organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,5-Di­phenyl-1H-pyrazol-3-yl­­oxy)-1-(2-sulfanyl­­idene-1,3-thia­zolidin-3-yl)­ethanone

aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, bDepartment of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College, Nanjing 210088, People's Republic of China, and cCollege of Food Science and Light Industry, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: liynj2012@gmail.com

(Received 25 June 2012; accepted 1 July 2012; online 10 July 2012)

The title compound, C20H17N3O2S2, was synthesized by the reaction of 2-(1,5-diphenyl-1H-pyrazol-3-yl­oxy)acetic acid and thia­zolidine-2-thione. The C-linked benzene ring, N-linked benzene ring and thia­zolidine-2-thione ring are twisted 31.33 (2), 62.87 (1) and 82.71 (2)°, respectively, from the plane of the bridging 1H-pyrazole ring. The phenyl rings are oriented at a dihedral angle of 72.16 (2)°.

Related literature

For pyrazol derivative bioactivities, see: Aly (2009[Aly, A. A. (2009). J. Heterocycl. Chem. 46, 895-902.]); Meegalla et al. (2004[Meegalla, S. K., Doller, D., Sha, D., Soll, R., Wisnewski, N., Silver, G. M. & Dhanoa, D. (2004). Bioorg. Med. Chem. Lett. 14, 4949-4953.]); Morimoto et al. (1990[Morimoto, K., Makino, K., Yamamoto, S. & Sakata, G. (1990). J. Heterocycl. Chem. 27, 807-810.]). For a related structure, see: Goodman et al. (1971[Goodman, M., Ganis, P., Avitabile, G. & Migdal, S. (1971). J. Am. Chem. Soc. 93, 3328-3331.]). For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the literature method used for preparation, see: Liu et al. (2011[Liu, Y. Y., He, G. K., Chen, K., Jin, Y., Li, Y. F. & Zhu, H. J. (2011). Eur. J. Org. Chem. 27, 5323-5330.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O2S2

  • Mr = 395.49

  • Monoclinic, P 21 /c

  • a = 12.813 (3) Å

  • b = 16.453 (3) Å

  • c = 8.9470 (18) Å

  • β = 97.68 (3)°

  • V = 1869.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.914, Tmax = 0.970

  • 3625 measured reflections

  • 3391 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.149

  • S = 1.08

  • 3391 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the discovery of the strobilurin fungicide pyraclostrobin by BASF scientists, 1H-pyrazol-3-oxy derivatives have attracted considerable attention in chemical and medicinal research due to their low mammalian toxicity and diverse bioactivities such as fungicidal (Aly, 2009), insecticidal (Meegalla et al., 2004) and herbicidal (Morimoto et al., 1990) activities. However, very few representatives of biologically active 2-(1,5-diaryl-1H-pyrazol-3-yloxy)-1-(2-thioxothiazolidin-3-yl)ethanone derivatives have hitherto been described in the literature. We report here the crystal structure of the title compound, (I).

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The bond length of N1—C4 (1.409 (5) Å) is longer than normal N—C amide bond (1.325–1.352 Å) (Goodman et al., 1971). The C-linked benzene ring A (C9—C14), N-linked benzene ring B (C15—C20), and thiazolidine-2-thione ring (N1/S1/C1—C3) are twisted 31.33 °, 62.87 °, and 82.71 ° from the plane of the bridge 1H-pyrazol ring (N2/N3/C6—C8), respectively. Rings A and B are, of course, planar and the dihedral angle between them is 72.16 °.

Related literature top

For pyrazol derivative bioactivities, see: Aly (2009); Meegalla et al. (2004); Morimoto et al. (1990). For a related structure, see: Goodman et al. (1971). For bond lengths, see: Allen et al. (1987). For the literature method used for preparation, see: Liu et al. (2011).

Experimental top

The title compound, (I) was prepared by the literature method (Liu et al., 2011). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in ethyl acetate (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

Since the discovery of the strobilurin fungicide pyraclostrobin by BASF scientists, 1H-pyrazol-3-oxy derivatives have attracted considerable attention in chemical and medicinal research due to their low mammalian toxicity and diverse bioactivities such as fungicidal (Aly, 2009), insecticidal (Meegalla et al., 2004) and herbicidal (Morimoto et al., 1990) activities. However, very few representatives of biologically active 2-(1,5-diaryl-1H-pyrazol-3-yloxy)-1-(2-thioxothiazolidin-3-yl)ethanone derivatives have hitherto been described in the literature. We report here the crystal structure of the title compound, (I).

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The bond length of N1—C4 (1.409 (5) Å) is longer than normal N—C amide bond (1.325–1.352 Å) (Goodman et al., 1971). The C-linked benzene ring A (C9—C14), N-linked benzene ring B (C15—C20), and thiazolidine-2-thione ring (N1/S1/C1—C3) are twisted 31.33 °, 62.87 °, and 82.71 ° from the plane of the bridge 1H-pyrazol ring (N2/N3/C6—C8), respectively. Rings A and B are, of course, planar and the dihedral angle between them is 72.16 °.

For pyrazol derivative bioactivities, see: Aly (2009); Meegalla et al. (2004); Morimoto et al. (1990). For a related structure, see: Goodman et al. (1971). For bond lengths, see: Allen et al. (1987). For the literature method used for preparation, see: Liu et al. (2011).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-(1,5-Diphenyl-1H-pyrazol-3-yloxy)-1-(2-sulfanylidene-1,3- thiazolidin-3-yl)ethanone top
Crystal data top
C20H17N3O2S2F(000) = 824
Mr = 395.49Dx = 1.405 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.813 (3) Åθ = 9–13°
b = 16.453 (3) ŵ = 0.31 mm1
c = 8.9470 (18) ÅT = 293 K
β = 97.68 (3)°Needle, yellow
V = 1869.2 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2202 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 1515
Absorption correction: ψ scan
(North et al., 1968)
k = 190
Tmin = 0.914, Tmax = 0.970l = 010
3625 measured reflections3 standard reflections every 200 reflections
3391 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0324P)2 + 2.7384P]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.65 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
C20H17N3O2S2V = 1869.2 (7) Å3
Mr = 395.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.813 (3) ŵ = 0.31 mm1
b = 16.453 (3) ÅT = 293 K
c = 8.9470 (18) Å0.30 × 0.20 × 0.10 mm
β = 97.68 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2202 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.914, Tmax = 0.9703 standard reflections every 200 reflections
3625 measured reflections intensity decay: 1%
3391 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.65 e Å3
3391 reflectionsΔρmin = 0.68 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53480 (10)0.88849 (7)0.53157 (15)0.0611 (4)
S20.62593 (11)0.72831 (9)0.50196 (19)0.0775 (5)
O10.3356 (3)0.6778 (2)0.7213 (4)0.0675 (10)
O20.4300 (2)0.53904 (17)0.6832 (3)0.0519 (8)
N10.4433 (3)0.7614 (2)0.6153 (4)0.0431 (8)
N20.3178 (3)0.5311 (2)0.4521 (4)0.0476 (9)
N30.2289 (3)0.4864 (2)0.4065 (4)0.0434 (8)
C10.4111 (4)0.9057 (3)0.5959 (6)0.0849 (18)
H1A0.41930.94390.67920.102*
H1B0.36170.92840.51520.102*
C20.3715 (4)0.8282 (3)0.6449 (5)0.0704 (15)
H2B0.30190.81800.59130.084*
H2C0.36600.83050.75190.084*
C30.5321 (3)0.7847 (3)0.5549 (4)0.0445 (10)
C40.4130 (3)0.6833 (3)0.6580 (5)0.0462 (11)
C50.4775 (3)0.6096 (2)0.6282 (5)0.0478 (11)
H5A0.48020.60420.52080.057*
H5B0.54890.61550.67870.057*
C60.3442 (3)0.5100 (2)0.5956 (5)0.0423 (10)
C70.2761 (3)0.4523 (2)0.6429 (5)0.0426 (10)
H7A0.27980.42850.73780.051*
C80.2024 (3)0.4379 (2)0.5198 (4)0.0384 (9)
C90.1076 (3)0.3868 (2)0.5110 (4)0.0405 (10)
C100.1077 (4)0.3190 (3)0.6039 (5)0.0530 (12)
H10A0.16950.30370.66390.064*
C110.0169 (4)0.2743 (3)0.6081 (6)0.0685 (15)
H11A0.01760.22940.67130.082*
C120.0750 (4)0.2962 (3)0.5185 (7)0.0693 (15)
H12A0.13600.26600.52130.083*
C130.0762 (4)0.3624 (3)0.4254 (6)0.0597 (13)
H13A0.13810.37700.36480.072*
C140.0137 (3)0.4070 (3)0.4214 (5)0.0492 (11)
H14A0.01200.45180.35760.059*
C150.1921 (3)0.4838 (3)0.2477 (4)0.0418 (10)
C160.1999 (4)0.4125 (3)0.1711 (5)0.0528 (12)
H16A0.22620.36590.22170.063*
C170.1679 (4)0.4109 (3)0.0157 (5)0.0610 (13)
H17A0.17170.36290.03820.073*
C180.1307 (4)0.4805 (4)0.0572 (5)0.0628 (14)
H18A0.10950.47950.16080.075*
C190.1246 (4)0.5515 (3)0.0212 (5)0.0593 (13)
H19A0.10000.59850.02950.071*
C200.1549 (3)0.5535 (3)0.1751 (5)0.0519 (11)
H20A0.15020.60150.22880.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0605 (8)0.0463 (7)0.0763 (9)0.0077 (6)0.0087 (6)0.0054 (7)
S20.0616 (8)0.0618 (9)0.1185 (13)0.0057 (7)0.0472 (8)0.0103 (9)
O10.055 (2)0.063 (2)0.090 (3)0.0044 (17)0.0316 (19)0.0053 (19)
O20.0529 (18)0.0451 (17)0.0544 (19)0.0096 (14)0.0054 (15)0.0072 (15)
N10.0407 (19)0.042 (2)0.048 (2)0.0003 (16)0.0080 (16)0.0015 (17)
N20.048 (2)0.050 (2)0.044 (2)0.0088 (18)0.0075 (17)0.0045 (18)
N30.046 (2)0.048 (2)0.0357 (19)0.0114 (17)0.0056 (16)0.0052 (16)
C10.077 (4)0.053 (3)0.130 (5)0.006 (3)0.037 (4)0.001 (3)
C20.067 (3)0.050 (3)0.099 (4)0.009 (3)0.031 (3)0.008 (3)
C30.043 (2)0.048 (3)0.041 (2)0.003 (2)0.0004 (19)0.001 (2)
C40.041 (2)0.049 (3)0.048 (3)0.006 (2)0.004 (2)0.001 (2)
C50.043 (2)0.040 (2)0.060 (3)0.007 (2)0.004 (2)0.000 (2)
C60.044 (2)0.034 (2)0.049 (3)0.0006 (19)0.005 (2)0.000 (2)
C70.050 (3)0.042 (2)0.037 (2)0.001 (2)0.007 (2)0.0033 (19)
C80.042 (2)0.037 (2)0.039 (2)0.0023 (18)0.0122 (19)0.0011 (18)
C90.045 (2)0.041 (2)0.038 (2)0.0004 (19)0.0165 (19)0.005 (2)
C100.055 (3)0.047 (3)0.059 (3)0.001 (2)0.015 (2)0.006 (2)
C110.078 (4)0.050 (3)0.084 (4)0.009 (3)0.034 (3)0.012 (3)
C120.055 (3)0.061 (3)0.096 (4)0.017 (3)0.027 (3)0.010 (3)
C130.051 (3)0.062 (3)0.068 (3)0.004 (2)0.013 (2)0.012 (3)
C140.050 (3)0.048 (3)0.052 (3)0.002 (2)0.017 (2)0.004 (2)
C150.043 (2)0.050 (3)0.033 (2)0.006 (2)0.0097 (18)0.003 (2)
C160.061 (3)0.056 (3)0.043 (3)0.005 (2)0.012 (2)0.007 (2)
C170.064 (3)0.075 (4)0.044 (3)0.004 (3)0.010 (2)0.010 (3)
C180.053 (3)0.099 (4)0.037 (3)0.005 (3)0.006 (2)0.008 (3)
C190.058 (3)0.072 (3)0.049 (3)0.009 (3)0.011 (2)0.022 (3)
C200.056 (3)0.052 (3)0.050 (3)0.002 (2)0.015 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—C31.721 (4)C8—C91.470 (5)
S1—C11.779 (5)C9—C101.391 (6)
S2—C31.639 (4)C9—C141.395 (6)
O1—C41.209 (5)C10—C111.382 (6)
O2—C61.349 (5)C10—H10A0.9300
O2—C51.428 (5)C11—C121.380 (7)
N1—C31.378 (5)C11—H11A0.9300
N1—C41.409 (5)C12—C131.369 (7)
N1—C21.479 (5)C12—H12A0.9300
N2—C61.330 (5)C13—C141.371 (6)
N2—N31.371 (4)C13—H13A0.9300
N3—C81.369 (5)C14—H14A0.9300
N3—C151.437 (5)C15—C161.369 (6)
C1—C21.461 (7)C15—C201.372 (6)
C1—H1A0.9700C16—C171.397 (6)
C1—H1B0.9700C16—H16A0.9300
C2—H2B0.9700C17—C181.371 (7)
C2—H2C0.9700C17—H17A0.9300
C4—C51.513 (6)C18—C191.371 (7)
C5—H5A0.9700C18—H18A0.9300
C5—H5B0.9700C19—C201.380 (6)
C6—C71.393 (5)C19—H19A0.9300
C7—C81.372 (6)C20—H20A0.9300
C7—H7A0.9300
C3—S1—C194.9 (2)N3—C8—C7106.4 (3)
C6—O2—C5116.1 (3)N3—C8—C9125.4 (4)
C3—N1—C4129.3 (4)C7—C8—C9128.1 (4)
C3—N1—C2115.3 (4)C10—C9—C14117.8 (4)
C4—N1—C2115.4 (3)C10—C9—C8119.4 (4)
C6—N2—N3103.9 (3)C14—C9—C8122.5 (4)
C8—N3—N2111.8 (3)C11—C10—C9120.6 (5)
C8—N3—C15129.3 (3)C11—C10—H10A119.7
N2—N3—C15117.4 (3)C9—C10—H10A119.7
C2—C1—S1108.6 (4)C12—C11—C10120.1 (5)
C2—C1—H1A110.0C12—C11—H11A120.0
S1—C1—H1A110.0C10—C11—H11A120.0
C2—C1—H1B110.0C13—C12—C11120.0 (5)
S1—C1—H1B110.0C13—C12—H12A120.0
H1A—C1—H1B108.4C11—C12—H12A120.0
C1—C2—N1110.2 (4)C12—C13—C14120.0 (5)
C1—C2—H2B109.6C12—C13—H13A120.0
N1—C2—H2B109.6C14—C13—H13A120.0
C1—C2—H2C109.6C13—C14—C9121.4 (4)
N1—C2—H2C109.6C13—C14—H14A119.3
H2B—C2—H2C108.1C9—C14—H14A119.3
N1—C3—S2129.2 (3)C16—C15—C20121.6 (4)
N1—C3—S1110.9 (3)C16—C15—N3118.9 (4)
S2—C3—S1120.0 (3)C20—C15—N3119.4 (4)
O1—C4—N1117.9 (4)C15—C16—C17118.8 (4)
O1—C4—C5121.6 (4)C15—C16—H16A120.6
N1—C4—C5120.4 (4)C17—C16—H16A120.6
O2—C5—C4108.8 (3)C18—C17—C16119.7 (5)
O2—C5—H5A109.9C18—C17—H17A120.1
C4—C5—H5A109.9C16—C17—H17A120.1
O2—C5—H5B109.9C19—C18—C17120.5 (4)
C4—C5—H5B109.9C19—C18—H18A119.7
H5A—C5—H5B108.3C17—C18—H18A119.7
N2—C6—O2123.4 (4)C18—C19—C20120.3 (5)
N2—C6—C7112.5 (4)C18—C19—H19A119.9
O2—C6—C7124.1 (4)C20—C19—H19A119.9
C8—C7—C6105.4 (4)C15—C20—C19119.1 (5)
C8—C7—H7A127.3C15—C20—H20A120.5
C6—C7—H7A127.3C19—C20—H20A120.5
C6—N2—N3—C80.9 (4)C15—N3—C8—C918.9 (6)
C6—N2—N3—C15168.3 (4)C6—C7—C8—N30.0 (4)
C3—S1—C1—C23.6 (2)C6—C7—C8—C9174.8 (4)
S1—C1—C2—N13.8 (3)N3—C8—C9—C10155.4 (4)
C3—N1—C2—C12.3 (4)C7—C8—C9—C1030.7 (6)
C4—N1—C2—C1179.9 (3)N3—C8—C9—C1429.9 (6)
C4—N1—C3—S25.1 (6)C7—C8—C9—C14144.0 (4)
C2—N1—C3—S2177.5 (3)C14—C9—C10—C110.9 (6)
C4—N1—C3—S1177.0 (3)C8—C9—C10—C11174.0 (4)
C2—N1—C3—S10.4 (3)C9—C10—C11—C120.6 (7)
C1—S1—C3—N12.3 (3)C10—C11—C12—C130.1 (8)
C1—S1—C3—S2175.8 (3)C11—C12—C13—C140.2 (8)
C3—N1—C4—O1173.6 (4)C12—C13—C14—C90.1 (7)
C2—N1—C4—O13.8 (5)C10—C9—C14—C130.7 (6)
C3—N1—C4—C54.9 (6)C8—C9—C14—C13174.1 (4)
C2—N1—C4—C5177.7 (4)C8—N3—C15—C1654.4 (6)
C6—O2—C5—C477.9 (4)N2—N3—C15—C16110.5 (4)
O1—C4—C5—O21.1 (6)C8—N3—C15—C20128.9 (5)
N1—C4—C5—O2179.6 (3)N2—N3—C15—C2066.3 (5)
N3—N2—C6—O2178.4 (4)C20—C15—C16—C170.9 (7)
N3—N2—C6—C70.9 (5)N3—C15—C16—C17177.5 (4)
C5—O2—C6—N215.6 (6)C15—C16—C17—C180.9 (7)
C5—O2—C6—C7167.1 (4)C16—C17—C18—C190.1 (7)
N2—C6—C7—C80.6 (5)C17—C18—C19—C200.7 (7)
O2—C6—C7—C8178.1 (4)C16—C15—C20—C190.1 (7)
N2—N3—C8—C70.5 (4)N3—C15—C20—C19176.7 (4)
C15—N3—C8—C7166.1 (4)C18—C19—C20—C150.7 (7)
N2—N3—C8—C9175.6 (4)

Experimental details

Crystal data
Chemical formulaC20H17N3O2S2
Mr395.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.813 (3), 16.453 (3), 8.9470 (18)
β (°) 97.68 (3)
V3)1869.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.914, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3625, 3391, 2202
Rint0.024
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.149, 1.08
No. of reflections3391
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.68

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAly, A. A. (2009). J. Heterocycl. Chem. 46, 895–902.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGoodman, M., Ganis, P., Avitabile, G. & Migdal, S. (1971). J. Am. Chem. Soc. 93, 3328–3331.  CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Y. Y., He, G. K., Chen, K., Jin, Y., Li, Y. F. & Zhu, H. J. (2011). Eur. J. Org. Chem. 27, 5323–5330.  Web of Science CSD CrossRef Google Scholar
First citationMeegalla, S. K., Doller, D., Sha, D., Soll, R., Wisnewski, N., Silver, G. M. & Dhanoa, D. (2004). Bioorg. Med. Chem. Lett. 14, 4949–4953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorimoto, K., Makino, K., Yamamoto, S. & Sakata, G. (1990). J. Heterocycl. Chem. 27, 807–810.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds