metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­iodido{2-[(4-meth­­oxy­phen­yl)imino­meth­yl]pyridine-κ2N,N′}zinc

aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and bDepartment of Chemistry, Alzahra University, Tehran, Iran
*Correspondence e-mail: saleh@basu.ac.ir

(Received 25 June 2012; accepted 4 July 2012; online 10 July 2012)

In the title complex, [ZnI2(C13H12N2O)], the ZnII atom has a distorted tetra­hedral coordination. The organic ligand is bidentate, coordinating the ZnII atom via the two N atoms. The benzene and pyridine rings are oriented at a dihedral angle of 11.67 (9)°. In the crystal, weak C—H⋯I and C—H⋯O hydrogen bonds are observed, in addition to ππ stacking inter­actions, with a centroid–centroid distance of 3.72 (5) Å.

Related literature

For the synthesis of the ligand, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]). For related structures, see: Talei Bavil Olyai et al. (2008[Talei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.]); Khalaj et al. (2008[Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.]); Wriedt et al. (2008[Wriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C13H12N2O)]

  • Mr = 531.42

  • Triclinic, [P \overline 1]

  • a = 8.0290 (15) Å

  • b = 10.002 (2) Å

  • c = 10.538 (2) Å

  • α = 83.498 (4)°

  • β = 80.208 (4)°

  • γ = 71.441 (4)°

  • V = 789.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 150 K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Bruker APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.591, Tmax = 0.746

  • 6595 measured reflections

  • 3584 independent reflections

  • 3165 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.03

  • 3584 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯I2i 0.95 3.13 3.761 (3) 125
C1—H1A⋯O1ii 0.95 2.47 3.338 (4) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In ongoing our research interest on synthesis and characterization of metal complexes containing bidentate Schiff base ligands (Dehghanpour et al. (2009)), here we report structure of the zinc complex of the Schiff base of (4-methoxyphenyl)pyridin-2-ylmethyleneamine. The title complex, (I), was prepared by the reaction of ZnI2 with the bidentate ligand (4-methoxyphenyl)pyridin-2-ylmethyleneamine.

The molecular structure of the title complex, and the atom numbering scheme are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5, whereas the opposite I1—Zn1—I2 angle is much wider than the ideal tetrahedral angle. The Zn—I and Zn—N bond dimensions compare well with the values found in other tetrahedral Schiff base adducts of Zinc iodode (Talei Bavil Olyai et al. (2008); Khalaj et al., (2008); Wriedt et al., (2008)). In the crystal, weak C—H···I and C—H···O hydrogen bonds are observed in addition to ππ stacking interactions with a centroid to centroid distance of 3.72 (5) Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1—C1—C5 and C7—C12 rings; symmetry code: 1 - x, -y, 1 - z)fig. 2.

Related literature top

For the synthesis of the ligand, see: Dehghanpour et al. (2009). For related structures, see: Talei Bavil Olyai et al. (2008); Khalaj et al. (2008); Wriedt et al. (2008).

Experimental top

The title complex was prepared by the reaction of ZnI2 (31.9 mg, 0.1 mmol) and (4-methoxyphenyl)pyridin-2-ylmethyleneamine (21.2 mg, 0.1 mmol) in 15 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and yellow crystals of the title compound suitable for X-ray analysis precipitated within few days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.98 Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

In ongoing our research interest on synthesis and characterization of metal complexes containing bidentate Schiff base ligands (Dehghanpour et al. (2009)), here we report structure of the zinc complex of the Schiff base of (4-methoxyphenyl)pyridin-2-ylmethyleneamine. The title complex, (I), was prepared by the reaction of ZnI2 with the bidentate ligand (4-methoxyphenyl)pyridin-2-ylmethyleneamine.

The molecular structure of the title complex, and the atom numbering scheme are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5, whereas the opposite I1—Zn1—I2 angle is much wider than the ideal tetrahedral angle. The Zn—I and Zn—N bond dimensions compare well with the values found in other tetrahedral Schiff base adducts of Zinc iodode (Talei Bavil Olyai et al. (2008); Khalaj et al., (2008); Wriedt et al., (2008)). In the crystal, weak C—H···I and C—H···O hydrogen bonds are observed in addition to ππ stacking interactions with a centroid to centroid distance of 3.72 (5) Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1—C1—C5 and C7—C12 rings; symmetry code: 1 - x, -y, 1 - z)fig. 2.

For the synthesis of the ligand, see: Dehghanpour et al. (2009). For related structures, see: Talei Bavil Olyai et al. (2008); Khalaj et al. (2008); Wriedt et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [H atoms are represented as spheres of arbitrary radius].
[Figure 2] Fig. 2. A view of the packing of title molecules along the b axis, in which the Zn, I, N, C and H atoms are shown in green, purple, blue, grey and white balls, respectively.
Diiodido{2-[(4-methoxyphenyl)iminomethyl]pyridine- κ2N,N'}zinc top
Crystal data top
[ZnI2(C13H12N2O)]Z = 2
Mr = 531.42F(000) = 496
Triclinic, P1Dx = 2.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0290 (15) ÅCell parameters from 4756 reflections
b = 10.002 (2) Åθ = 2.7–27.5°
c = 10.538 (2) ŵ = 5.46 mm1
α = 83.498 (4)°T = 150 K
β = 80.208 (4)°Needle, yellow
γ = 71.441 (4)°0.25 × 0.12 × 0.08 mm
V = 789.0 (3) Å3
Data collection top
Bruker APEX DUO
diffractometer
3584 independent reflections
Radiation source: fine-focus sealed tube3165 reflections with I > 2σ(I)
Bruker Triumph monochromatorRint = 0.019
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.591, Tmax = 0.746k = 1212
6595 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
3584 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[ZnI2(C13H12N2O)]γ = 71.441 (4)°
Mr = 531.42V = 789.0 (3) Å3
Triclinic, P1Z = 2
a = 8.0290 (15) ÅMo Kα radiation
b = 10.002 (2) ŵ = 5.46 mm1
c = 10.538 (2) ÅT = 150 K
α = 83.498 (4)°0.25 × 0.12 × 0.08 mm
β = 80.208 (4)°
Data collection top
Bruker APEX DUO
diffractometer
3584 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3165 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.746Rint = 0.019
6595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 0.97 e Å3
3584 reflectionsΔρmin = 0.96 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29826 (5)0.21887 (4)0.31555 (3)0.02060 (9)
I10.03469 (3)0.34732 (2)0.19749 (2)0.02706 (7)
I20.48121 (3)0.36778 (2)0.36178 (2)0.02624 (7)
O10.2104 (3)0.2079 (3)0.9260 (2)0.0298 (5)
N10.4611 (3)0.0328 (3)0.2380 (2)0.0209 (5)
N20.2355 (3)0.0735 (3)0.4600 (2)0.0181 (5)
C10.5851 (4)0.0129 (4)0.1337 (3)0.0272 (7)
H1A0.60420.09310.08330.033*
C20.6867 (4)0.1210 (4)0.0967 (3)0.0298 (8)
H2A0.77530.13140.02310.036*
C30.6591 (4)0.2385 (4)0.1666 (3)0.0296 (7)
H3A0.72630.33080.14140.035*
C40.5294 (4)0.2188 (4)0.2758 (3)0.0271 (7)
H4A0.50660.29750.32650.033*
C50.4351 (4)0.0822 (3)0.3085 (3)0.0194 (6)
C60.3046 (4)0.0532 (3)0.4257 (3)0.0214 (6)
H6A0.27170.12830.47590.026*
C70.1168 (4)0.1062 (3)0.5786 (3)0.0182 (6)
C80.0968 (4)0.0023 (3)0.6749 (3)0.0222 (6)
H8A0.15960.09430.66200.027*
C90.0142 (4)0.0400 (3)0.7885 (3)0.0244 (7)
H9A0.02830.03090.85370.029*
C100.1054 (4)0.1810 (3)0.8083 (3)0.0220 (6)
C110.0880 (4)0.2861 (3)0.7136 (3)0.0243 (7)
H11A0.15210.38250.72620.029*
C120.0264 (4)0.2462 (3)0.5993 (3)0.0241 (7)
H12A0.04220.31700.53440.029*
C130.2999 (5)0.3525 (4)0.9528 (3)0.0327 (8)
H13A0.36310.35731.04110.049*
H13B0.38490.39510.89200.049*
H13C0.21280.40410.94360.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02370 (17)0.01803 (19)0.01862 (18)0.00642 (14)0.00014 (13)0.00062 (14)
I10.02842 (11)0.02108 (12)0.03186 (13)0.00595 (8)0.00941 (9)0.00063 (9)
I20.03011 (12)0.02100 (12)0.02954 (12)0.00861 (8)0.00965 (8)0.00107 (9)
O10.0389 (13)0.0246 (13)0.0197 (12)0.0077 (10)0.0096 (10)0.0021 (10)
N10.0222 (12)0.0215 (14)0.0189 (12)0.0063 (10)0.0031 (10)0.0017 (11)
N20.0190 (11)0.0183 (13)0.0164 (12)0.0058 (10)0.0023 (9)0.0018 (10)
C10.0308 (16)0.0309 (19)0.0207 (16)0.0142 (14)0.0033 (13)0.0015 (14)
C20.0252 (15)0.039 (2)0.0240 (17)0.0089 (14)0.0051 (13)0.0106 (15)
C30.0290 (16)0.0281 (19)0.0274 (18)0.0010 (14)0.0028 (13)0.0086 (15)
C40.0333 (16)0.0208 (17)0.0245 (17)0.0040 (13)0.0052 (13)0.0008 (13)
C50.0195 (13)0.0199 (16)0.0184 (14)0.0052 (11)0.0046 (11)0.0013 (12)
C60.0237 (14)0.0206 (16)0.0183 (15)0.0060 (12)0.0010 (11)0.0004 (12)
C70.0177 (13)0.0200 (15)0.0165 (14)0.0069 (11)0.0013 (11)0.0014 (12)
C80.0256 (15)0.0164 (15)0.0226 (15)0.0049 (12)0.0022 (12)0.0010 (12)
C90.0283 (15)0.0204 (16)0.0225 (16)0.0084 (13)0.0013 (12)0.0027 (13)
C100.0234 (14)0.0254 (17)0.0171 (14)0.0092 (12)0.0003 (11)0.0006 (13)
C110.0283 (15)0.0163 (15)0.0234 (16)0.0029 (12)0.0013 (13)0.0006 (13)
C120.0293 (15)0.0200 (16)0.0209 (15)0.0085 (13)0.0021 (12)0.0023 (13)
C130.0432 (19)0.0264 (19)0.0227 (17)0.0080 (15)0.0092 (14)0.0058 (14)
Geometric parameters (Å, º) top
Zn1—N12.067 (3)C4—H4A0.9500
Zn1—N22.095 (3)C5—C61.468 (4)
Zn1—I22.5326 (5)C6—H6A0.9500
Zn1—I12.5455 (5)C7—C121.380 (4)
O1—C101.377 (3)C7—C81.395 (4)
O1—C131.432 (4)C8—C91.376 (4)
N1—C11.338 (4)C8—H8A0.9500
N1—C51.351 (4)C9—C101.388 (4)
N2—C61.278 (4)C9—H9A0.9500
N2—C71.438 (4)C10—C111.389 (4)
C1—C21.388 (5)C11—C121.397 (4)
C1—H1A0.9500C11—H11A0.9500
C2—C31.373 (5)C12—H12A0.9500
C2—H2A0.9500C13—H13A0.9800
C3—C41.400 (5)C13—H13B0.9800
C3—H3A0.9500C13—H13C0.9800
C4—C51.385 (4)
N1—Zn1—N280.45 (10)N2—C6—C5119.7 (3)
N1—Zn1—I2110.55 (7)N2—C6—H6A120.1
N2—Zn1—I2118.95 (7)C5—C6—H6A120.1
N1—Zn1—I1114.61 (7)C12—C7—C8119.4 (3)
N2—Zn1—I1111.29 (7)C12—C7—N2118.2 (3)
I2—Zn1—I1116.02 (2)C8—C7—N2122.3 (3)
C10—O1—C13117.6 (3)C9—C8—C7119.9 (3)
C1—N1—C5118.3 (3)C9—C8—H8A120.1
C1—N1—Zn1129.6 (2)C7—C8—H8A120.1
C5—N1—Zn1112.07 (19)C8—C9—C10120.4 (3)
C6—N2—C7121.8 (3)C8—C9—H9A119.8
C6—N2—Zn1111.4 (2)C10—C9—H9A119.8
C7—N2—Zn1126.6 (2)O1—C10—C9115.9 (3)
N1—C1—C2122.1 (3)O1—C10—C11123.4 (3)
N1—C1—H1A118.9C9—C10—C11120.7 (3)
C2—C1—H1A118.9C10—C11—C12118.2 (3)
C3—C2—C1120.0 (3)C10—C11—H11A120.9
C3—C2—H2A120.0C12—C11—H11A120.9
C1—C2—H2A120.0C7—C12—C11121.4 (3)
C2—C3—C4118.2 (3)C7—C12—H12A119.3
C2—C3—H3A120.9C11—C12—H12A119.3
C4—C3—H3A120.9O1—C13—H13A109.5
C5—C4—C3118.7 (3)O1—C13—H13B109.5
C5—C4—H4A120.6H13A—C13—H13B109.5
C3—C4—H4A120.6O1—C13—H13C109.5
N1—C5—C4122.6 (3)H13A—C13—H13C109.5
N1—C5—C6115.5 (3)H13B—C13—H13C109.5
C4—C5—C6121.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···I2i0.953.133.761 (3)125
C1—H1A···O1ii0.952.473.338 (4)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[ZnI2(C13H12N2O)]
Mr531.42
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.0290 (15), 10.002 (2), 10.538 (2)
α, β, γ (°)83.498 (4), 80.208 (4), 71.441 (4)
V3)789.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX DUO
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.591, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6595, 3584, 3165
Rint0.019
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.03
No. of reflections3584
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.96

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···I2i0.953.133.761 (3)125
C1—H1A···O1ii0.952.473.338 (4)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z1.
 

Acknowledgements

The authors would like to acknowledge the Bu-Ali Sina University for partial support of this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds