organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,5-Di-tert-butyl-2-eth­­oxy­benzyl­­idene)[2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)eth­yl]amine

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 11 July 2012; accepted 16 July 2012; online 21 July 2012)

The angles within the benzene ring in the title compound, C30H49N3O, ranging from 116.34 (16) to 124.18 (16)°, reflect the presence of electron-donating and electron-withdrawing substituents. The angles at the two electron-donating tert-butyl substituents are smaller than 120°, at the electron-withdrawing eth­oxy substituent larger than 120°, and at the imine substituent equal to 119.59 (16)°. The latter does not reflect the electron-donating nature of the imine group due to the presence of other substituents.

Related literature

For information on (pyrazol-1-yl)imine ligands that feature phenol in cobalt and palladium complexes see: Ainooson (2010[Ainooson, M. K. (2010). MSc Dissertation, University of Johannesburg, South Africa.]); Boltina et al. (2012[Boltina, S., Yankey, M., Guzei, I. A., Spencer, L. C., Ojwach, S. O. & Darkwa, J. (2012). S. Afr. J. Chem. 65, 75-83.]). Geometrical parameters were checked with Mogul (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). Related compounds were found in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C30H49N3O

  • Mr = 467.72

  • Triclinic, [P \overline 1]

  • a = 10.9220 (3) Å

  • b = 11.6071 (4) Å

  • c = 12.0283 (4) Å

  • α = 78.452 (2)°

  • β = 82.775 (2)°

  • γ = 79.146 (2)°

  • V = 1461.11 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.12 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003)[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.944, Tmax = 0.958

  • 25868 measured reflections

  • 5197 independent reflections

  • 3560 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.00

  • 5197 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007)[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2007)[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

(Pyrazol-1-yl)imine ligands that feature phenol have recently been used as ligands in preparing cobalt (Ainooson, 2010) and palladium (Boltina et al., 2012) complexes, but the phenol proton reacts with cobalt and palladium to form an undesirable HCl by-product. To avoid the formation of HCl in such reactions, we have studied compounds where the phenol is replaced with an alkyl or aryl group. One example of such a potential ligand precursor is the ethoxy derivative, I, the title compound, reported herein.

The Mogul check of I confirmed that the geometrical parameters are typical except for the C12—N2—N1 angle and the C12—N2—C7 angle (Bruno et al., 2002). A search of the Cambridge Structural Database (CSD; Allen, 2002) yielded 45 related compounds that have the pyrazole—C—C—N—C—benzene backbone. In these related compounds the angle comparable to the C12—N2—N1 angle in I had an average of 118 (6)° and a range of 101.62 to 123.99°. The 115.52 (14)° value for the C12—N2—N1 angle in I is within the range and within the standard deviation of the average for the related compounds, and thus should not be considered atypical. For the 45 related compounds the comparable C7—N2—C12 angle had an average of 126 (5)° with a range of values from 103.56 to 133.10°. The value for I of 132.37 (15)° is within the range of values for the related compounds.

The angles of the C15···C20 benzene ring range from 116.34 (16) to 124.18 (16)° deviating from the ideal 120° angle due to the presence of electron donating and electron withdrawing substituents. The two tert-butyl groups on atoms C17 and C19 are electron donating and the angles at these two carbon atoms in the benzene ring are expectedly smaller than the ideal 120° at 117.23 (17) and 116.34 (16)°, respectively. The ethoxy group at C20 is electron withdrawing and thus the angle at its ipso carbon atom is expected to exceed 120°, and indeed the angle measures 121.38 (17)°. The imine group at C15 is expected to be an electron donor with its ipso angle spanning less than 120°. This expectation is supported by a CSD search of monosubstituted benzene rings bearing an imine group: in 234 crystals the angle of interest averaged over 304 entries is 118.9 (9)°. In the case of I, however, the ring angle at C15 is very close to 120 at 119.59 (16)°. This is likely due to the presence of other substituents.

Related literature top

For information on (pyrazol-1-yl)imine ligands that feature phenol in cobalt and palladium complexes see: Ainooson (2010); Boltina et al. (2012). Geometrical parameters were checked with Mogul (Bruno et al., 2002). Related compounds were found in the Cambridge Structural Database (Allen, 2002).

Experimental top

A mixture of 3,5-di-tertiarybutyl-2-ethoxybenzaldehyde (0.40 g, 1.50 mmol), 2-(3,5-di-tertiarybutylpyrazol-1-yl)ethylamine hydrochloride (0.39 g, 1.70 mmol) and excess anhydrous magnesium sulfate (0.40 g, 3.30 mmol) in ethanol (20 ml) was refluxed for 4 h. The yellow filtrate obtained after filtration was evaporated to a yellow oil, which was re-dissolved in dichloromethane (20 ml) and layered hexane (10 ml) and kept at 269 K for 3 days, to afford light yellow crystals. Yield: 0.67 g (95%). 1H (CDCl3) δ: 1.23 (s, 9H, tBu); 1.28 (s, 9H, tBu); 1.35 (s, 9H, tBu); 1.36 (s, 9H, tBu); 1.47 (t, 3H,3JHH= 6.9 Hz, CH3CH2O); 3.74 (q, 2H, 3JHH= 6.9 Hz 2JHH = 6.9 Hz, OCH2CH3); 4.14 (t, 2H, 3JHH = 5.7 Hz, CH2); 4.47 (t, 2H, 2JHH = 6.3 Hz, CH2); 5.71 (s, 1H, pz-H); 7.37 (d, 1H, 4JHH= 2.7 Hz, Ar—H); 7.69 (d, 1H, 4JHH = 2.4 Hz, Ar—H); 8.42 (s, 1H, CH=N); 13C{1H} (CDCl3) δ: 15.3; 30.5; 30.6; 30.9; 31.2; 31.4; 31.9; 34.6; 35.1; 50.7; 61.7; 72.3; 98.9; 122.5; 126.8; 128.9; 141.9; 145.6; 151.6; 156.8; 159.9; 160.4. IR (Diamond ATR, cm-1): 1631υ(CH=N), 1320 υ(C—O). HRMS (ESI) (m/z) [M++H+]: Anal. Calcd. for C30H50N3O: 468.3954. Found: 468.3976.

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients: Uiso(H) = 1.2 times Ueq(bearing atom) for C(sp2)-H and C(sp3)-2H hydrogen atoms and Uiso(H) = 1.5 times Ueq(bearing atom) for C(sp3)-3H hydrogen atoms. Default effective X—H distances for T = 100 K were used: C(sp2)-H = 0.95, C(sp3)-2H = 0.99, C(sp3)-3H = 0.98 Å.

Structure description top

(Pyrazol-1-yl)imine ligands that feature phenol have recently been used as ligands in preparing cobalt (Ainooson, 2010) and palladium (Boltina et al., 2012) complexes, but the phenol proton reacts with cobalt and palladium to form an undesirable HCl by-product. To avoid the formation of HCl in such reactions, we have studied compounds where the phenol is replaced with an alkyl or aryl group. One example of such a potential ligand precursor is the ethoxy derivative, I, the title compound, reported herein.

The Mogul check of I confirmed that the geometrical parameters are typical except for the C12—N2—N1 angle and the C12—N2—C7 angle (Bruno et al., 2002). A search of the Cambridge Structural Database (CSD; Allen, 2002) yielded 45 related compounds that have the pyrazole—C—C—N—C—benzene backbone. In these related compounds the angle comparable to the C12—N2—N1 angle in I had an average of 118 (6)° and a range of 101.62 to 123.99°. The 115.52 (14)° value for the C12—N2—N1 angle in I is within the range and within the standard deviation of the average for the related compounds, and thus should not be considered atypical. For the 45 related compounds the comparable C7—N2—C12 angle had an average of 126 (5)° with a range of values from 103.56 to 133.10°. The value for I of 132.37 (15)° is within the range of values for the related compounds.

The angles of the C15···C20 benzene ring range from 116.34 (16) to 124.18 (16)° deviating from the ideal 120° angle due to the presence of electron donating and electron withdrawing substituents. The two tert-butyl groups on atoms C17 and C19 are electron donating and the angles at these two carbon atoms in the benzene ring are expectedly smaller than the ideal 120° at 117.23 (17) and 116.34 (16)°, respectively. The ethoxy group at C20 is electron withdrawing and thus the angle at its ipso carbon atom is expected to exceed 120°, and indeed the angle measures 121.38 (17)°. The imine group at C15 is expected to be an electron donor with its ipso angle spanning less than 120°. This expectation is supported by a CSD search of monosubstituted benzene rings bearing an imine group: in 234 crystals the angle of interest averaged over 304 entries is 118.9 (9)°. In the case of I, however, the ring angle at C15 is very close to 120 at 119.59 (16)°. This is likely due to the presence of other substituents.

For information on (pyrazol-1-yl)imine ligands that feature phenol in cobalt and palladium complexes see: Ainooson (2010); Boltina et al. (2012). Geometrical parameters were checked with Mogul (Bruno et al., 2002). Related compounds were found in the Cambridge Structural Database (Allen, 2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of I (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. The hydrogen atoms on C12, C13 and C14 are shown to clarify the location of the imine double bond. All other hydrogen atoms are not shown.
(3,5-Di-tert-butyl-2-ethoxybenzylidene)[2-(3,5-di-tert- butyl-1H-pyrazol-1-yl)ethyl]amine top
Crystal data top
C30H49N3OZ = 2
Mr = 467.72F(000) = 516
Triclinic, P1Dx = 1.063 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.9220 (3) ÅCell parameters from 3414 reflections
b = 11.6071 (4) Åθ = 3.8–67.9°
c = 12.0283 (4) ŵ = 0.49 mm1
α = 78.452 (2)°T = 100 K
β = 82.775 (2)°Block, colourless
γ = 79.146 (2)°0.12 × 0.10 × 0.09 mm
V = 1461.11 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5197 independent reflections
Radiation source: fine-focus sealed tube3560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
0.50° ω and 0.5 ° φ scansθmax = 69.4°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.944, Tmax = 0.958k = 1313
25868 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2 + 0.050P]
where P = (Fo2 + 2Fc2)/3
5197 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Crystal data top
C30H49N3Oγ = 79.146 (2)°
Mr = 467.72V = 1461.11 (8) Å3
Triclinic, P1Z = 2
a = 10.9220 (3) ÅCu Kα radiation
b = 11.6071 (4) ŵ = 0.49 mm1
c = 12.0283 (4) ÅT = 100 K
α = 78.452 (2)°0.12 × 0.10 × 0.09 mm
β = 82.775 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5197 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3560 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.958Rint = 0.058
25868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
5197 reflectionsΔρmin = 0.19 e Å3
320 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34819 (11)0.66011 (10)0.25603 (10)0.0235 (3)
N10.28108 (14)0.73254 (13)0.14877 (12)0.0232 (4)
N20.15493 (14)0.73534 (13)0.14402 (12)0.0209 (3)
N30.11031 (14)0.56315 (13)0.07218 (12)0.0234 (4)
C10.42582 (17)0.87382 (17)0.16003 (15)0.0251 (4)
C20.41947 (19)1.00119 (18)0.14135 (18)0.0349 (5)
H2A0.50451.01800.14400.052*
H2B0.37491.01000.06680.052*
H2C0.37491.05730.20120.052*
C30.49426 (19)0.8607 (2)0.27671 (17)0.0383 (5)
H3A0.49920.77880.28860.057*
H3B0.57900.87860.28030.057*
H3C0.44850.91620.33620.057*
C40.4974 (2)0.78700 (19)0.06747 (19)0.0385 (5)
H4A0.50250.70510.07950.058*
H4B0.45360.79520.00750.058*
H4C0.58210.80510.07110.058*
C50.29479 (17)0.84524 (16)0.15391 (14)0.0215 (4)
C60.17783 (17)0.91988 (16)0.15335 (14)0.0231 (4)
H60.16271.00380.15660.028*
C70.08916 (17)0.84814 (16)0.14709 (14)0.0213 (4)
C80.05270 (17)0.88116 (16)0.14342 (15)0.0240 (4)
C90.11551 (18)0.82093 (17)0.03081 (16)0.0282 (4)
H9A0.09780.73420.02590.042*
H9B0.20620.84830.02800.042*
H9C0.08260.84190.03330.042*
C100.10238 (19)0.84830 (18)0.24532 (16)0.0323 (5)
H10A0.06570.89110.31660.048*
H10B0.19370.87070.24080.048*
H10C0.07930.76220.24340.048*
C110.08922 (18)1.01676 (16)0.15143 (16)0.0284 (4)
H11A0.06191.04020.08590.043*
H11B0.18031.03940.15160.043*
H11C0.04871.05730.22200.043*
C120.11597 (17)0.62036 (16)0.13713 (15)0.0236 (4)
H12A0.14680.58970.20840.028*
H12B0.02340.63120.12970.028*
C130.16583 (18)0.52953 (16)0.03632 (15)0.0237 (4)
H13A0.14690.45040.04020.028*
H13B0.25790.52310.04070.028*
C140.17833 (17)0.60915 (15)0.12313 (15)0.0224 (4)
H140.26020.61810.08920.027*
C150.13623 (17)0.64936 (15)0.23260 (14)0.0213 (4)
C160.00919 (17)0.66223 (15)0.27274 (15)0.0224 (4)
H160.04890.64220.23030.027*
C170.03316 (17)0.70369 (15)0.37326 (14)0.0219 (4)
C180.05555 (17)0.73581 (16)0.43085 (15)0.0225 (4)
H180.02700.76710.49850.027*
C190.18307 (17)0.72475 (15)0.39523 (14)0.0217 (4)
C200.22212 (16)0.67702 (15)0.29574 (14)0.0209 (4)
C210.17007 (17)0.71489 (16)0.42364 (15)0.0251 (4)
C220.22034 (19)0.84395 (17)0.44064 (17)0.0315 (5)
H22A0.17040.86560.49310.047*
H22B0.30790.85030.47250.047*
H22C0.21470.89820.36710.047*
C230.25348 (19)0.68147 (19)0.34618 (18)0.0347 (5)
H23A0.24920.73410.27170.052*
H23B0.34010.69030.38070.052*
H23C0.22450.59850.33660.052*
C240.1774 (2)0.63108 (19)0.53977 (17)0.0358 (5)
H24A0.14790.54850.52940.054*
H24B0.26430.63930.57370.054*
H24C0.12470.65200.59030.054*
C250.27425 (17)0.76568 (16)0.46157 (15)0.0237 (4)
C260.20450 (19)0.82364 (19)0.56031 (16)0.0319 (5)
H26A0.14240.89190.53070.048*
H26B0.26430.85090.59930.048*
H26C0.16220.76520.61420.048*
C270.36982 (19)0.65946 (17)0.51248 (17)0.0314 (5)
H27A0.32560.59690.55710.047*
H27B0.41970.68570.56200.047*
H27C0.42510.62800.45080.047*
C280.34370 (19)0.85899 (17)0.38318 (16)0.0305 (5)
H28A0.39070.82440.31930.046*
H28B0.40170.88340.42630.046*
H28C0.28300.92870.35390.046*
C290.40841 (17)0.53699 (16)0.26496 (16)0.0256 (4)
H29A0.35710.49110.23410.031*
H29B0.41860.50060.34570.031*
C300.53345 (19)0.53526 (18)0.19799 (18)0.0356 (5)
H30A0.52200.56770.11750.053*
H30B0.57840.45300.20550.053*
H30C0.58200.58400.22700.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (7)0.0243 (7)0.0286 (7)0.0024 (6)0.0019 (5)0.0048 (5)
N10.0190 (8)0.0283 (9)0.0239 (8)0.0067 (7)0.0030 (6)0.0052 (6)
N20.0178 (8)0.0230 (8)0.0237 (8)0.0061 (7)0.0033 (6)0.0049 (6)
N30.0226 (9)0.0247 (8)0.0239 (8)0.0065 (7)0.0013 (6)0.0050 (6)
C10.0209 (11)0.0286 (10)0.0284 (10)0.0074 (9)0.0053 (8)0.0059 (8)
C20.0281 (12)0.0329 (11)0.0478 (13)0.0120 (10)0.0061 (9)0.0089 (9)
C30.0272 (12)0.0542 (14)0.0397 (12)0.0167 (11)0.0002 (9)0.0158 (10)
C40.0327 (13)0.0399 (12)0.0457 (13)0.0115 (11)0.0180 (10)0.0003 (10)
C50.0230 (11)0.0235 (9)0.0196 (9)0.0067 (9)0.0042 (7)0.0036 (7)
C60.0243 (11)0.0229 (9)0.0235 (10)0.0040 (9)0.0041 (7)0.0064 (7)
C70.0225 (10)0.0256 (9)0.0166 (9)0.0042 (9)0.0030 (7)0.0048 (7)
C80.0211 (10)0.0274 (10)0.0254 (10)0.0043 (9)0.0047 (8)0.0074 (8)
C90.0223 (11)0.0288 (10)0.0341 (11)0.0068 (9)0.0022 (8)0.0081 (8)
C100.0255 (11)0.0399 (12)0.0344 (11)0.0020 (10)0.0108 (9)0.0121 (9)
C110.0254 (11)0.0284 (10)0.0309 (10)0.0029 (9)0.0051 (8)0.0045 (8)
C120.0224 (10)0.0267 (10)0.0249 (9)0.0072 (9)0.0026 (7)0.0092 (8)
C130.0247 (11)0.0240 (9)0.0248 (10)0.0074 (9)0.0015 (8)0.0072 (7)
C140.0200 (10)0.0236 (9)0.0231 (9)0.0043 (8)0.0034 (7)0.0019 (7)
C150.0229 (10)0.0201 (9)0.0203 (9)0.0046 (8)0.0031 (7)0.0009 (7)
C160.0213 (10)0.0234 (9)0.0233 (9)0.0047 (8)0.0059 (7)0.0032 (7)
C170.0208 (10)0.0204 (9)0.0229 (9)0.0034 (8)0.0020 (7)0.0005 (7)
C180.0255 (11)0.0231 (9)0.0180 (9)0.0029 (8)0.0011 (7)0.0030 (7)
C190.0219 (10)0.0213 (9)0.0209 (9)0.0030 (8)0.0052 (7)0.0001 (7)
C200.0170 (10)0.0210 (9)0.0230 (9)0.0033 (8)0.0014 (7)0.0000 (7)
C210.0203 (10)0.0274 (10)0.0279 (10)0.0056 (9)0.0012 (8)0.0048 (8)
C220.0263 (11)0.0330 (11)0.0345 (11)0.0031 (9)0.0006 (8)0.0080 (9)
C230.0217 (11)0.0430 (12)0.0424 (12)0.0084 (10)0.0014 (9)0.0127 (10)
C240.0320 (12)0.0361 (11)0.0368 (12)0.0103 (10)0.0040 (9)0.0008 (9)
C250.0225 (11)0.0268 (10)0.0225 (9)0.0040 (9)0.0065 (7)0.0037 (7)
C260.0294 (12)0.0404 (12)0.0300 (11)0.0088 (10)0.0072 (8)0.0104 (9)
C270.0307 (12)0.0326 (11)0.0325 (11)0.0057 (10)0.0142 (9)0.0020 (8)
C280.0311 (12)0.0323 (11)0.0315 (11)0.0115 (10)0.0079 (9)0.0048 (8)
C290.0249 (11)0.0248 (10)0.0269 (10)0.0020 (9)0.0043 (8)0.0050 (8)
C300.0296 (12)0.0330 (11)0.0402 (12)0.0002 (10)0.0028 (9)0.0052 (9)
Geometric parameters (Å, º) top
O1—C201.390 (2)C14—C151.475 (2)
O1—C291.445 (2)C14—H140.9500
N1—C51.333 (2)C15—C201.396 (2)
N1—N21.3663 (19)C15—C161.401 (2)
N2—C71.365 (2)C16—C171.384 (2)
N2—C121.459 (2)C16—H160.9500
N3—C141.268 (2)C17—C181.402 (2)
N3—C131.463 (2)C17—C211.533 (2)
C1—C51.519 (2)C18—C191.394 (2)
C1—C31.527 (3)C18—H180.9500
C1—C21.527 (3)C19—C201.403 (2)
C1—C41.530 (3)C19—C251.544 (2)
C2—H2A0.9800C21—C231.530 (3)
C2—H2B0.9800C21—C241.537 (3)
C2—H2C0.9800C21—C221.540 (3)
C3—H3A0.9800C22—H22A0.9800
C3—H3B0.9800C22—H22B0.9800
C3—H3C0.9800C22—H22C0.9800
C4—H4A0.9800C23—H23A0.9800
C4—H4B0.9800C23—H23B0.9800
C4—H4C0.9800C23—H23C0.9800
C5—C61.402 (3)C24—H24A0.9800
C6—C71.377 (2)C24—H24B0.9800
C6—H60.9500C24—H24C0.9800
C7—C81.522 (3)C25—C261.531 (3)
C8—C111.536 (3)C25—C281.536 (3)
C8—C91.537 (3)C25—C271.536 (3)
C8—C101.541 (2)C26—H26A0.9800
C9—H9A0.9800C26—H26B0.9800
C9—H9B0.9800C26—H26C0.9800
C9—H9C0.9800C27—H27A0.9800
C10—H10A0.9800C27—H27B0.9800
C10—H10B0.9800C27—H27C0.9800
C10—H10C0.9800C28—H28A0.9800
C11—H11A0.9800C28—H28B0.9800
C11—H11B0.9800C28—H28C0.9800
C11—H11C0.9800C29—C301.495 (3)
C12—C131.522 (2)C29—H29A0.9900
C12—H12A0.9900C29—H29B0.9900
C12—H12B0.9900C30—H30A0.9800
C13—H13A0.9900C30—H30B0.9800
C13—H13B0.9900C30—H30C0.9800
C20—O1—C29115.07 (13)C20—C15—C16119.59 (16)
C5—N1—N2105.26 (14)C20—C15—C14120.33 (16)
C7—N2—N1112.10 (14)C16—C15—C14120.07 (16)
C7—N2—C12132.37 (15)C17—C16—C15121.13 (16)
N1—N2—C12115.52 (14)C17—C16—H16119.4
C14—N3—C13116.03 (15)C15—C16—H16119.4
C5—C1—C3109.60 (15)C16—C17—C18117.23 (17)
C5—C1—C2110.26 (16)C16—C17—C21123.37 (16)
C3—C1—C2109.32 (16)C18—C17—C21119.40 (16)
C5—C1—C4109.16 (15)C19—C18—C17124.18 (16)
C3—C1—C4109.32 (17)C19—C18—H18117.9
C2—C1—C4109.16 (16)C17—C18—H18117.9
C1—C2—H2A109.5C18—C19—C20116.34 (16)
C1—C2—H2B109.5C18—C19—C25121.02 (16)
H2A—C2—H2B109.5C20—C19—C25122.64 (16)
C1—C2—H2C109.5O1—C20—C15118.59 (16)
H2A—C2—H2C109.5O1—C20—C19120.00 (15)
H2B—C2—H2C109.5C15—C20—C19121.38 (17)
C1—C3—H3A109.5C23—C21—C17111.74 (15)
C1—C3—H3B109.5C23—C21—C24108.76 (16)
H3A—C3—H3B109.5C17—C21—C24108.86 (15)
C1—C3—H3C109.5C23—C21—C22108.38 (16)
H3A—C3—H3C109.5C17—C21—C22110.09 (15)
H3B—C3—H3C109.5C24—C21—C22108.96 (16)
C1—C4—H4A109.5C21—C22—H22A109.5
C1—C4—H4B109.5C21—C22—H22B109.5
H4A—C4—H4B109.5H22A—C22—H22B109.5
C1—C4—H4C109.5C21—C22—H22C109.5
H4A—C4—H4C109.5H22A—C22—H22C109.5
H4B—C4—H4C109.5H22B—C22—H22C109.5
N1—C5—C6110.44 (15)C21—C23—H23A109.5
N1—C5—C1118.91 (16)C21—C23—H23B109.5
C6—C5—C1130.64 (16)H23A—C23—H23B109.5
C7—C6—C5106.78 (16)C21—C23—H23C109.5
C7—C6—H6126.6H23A—C23—H23C109.5
C5—C6—H6126.6H23B—C23—H23C109.5
N2—C7—C6105.42 (15)C21—C24—H24A109.5
N2—C7—C8124.98 (15)C21—C24—H24B109.5
C6—C7—C8129.60 (16)H24A—C24—H24B109.5
C7—C8—C11108.78 (15)C21—C24—H24C109.5
C7—C8—C9111.03 (15)H24A—C24—H24C109.5
C11—C8—C9107.95 (15)H24B—C24—H24C109.5
C7—C8—C10111.28 (15)C26—C25—C28107.19 (16)
C11—C8—C10107.43 (15)C26—C25—C27107.37 (15)
C9—C8—C10110.24 (15)C28—C25—C27109.42 (16)
C8—C9—H9A109.5C26—C25—C19111.32 (15)
C8—C9—H9B109.5C28—C25—C19110.49 (14)
H9A—C9—H9B109.5C27—C25—C19110.93 (15)
C8—C9—H9C109.5C25—C26—H26A109.5
H9A—C9—H9C109.5C25—C26—H26B109.5
H9B—C9—H9C109.5H26A—C26—H26B109.5
C8—C10—H10A109.5C25—C26—H26C109.5
C8—C10—H10B109.5H26A—C26—H26C109.5
H10A—C10—H10B109.5H26B—C26—H26C109.5
C8—C10—H10C109.5C25—C27—H27A109.5
H10A—C10—H10C109.5C25—C27—H27B109.5
H10B—C10—H10C109.5H27A—C27—H27B109.5
C8—C11—H11A109.5C25—C27—H27C109.5
C8—C11—H11B109.5H27A—C27—H27C109.5
H11A—C11—H11B109.5H27B—C27—H27C109.5
C8—C11—H11C109.5C25—C28—H28A109.5
H11A—C11—H11C109.5C25—C28—H28B109.5
H11B—C11—H11C109.5H28A—C28—H28B109.5
N2—C12—C13111.74 (14)C25—C28—H28C109.5
N2—C12—H12A109.3H28A—C28—H28C109.5
C13—C12—H12A109.3H28B—C28—H28C109.5
N2—C12—H12B109.3O1—C29—C30107.58 (15)
C13—C12—H12B109.3O1—C29—H29A110.2
H12A—C12—H12B107.9C30—C29—H29A110.2
N3—C13—C12111.54 (15)O1—C29—H29B110.2
N3—C13—H13A109.3C30—C29—H29B110.2
C12—C13—H13A109.3H29A—C29—H29B108.5
N3—C13—H13B109.3C29—C30—H30A109.5
C12—C13—H13B109.3C29—C30—H30B109.5
H13A—C13—H13B108.0H30A—C30—H30B109.5
N3—C14—C15123.02 (17)C29—C30—H30C109.5
N3—C14—H14118.5H30A—C30—H30C109.5
C15—C14—H14118.5H30B—C30—H30C109.5
C5—N1—N2—C70.53 (18)C20—C15—C16—C171.0 (3)
C5—N1—N2—C12179.65 (14)C14—C15—C16—C17177.78 (16)
N2—N1—C5—C60.46 (18)C15—C16—C17—C182.0 (2)
N2—N1—C5—C1179.95 (14)C15—C16—C17—C21177.51 (16)
C3—C1—C5—N170.9 (2)C16—C17—C18—C192.2 (3)
C2—C1—C5—N1168.71 (16)C21—C17—C18—C19177.33 (16)
C4—C1—C5—N148.8 (2)C17—C18—C19—C200.7 (3)
C3—C1—C5—C6108.6 (2)C17—C18—C19—C25178.16 (16)
C2—C1—C5—C611.8 (3)C29—O1—C20—C1571.21 (19)
C4—C1—C5—C6131.7 (2)C29—O1—C20—C19110.92 (17)
N1—C5—C6—C70.2 (2)C16—C15—C20—O1178.06 (15)
C1—C5—C6—C7179.77 (17)C14—C15—C20—O13.2 (2)
N1—N2—C7—C60.38 (19)C16—C15—C20—C194.1 (3)
C12—N2—C7—C6179.83 (16)C14—C15—C20—C19174.68 (16)
N1—N2—C7—C8179.90 (14)C18—C19—C20—O1178.33 (15)
C12—N2—C7—C80.1 (3)C25—C19—C20—O12.9 (2)
C5—C6—C7—N20.09 (19)C18—C19—C20—C153.9 (2)
C5—C6—C7—C8179.79 (16)C25—C19—C20—C15174.95 (16)
N2—C7—C8—C11178.72 (16)C16—C17—C21—C233.2 (2)
C6—C7—C8—C111.6 (2)C18—C17—C21—C23177.30 (16)
N2—C7—C8—C962.6 (2)C16—C17—C21—C24116.99 (19)
C6—C7—C8—C9117.0 (2)C18—C17—C21—C2462.6 (2)
N2—C7—C8—C1060.6 (2)C16—C17—C21—C22123.64 (18)
C6—C7—C8—C10119.8 (2)C18—C17—C21—C2256.8 (2)
C7—N2—C12—C13124.46 (19)C18—C19—C25—C263.6 (2)
N1—N2—C12—C1355.76 (19)C20—C19—C25—C26175.12 (16)
C14—N3—C13—C12102.04 (18)C18—C19—C25—C28122.60 (18)
N2—C12—C13—N366.26 (19)C20—C19—C25—C2856.1 (2)
C13—N3—C14—C15179.25 (16)C18—C19—C25—C27115.87 (19)
N3—C14—C15—C20167.22 (17)C20—C19—C25—C2765.4 (2)
N3—C14—C15—C1614.0 (3)C20—O1—C29—C30168.72 (15)

Experimental details

Crystal data
Chemical formulaC30H49N3O
Mr467.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9220 (3), 11.6071 (4), 12.0283 (4)
α, β, γ (°)78.452 (2), 82.775 (2), 79.146 (2)
V3)1461.11 (8)
Z2
Radiation typeCu Kα
µ (mm1)0.49
Crystal size (mm)0.12 × 0.10 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.944, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
25868, 5197, 3560
Rint0.058
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.00
No. of reflections5197
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

 

Footnotes

Other affiliation: Department of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa.

References

First citationAinooson, M. K. (2010). MSc Dissertation, University of Johannesburg, South Africa.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoltina, S., Yankey, M., Guzei, I. A., Spencer, L. C., Ojwach, S. O. & Darkwa, J. (2012). S. Afr. J. Chem. 65, 75–83.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds