organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy­benz­yl)phthalimide: a triclinic polymorph

aGraduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
*Correspondence e-mail: takahashi.hiroki.2x@kyoto-u.ac.jp

(Received 7 June 2012; accepted 10 July 2012; online 14 July 2012)

The title compound [systematic name: 2-(4-meth­oxy­benz­yl)­isoindoline-1,3-dione], C16H13NO3, represents a triclinic polymorph of the previously reported monoclinic form [Warzecha et al. (2006[Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.]). Acta Cryst. E62, o5450–o5452]. The reaction of potassium phthalimide and 4-meth­oxy­benzyl chloride in dimethyl­formamide gave platelet-shaped crystals; these were harvested and then needle-shaped crystals were deposited. The platelet- and needle-shaped crystals correspond to the triclinic and monoclinic forms, respectively. The N—C—Car—Car torsion angles between the ring systems are −82.66 (14) and 95.28 (13)°, resulting in a roof-shaped conformation. In the crystal, mol­ecules are accumulated by offset face–face ππ inter­actions between phthalimide units [centroid–centroid distances = 3.640 (2) and 3.651 (2) Å], with inter­planar distances of 3.321 (1) and 3.435 (1) Å. Weak inter­molecular Car­yl—H⋯O=C and Calk­yl—H⋯O=C contacts form C(8) and C(11) infinite chain motifs, respectively.

Related literature

For the crystal structure of the monoclinic form of the title compound, see: Warzecha et al. (2006b[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o5450-o5452.]). For a photochemical study of the title compound, see: Warzecha, Görner et al. (2006[Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.]). For related compounds, see: Lü et al. (2006[Lü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, o2965-o2966.]); Warzecha et al. (2006a[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367-o2368.]); Chen et al. (2006[Chen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, o4188-o4189.]). For graph-set motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3

  • Mr = 267.27

  • Triclinic, [P \overline 1]

  • a = 8.190 (3) Å

  • b = 8.293 (4) Å

  • c = 11.465 (5) Å

  • α = 105.794 (5)°

  • β = 90.8094 (16)°

  • γ = 118.154 (5)°

  • V = 651.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.05 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.995

  • 6640 measured reflections

  • 2951 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 0.96

  • 2951 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H3⋯O1i 0.959 (14) 2.422 (14) 3.245 (2) 143.7 (10)
C16—H13⋯O2ii 0.98 2.53 3.287 (2) 134
Symmetry codes: (i) x, y-1, z; (ii) x+1, y+1, z.

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texsas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Warzecha, et al. (2006b) reported the crystal structure of the monoclinic form of title compound, which was obtained from an ethanolic solution. Herein, the crystal structure of a triclinic form obtained from a dimethylformamide solution is described. The molecule (Fig. 1), consists of two planar subunits, i.e. a phthalimide moiety and a benzene ring, being linked by a sp3-C9 atom so that the molecular conformation is characterized by the N1—C9—C10—C11 and N1—C9—C10—C15 torsion angles. Torsion angle corresponding to N1—C9—C10—C11 in the monoclinic form is 153.41 (14)° whereas that of the triclinic form is -82.66 (14)°. The torsion angle in the triclinic form is almost the same as the triclinic form of N-benzylphthalimide [86.9 (3)°, Lü et al., 2006 and -86.82 (16)°, Warzecha et al., 2006a] and N-(4-methlybenzyl)phthalimide [84.2 (3)°, Chen et al., 2006].

In the crystal structure of the triclinic form (Fig. 2), molecules are arranged via offset face-face π-π interactions between phthalimides in a head-to-tail fashion [interplanar distances (-x, 1 - y, 1 - z) = 3.321 (1) Å and (1 - x, 1 - y, 1 - z) = 3.435 (1) Å]. C—H···π interactions are observed between C4—H2 and the centroid of the benzene ring [(1 - x, 1 - y, 1 - z) = 2.818 (13) Å], and C9—H6 and the centroid of the six-membered ring of the phthalimide [(-x, 1 - y, 1 - z) = 2.996 (15) Å]. In the monoclinic crystal, Caryl—H···O=C and Caryl—H···O—Caryl hydrogen bonds form R22(16) and R44(22) motifs (Etter, 1990), respectively, while in the triclinic form, Caryl—H···O=C and Calkyl—H···O=C interactions form C(8) and C(11) infinite chain structures (Fig. 3 and Table 1), respectively.

Related literature top

For the crystal structure of the monoclinic form of the title compound, see: Warzecha et al. (2006b). For a photochemical study of the title compound, see: Warzecha et al. (2006). For related compounds, see: Lü et al. (2006); Warzecha et al. (2006a); Chen et al. (2006). For graph-set motifs, see: Etter (1990).

Experimental top

Reagents for the synthesis were from Tokyo Chemical Industry Co. and they were used without additional purification. A mixture of potassium phthalimide (0.926 g, 5 mmol) and 4-methoxybenzyl chloride (0.80 g, 5.1 mmol) in dimethylformamide (5 ml) was stirred at ambient temperature. The resulting suspension became a clear solution after 2 h. The solution was allowed to stand for a further 12 h without stirring. Several colourless platelet single crystals were deposited and used for X-ray analysis and then the crystal shape changed from platelet into needle for another 12 h. The resulting needle crystal was isolated by filtration, and successively washed with cold water and EtOH. Recrystallization from EtOH yielded colourless needle crystals (1.07 g, 80%, m.p. 403 K). The melting point of the platelet crystal was also 403 K. The cell parameters of a needle crystal corresponded to the monoclinic form.

Refinement top

The H atoms of the methoxy group were positioned with idealized geometry with C—H = 0.98 Å and refined as riding with Uiso(H) = 1.5Ueq(C16). All other H atoms were located in a difference Fourier map and refined freely with Uiso(H) = 1.2Ueq(C).

Structure description top

Warzecha, et al. (2006b) reported the crystal structure of the monoclinic form of title compound, which was obtained from an ethanolic solution. Herein, the crystal structure of a triclinic form obtained from a dimethylformamide solution is described. The molecule (Fig. 1), consists of two planar subunits, i.e. a phthalimide moiety and a benzene ring, being linked by a sp3-C9 atom so that the molecular conformation is characterized by the N1—C9—C10—C11 and N1—C9—C10—C15 torsion angles. Torsion angle corresponding to N1—C9—C10—C11 in the monoclinic form is 153.41 (14)° whereas that of the triclinic form is -82.66 (14)°. The torsion angle in the triclinic form is almost the same as the triclinic form of N-benzylphthalimide [86.9 (3)°, Lü et al., 2006 and -86.82 (16)°, Warzecha et al., 2006a] and N-(4-methlybenzyl)phthalimide [84.2 (3)°, Chen et al., 2006].

In the crystal structure of the triclinic form (Fig. 2), molecules are arranged via offset face-face π-π interactions between phthalimides in a head-to-tail fashion [interplanar distances (-x, 1 - y, 1 - z) = 3.321 (1) Å and (1 - x, 1 - y, 1 - z) = 3.435 (1) Å]. C—H···π interactions are observed between C4—H2 and the centroid of the benzene ring [(1 - x, 1 - y, 1 - z) = 2.818 (13) Å], and C9—H6 and the centroid of the six-membered ring of the phthalimide [(-x, 1 - y, 1 - z) = 2.996 (15) Å]. In the monoclinic crystal, Caryl—H···O=C and Caryl—H···O—Caryl hydrogen bonds form R22(16) and R44(22) motifs (Etter, 1990), respectively, while in the triclinic form, Caryl—H···O=C and Calkyl—H···O=C interactions form C(8) and C(11) infinite chain structures (Fig. 3 and Table 1), respectively.

For the crystal structure of the monoclinic form of the title compound, see: Warzecha et al. (2006b). For a photochemical study of the title compound, see: Warzecha et al. (2006). For related compounds, see: Lü et al. (2006); Warzecha et al. (2006a); Chen et al. (2006). For graph-set motifs, see: Etter (1990).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Kabuto et al., 2009), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level; H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. A view of the unit-cell content of the title compound, showing offset face-face π-π stacking and CH···π interactions. Dashed lines indicate CH···π interactions.
[Figure 3] Fig. 3. A view of the unit-cell contents of the title compound; red-gray-red molecules and green-gray-green molecules show C(8) and C(11) motifs, respectively. Dotted lines indicate C—H···O=C hydrogen bonds.
2-(4-methoxybenzyl)isoindoline-1,3-dione top
Crystal data top
C16H13NO3Z = 2
Mr = 267.27F(000) = 280
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Melting point: 403 K
a = 8.190 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.293 (4) ÅCell parameters from 2075 reflections
c = 11.465 (5) Åθ = 3.1–27.5°
α = 105.794 (5)°µ = 0.10 mm1
β = 90.8094 (16)°T = 100 K
γ = 118.154 (5)°Platelet, colourless
V = 651.3 (5) Å30.35 × 0.30 × 0.05 mm
Data collection top
Rigaku Saturn724+
diffractometer
2951 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.019
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
profile data from ω–scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 109
Tmin = 0.967, Tmax = 0.995l = 1414
6640 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C16H13NO3γ = 118.154 (5)°
Mr = 267.27V = 651.3 (5) Å3
Triclinic, P1Z = 2
a = 8.190 (3) ÅMo Kα radiation
b = 8.293 (4) ŵ = 0.10 mm1
c = 11.465 (5) ÅT = 100 K
α = 105.794 (5)°0.35 × 0.30 × 0.05 mm
β = 90.8094 (16)°
Data collection top
Rigaku Saturn724+
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2256 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.995Rint = 0.019
6640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.26 e Å3
2951 reflectionsΔρmin = 0.17 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24334 (15)0.63806 (15)0.48690 (9)0.0191 (2)
C20.28334 (14)0.51357 (14)0.54106 (9)0.0171 (2)
C30.38757 (15)0.55798 (16)0.65211 (9)0.0191 (2)
H10.4508 (16)0.6886 (17)0.7095 (11)0.023*
C40.40053 (15)0.40875 (16)0.67783 (10)0.0214 (2)
H20.4719 (16)0.4320 (16)0.7563 (11)0.026*
C50.31087 (16)0.22283 (16)0.59444 (10)0.0233 (3)
H30.3180 (17)0.1217 (18)0.6154 (11)0.028*
C60.20666 (16)0.17978 (16)0.48220 (10)0.0218 (2)
H40.1445 (17)0.0499 (17)0.4223 (11)0.026*
C70.19461 (14)0.32803 (15)0.45735 (9)0.0185 (2)
C80.09817 (15)0.32978 (15)0.34721 (9)0.0204 (2)
C90.07198 (16)0.58653 (18)0.28326 (10)0.0234 (2)
H50.0527 (18)0.4833 (17)0.2403 (11)0.028*
H60.0580 (17)0.6973 (18)0.3337 (12)0.028*
C100.20838 (15)0.64133 (16)0.19466 (9)0.0206 (2)
C110.36928 (16)0.82062 (16)0.22606 (10)0.0222 (2)
H70.3937 (17)0.9133 (17)0.3059 (11)0.027*
C120.49800 (16)0.86831 (16)0.14608 (10)0.0216 (2)
H80.6131 (17)0.9974 (17)0.1698 (11)0.026*
C130.46131 (15)0.73395 (16)0.03122 (9)0.0198 (2)
C140.30067 (16)0.55359 (16)0.00133 (10)0.0229 (2)
H90.2783 (16)0.4566 (17)0.0834 (11)0.027*
C150.17604 (16)0.50759 (17)0.08016 (10)0.0227 (2)
H100.0627 (17)0.3755 (17)0.0568 (11)0.027*
C160.75343 (15)0.93637 (17)0.02176 (10)0.0277 (3)
H110.73681.04980.00190.042*
H120.82460.93630.08970.042*
H130.82220.94020.05050.042*
O10.29209 (11)0.80774 (11)0.52998 (7)0.0264 (2)
O20.00784 (11)0.19931 (11)0.25296 (7)0.0285 (2)
N10.13193 (13)0.51842 (13)0.37221 (8)0.0202 (2)
O30.57369 (10)0.76553 (11)0.05703 (7)0.0243 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (5)0.0215 (6)0.0175 (5)0.0096 (5)0.0056 (4)0.0045 (4)
C20.0151 (5)0.0175 (5)0.0180 (5)0.0078 (4)0.0063 (4)0.0048 (4)
C30.0169 (5)0.0202 (6)0.0178 (5)0.0088 (5)0.0042 (4)0.0030 (4)
C40.0186 (5)0.0276 (6)0.0198 (5)0.0123 (5)0.0056 (4)0.0084 (5)
C50.0238 (6)0.0232 (6)0.0282 (6)0.0137 (5)0.0094 (5)0.0120 (5)
C60.0211 (6)0.0172 (5)0.0236 (6)0.0076 (5)0.0067 (4)0.0044 (4)
C70.0148 (5)0.0193 (5)0.0175 (5)0.0065 (4)0.0049 (4)0.0040 (4)
C80.0169 (5)0.0221 (6)0.0184 (5)0.0076 (5)0.0067 (4)0.0045 (4)
C90.0221 (6)0.0316 (6)0.0214 (5)0.0159 (5)0.0047 (5)0.0106 (5)
C100.0203 (5)0.0285 (6)0.0184 (5)0.0154 (5)0.0025 (4)0.0090 (4)
C110.0263 (6)0.0250 (6)0.0169 (5)0.0152 (5)0.0019 (4)0.0041 (4)
C120.0213 (6)0.0208 (6)0.0204 (5)0.0096 (5)0.0003 (4)0.0050 (4)
C130.0193 (5)0.0267 (6)0.0165 (5)0.0134 (5)0.0025 (4)0.0078 (4)
C140.0222 (6)0.0250 (6)0.0175 (5)0.0108 (5)0.0003 (4)0.0027 (4)
C150.0191 (6)0.0249 (6)0.0209 (5)0.0089 (5)0.0002 (4)0.0066 (5)
C160.0189 (6)0.0330 (7)0.0234 (6)0.0078 (5)0.0035 (4)0.0071 (5)
O10.0311 (5)0.0211 (4)0.0262 (4)0.0144 (4)0.0032 (3)0.0038 (3)
O20.0278 (4)0.0271 (4)0.0186 (4)0.0086 (4)0.0012 (3)0.0008 (3)
N10.0211 (5)0.0227 (5)0.0171 (4)0.0111 (4)0.0040 (4)0.0058 (4)
O30.0196 (4)0.0284 (4)0.0173 (4)0.0073 (3)0.0034 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—O11.2122 (14)C9—H50.974 (13)
C1—N11.3956 (14)C9—H61.001 (13)
C1—C21.4903 (16)C10—C111.3867 (16)
C2—C31.3795 (15)C10—C151.3942 (15)
C2—C71.3921 (15)C11—C121.3928 (16)
C3—C41.3969 (16)C11—H70.967 (12)
C3—H10.974 (12)C12—C131.3929 (15)
C4—C51.3928 (16)C12—H80.995 (12)
C4—H20.987 (12)C13—O31.3720 (13)
C5—C61.3940 (17)C13—C141.3902 (16)
C5—H30.959 (13)C14—C151.3834 (15)
C6—C71.3808 (16)C14—H91.005 (12)
C6—H40.980 (12)C15—H101.004 (12)
C7—C81.4871 (16)C16—O31.4286 (14)
C8—O21.2129 (13)C16—H110.9800
C8—N11.3970 (16)C16—H120.9800
C9—N11.4701 (14)C16—H130.9800
C9—C101.5135 (15)
O1—C1—N1124.83 (10)H5—C9—H6107.4 (10)
O1—C1—C2129.26 (10)C11—C10—C15118.74 (10)
N1—C1—C2105.90 (9)C11—C10—C9121.47 (10)
C3—C2—C7121.69 (10)C15—C10—C9119.76 (11)
C3—C2—C1130.35 (10)C10—C11—C12121.38 (10)
C7—C2—C1107.96 (10)C10—C11—H7119.2 (7)
C2—C3—C4117.31 (10)C12—C11—H7119.4 (7)
C2—C3—H1121.1 (7)C11—C12—C13118.97 (11)
C4—C3—H1121.5 (7)C11—C12—H8120.6 (7)
C5—C4—C3121.03 (11)C13—C12—H8120.4 (7)
C5—C4—H2118.2 (7)O3—C13—C14115.20 (9)
C3—C4—H2120.8 (7)O3—C13—C12124.59 (10)
C4—C5—C6121.18 (11)C14—C13—C12120.21 (10)
C4—C5—H3119.5 (7)C15—C14—C13119.99 (10)
C6—C5—H3119.3 (8)C15—C14—H9120.7 (7)
C7—C6—C5117.47 (10)C13—C14—H9119.3 (7)
C7—C6—H4120.6 (7)C14—C15—C10120.69 (11)
C5—C6—H4121.9 (7)C14—C15—H10119.3 (7)
C6—C7—C2121.32 (11)C10—C15—H10120.0 (7)
C6—C7—C8130.48 (10)O3—C16—H11109.5
C2—C7—C8108.19 (10)O3—C16—H12109.5
O2—C8—N1124.84 (11)H11—C16—H12109.5
O2—C8—C7129.29 (11)O3—C16—H13109.5
N1—C8—C7105.88 (9)H11—C16—H13109.5
N1—C9—C10112.27 (9)H12—C16—H13109.5
N1—C9—H5106.8 (7)C1—N1—C8112.06 (9)
C10—C9—H5111.5 (7)C1—N1—C9123.97 (10)
N1—C9—H6105.7 (7)C8—N1—C9123.73 (9)
C10—C9—H6112.7 (7)C13—O3—C16117.23 (8)
O1—C1—C2—C31.23 (19)C9—C10—C11—C12177.70 (10)
N1—C1—C2—C3179.51 (10)C10—C11—C12—C131.45 (17)
O1—C1—C2—C7179.10 (10)C11—C12—C13—O3177.89 (9)
N1—C1—C2—C70.17 (11)C11—C12—C13—C141.53 (16)
C7—C2—C3—C40.16 (15)O3—C13—C14—C15179.04 (10)
C1—C2—C3—C4179.80 (10)C12—C13—C14—C150.44 (17)
C2—C3—C4—C50.22 (15)C13—C14—C15—C100.78 (17)
C3—C4—C5—C60.56 (17)C11—C10—C15—C140.87 (16)
C4—C5—C6—C70.48 (16)C9—C10—C15—C14178.86 (10)
C5—C6—C7—C20.09 (16)O1—C1—N1—C8179.86 (10)
C5—C6—C7—C8179.06 (10)C2—C1—N1—C80.56 (11)
C3—C2—C7—C60.23 (16)O1—C1—N1—C95.55 (16)
C1—C2—C7—C6179.94 (9)C2—C1—N1—C9175.15 (9)
C3—C2—C7—C8178.94 (9)O2—C8—N1—C1178.80 (10)
C1—C2—C7—C80.77 (11)C7—C8—N1—C11.01 (11)
C6—C7—C8—O20.35 (19)O2—C8—N1—C94.19 (16)
C2—C7—C8—O2178.72 (10)C7—C8—N1—C9175.62 (9)
C6—C7—C8—N1179.84 (10)C10—C9—N1—C191.16 (12)
C2—C7—C8—N11.09 (11)C10—C9—N1—C882.81 (13)
N1—C9—C10—C1182.66 (14)C14—C13—O3—C16170.86 (10)
N1—C9—C10—C1595.28 (13)C12—C13—O3—C169.69 (15)
C15—C10—C11—C120.26 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H3···O1i0.959 (14)2.422 (14)3.245 (2)143.7 (10)
C16—H13···O2ii0.982.533.287 (2)134
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13NO3
Mr267.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.190 (3), 8.293 (4), 11.465 (5)
α, β, γ (°)105.794 (5), 90.8094 (16), 118.154 (5)
V3)651.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.05
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.967, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6640, 2951, 2256
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 0.96
No. of reflections2951
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto et al., 2009), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H3···O1i0.959 (14)2.422 (14)3.245 (2)143.7 (10)
C16—H13···O2ii0.98002.53003.287 (2)134.00
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The author thanks Kyoto University for support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, P., Zhang, L. & Li, D. (2006). Acta Cryst. E62, o4188–o4189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationLü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. & Wang, P. (2006). Acta Cryst. E62, o2965–o2966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texsas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356–3363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367–o2368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o5450–o5452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds