41—C40—H40120.1
C19—C20—H20119.0C40—C41—C36122.1 (2)
C18—O21—C22117.49 (18)C40—C41—H41119.0
O21—C22—H22A109.5C36—C41—H41119.0
O21—C22—H22B109.5C39—O42—C43118.0 (2)
H22A—C22—H22B109.5O42—C43—H43A109.5
O21—C22—H22C109.5O42—C43—H43B109.5
H22A—C22—H22C109.5H43A—C43—H43B109.5
H22B—C22—H22C109.5O42—C43—H43C109.5
C1—N23—N24120.71 (17)H43A—C43—H43C109.5
C1—N23—C27123.77 (16)H43B—C43—H43C109.5
N24—N23—C27113.61 (14)
N6—C1—N2—C31.9 (3)N2—C1—N23—C27172.80 (17)
N23—C1—N2—C3179.00 (17)N6—C1—N23—C278.0 (3)
C1—N2—C3—C41.0 (3)C1—N23—C27—C2875.8 (2)
C1—N2—C3—C7179.94 (16)N24—N23—C27—C28119.86 (18)
N2—C3—C4—C50.1 (3)C1—N23—C27—C26161.72 (19)
C7—C3—C4—C5179.10 (17)N24—N23—C27—C262.6 (2)
C3—C4—C5—N60.1 (3)N23—C27—C26—C253.1 (2)
C3—C4—C5—C15179.57 (18)C28—C27—C26—C25118.58 (19)
C4—C5—N6—C10.5 (3)C27—C26—C25—N243.1 (3)
C15—C5—N6—C1179.76 (16)C27—C26—C25—C36177.7 (2)
N2—C1—N6—C51.6 (3)C36—C25—N24—N23179.24 (18)
N23—C1—N6—C5179.23 (17)C26—C25—N24—N231.5 (3)
N2—C3—C7—C80.9 (3)C1—N23—N24—C25164.00 (19)
C4—C3—C7—C8178.11 (19)C27—N23—N24—C250.8 (2)
N2—C3—C7—C12179.56 (19)N23—C27—C28—C29143.75 (19)
C4—C3—C7—C121.4 (3)C26—C27—C28—C29101.4 (2)
C12—C7—C8—C90.7 (3)N23—C27—C28—C3339.5 (3)
C3—C7—C8—C9178.9 (2)C26—C27—C28—C3375.3 (2)
C7—C8—C9—C100.9 (4)C33—C28—C29—C300.4 (3)
C8—C9—C10—O13179.4 (2)C27—C28—C29—C30176.5 (2)
C8—C9—C10—C111.0 (3)C28—C29—C30—C310.0 (4)
O13—C10—C11—C12179.4 (2)C29—C30—C31—O34179.3 (2)
C9—C10—C11—C120.9 (3)C29—C30—C31—C320.4 (4)
C10—C11—C12—C70.7 (3)O34—C31—C32—C33179.5 (2)
C8—C7—C12—C110.5 (3)C30—C31—C32—C330.5 (3)
C3—C7—C12—C11179.02 (19)C31—C32—C33—C280.2 (3)
C9—C10—O13—C142.3 (3)C29—C28—C33—C320.3 (3)
C11—C10—O13—C14176.2 (2)C27—C28—C33—C32176.56 (19)
N6—C5—C15—C209.0 (3)C30—C31—O34—C350.5 (4)
C4—C5—C15—C20171.3 (2)C32—C31—O34—C35179.4 (3)
N6—C5—C15—C16169.18 (19)N24—C25—C36—C4110.5 (3)
C4—C5—C15—C1610.5 (3)C26—C25—C36—C41168.6 (2)
C20—C15—C16—C171.0 (3)N24—C25—C36—C37168.4 (2)
C5—C15—C16—C17177.3 (2)C26—C25—C36—C3712.5 (3)
C15—C16—C17—C180.1 (4)C41—C36—C37—C380.4 (4)
C16—C17—C18—O21178.4 (2)C25—C36—C37—C38178.5 (3)
C16—C17—C18—C191.2 (4)C36—C37—C38—C390.5 (5)
O21—C18—C19—C20178.5 (2)C37—C38—C39—C400.2 (5)
C17—C18—C19—C201.1 (4)C37—C38—C39—O42179.0 (3)
C16—C15—C20—C191.0 (3)C38—C39—C40—C410.2 (4)
C5—C15—C20—C19177.3 (2)O42—C39—C40—C41179.4 (3)
C18—C19—C20—C150.0 (4)C39—C40—C41—C360.3 (4)
C19—C18—O21—C223.8 (3)C37—C36—C41—C400.0 (4)
C17—C18—O21—C22175.8 (2)C25—C36—C41—C40178.9 (2)
N2—C1—N23—N249.5 (3)C38—C39—O42—C43177.1 (3)
N6—C1—N23—N24171.21 (17)C40—C39—O42—C432.1 (4)

Experimental details

Crystal data
Chemical formulaC35H32N4O4
Mr572.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)21.637 (2), 5.9532 (4), 24.749 (2)
β (°) 109.519 (10)
V3)3004.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerAgilent Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12486, 5824, 3423
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.05
No. of reflections5824
No. of parameters393
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Department of Science and Technology for access to the single-crystal X-ray diffractometer sanctioned as a national facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.  Google Scholar
First citationEl-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect. B, 32, 449–451.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o807–o808.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Pharm. Chem. 3, 232–240.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds