organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Iso­propyl-2,6-bis­­(4-meth­­oxy­phen­yl)­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 18 May 2012; accepted 6 July 2012; online 14 July 2012)

In the title compound, C22H27NO3, the piperidine ring adopts a slightly distorted chair conformation. The dihedral angle between the two aromatic rings is 60.4 (1)°. In the crystal, the amino group forms a rather long N—H⋯O contact to a methoxy O atom. There are also C—H⋯O interactions present.

Related literature

For the biological activity of piperidine derivatives, see: Bochringer & Soehne (1961[Bochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Ganellin & Spickett (1965[Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.]); Hagenbach & Gysin (1952[Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.]); Jerom & Spencer (1988[Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.]); Katritzky & Fan (1990[Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.]); Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Ravindran et al. (1991[Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833-4840.]); Severs et al. (1965[Severs, W. B., Kinnard, W. J. & Buckley, J. P. (1965). Chem. Abstr. 63, 10538.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27NO3

  • Mr = 353.45

  • Orthorhombic, P 21 21 21

  • a = 7.5547 (3) Å

  • b = 11.8792 (6) Å

  • c = 22.1103 (10) Å

  • V = 1984.26 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.986

  • 10956 measured reflections

  • 2801 independent reflections

  • 1835 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.03

  • 2801 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 2.66 (2) 3.538 (2) 167.4 (17)
C16—H16A⋯O1ii 0.96 2.57 3.474 (4) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the family of heterocyclic compounds, piperidin-4-ones possess varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), anti-inflammatory and anticancer activities (Katritzky & Fan, 1990). Several 2,6-disubstituted piperidines are found to be useful as tranquillisers (Bochringer & Soehne, 1961) and possess hypotensive activity (Severs et al., 1965), a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965). Also the substitution of methoxy phenyl groups at 2,6-positions is found to be active against CNS subpanels. In addition, the bulkiness of the subtituent in different positons of the piperidine ring leads to the decrease in carcinogenecity (Ravindran et al., 1991). In view of the importance, the crystallographic study of the title compound has been carried out to establish the molecular structure and conformation.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted chair conformation. The puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.121 (3) Å, q3 = 0.569 (3) Å, φ2 = 7.6 (1)° and Δs(N1 & C4) = 1.3 (2)°. The sum of the bond angles around the atom N1 [333.5°] is in accordance with sp3 hybridization.

The best plane of the piperidine ring is oriented with respect to the phenyl rings (C9—C14) & (C18—C23) at angles of 82.8 (1)° & 86.2 (1)°, respectively. The two phenyl rings are set apart with an angle of 60.4 (1)°. The methoxy groups substituted at the phenyl rings are coplanar, which can be seen from the torsion angles of [C13—C12—O1—C7=] 4.4 (4)° for (C9—C14) ring and [C20—C21—O3—C8 =] 1.6 (5)° for (C18—C23) ring.

The packing of the molecules is stabilized by a rather long N-H···O contact and by C—H···O interactions in addition to van der Waals forces.

Related literature top

For the biological activity of piperidine derivatives, see: Bochringer & Soehne (1961); El-Subbagh et al. (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Perumal et al. (2001); Ravindran et al. (1991); Severs et al.(1965). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Ammonium acetate (100 mmol), anisaldehyde (200 mmol) and isobutylmethylketone (100 mmol) in ethanol (30 ml) were heated on a hot plate at 50–55° C and after the completion of reaction, water was added and extracted with ether, dried and recrystallized from ethanol.

Refinement top

Due to the absence of anomalous scatterers, the absolute configuration could not be determined and Friedel pairs were merged. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The H atom bonded to N was freely refined.

Structure description top

In the family of heterocyclic compounds, piperidin-4-ones possess varied biological properties such as antiviral, antitumour (El-Subbagh et al., 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal et al., 2001; Hagenbach & Gysin, 1952), anti-inflammatory and anticancer activities (Katritzky & Fan, 1990). Several 2,6-disubstituted piperidines are found to be useful as tranquillisers (Bochringer & Soehne, 1961) and possess hypotensive activity (Severs et al., 1965), a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965). Also the substitution of methoxy phenyl groups at 2,6-positions is found to be active against CNS subpanels. In addition, the bulkiness of the subtituent in different positons of the piperidine ring leads to the decrease in carcinogenecity (Ravindran et al., 1991). In view of the importance, the crystallographic study of the title compound has been carried out to establish the molecular structure and conformation.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted chair conformation. The puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.121 (3) Å, q3 = 0.569 (3) Å, φ2 = 7.6 (1)° and Δs(N1 & C4) = 1.3 (2)°. The sum of the bond angles around the atom N1 [333.5°] is in accordance with sp3 hybridization.

The best plane of the piperidine ring is oriented with respect to the phenyl rings (C9—C14) & (C18—C23) at angles of 82.8 (1)° & 86.2 (1)°, respectively. The two phenyl rings are set apart with an angle of 60.4 (1)°. The methoxy groups substituted at the phenyl rings are coplanar, which can be seen from the torsion angles of [C13—C12—O1—C7=] 4.4 (4)° for (C9—C14) ring and [C20—C21—O3—C8 =] 1.6 (5)° for (C18—C23) ring.

The packing of the molecules is stabilized by a rather long N-H···O contact and by C—H···O interactions in addition to van der Waals forces.

For the biological activity of piperidine derivatives, see: Bochringer & Soehne (1961); El-Subbagh et al. (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Perumal et al. (2001); Ravindran et al. (1991); Severs et al.(1965). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-Isopropyl-2,6-bis(4-methoxyphenyl)piperidin-4-one top
Crystal data top
C22H27NO3F(000) = 760
Mr = 353.45Dx = 1.183 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2938 reflections
a = 7.5547 (3) Åθ = 1.8–28.3°
b = 11.8792 (6) ŵ = 0.08 mm1
c = 22.1103 (10) ÅT = 293 K
V = 1984.26 (16) Å3Black, white crystalline
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2801 independent reflections
Radiation source: fine-focus sealed tube1835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.983, Tmax = 0.986k = 158
10956 measured reflectionsl = 2729
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0599P]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max = 0.015
241 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C22H27NO3V = 1984.26 (16) Å3
Mr = 353.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5547 (3) ŵ = 0.08 mm1
b = 11.8792 (6) ÅT = 293 K
c = 22.1103 (10) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1835 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.038
10956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
2801 reflectionsΔρmin = 0.13 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.161 (4)0.568 (2)0.1225 (11)0.049 (7)*
O10.3703 (3)0.80940 (17)0.10981 (8)0.0655 (6)
O20.6143 (3)0.2871 (2)0.15552 (10)0.0773 (7)
O30.2117 (3)0.5919 (2)0.37078 (10)0.0865 (8)
N10.2620 (3)0.53392 (18)0.13369 (9)0.0446 (5)
C20.3533 (3)0.4891 (2)0.08036 (10)0.0433 (6)
H20.29100.42120.06690.052*
C30.5444 (3)0.4554 (2)0.09959 (11)0.0451 (6)
H30.59930.52410.11550.054*
C40.5323 (4)0.3749 (3)0.15235 (13)0.0556 (7)
C50.4118 (4)0.4096 (3)0.20247 (12)0.0676 (9)
H5A0.46560.47110.22470.081*
H5B0.39660.34700.23020.081*
C60.2300 (3)0.4469 (2)0.17908 (12)0.0507 (6)
H60.17370.38250.15920.061*
C70.3092 (5)0.7822 (3)0.16890 (12)0.0731 (9)
H7A0.37850.72150.18500.110*
H7B0.32060.84690.19460.110*
H7C0.18720.75990.16700.110*
C80.3714 (6)0.5342 (4)0.38404 (18)0.1054 (14)
H8A0.44770.53630.34930.158*
H8B0.42920.56990.41760.158*
H8C0.34530.45740.39410.158*
C90.3520 (3)0.5733 (2)0.02940 (10)0.0413 (5)
C100.4059 (3)0.6843 (2)0.03831 (12)0.0508 (6)
H100.43900.70760.07680.061*
C110.4112 (4)0.7599 (2)0.00879 (13)0.0555 (7)
H110.44860.83330.00190.067*
C120.3614 (3)0.7275 (2)0.06612 (11)0.0470 (6)
C130.3080 (4)0.6181 (2)0.07623 (11)0.0518 (7)
H130.27490.59500.11480.062*
C140.3041 (3)0.5433 (2)0.02846 (11)0.0493 (6)
H140.26760.46970.03570.059*
C150.6625 (3)0.4165 (2)0.04695 (12)0.0470 (6)
H150.65560.47570.01620.056*
C160.8571 (3)0.4099 (3)0.06599 (13)0.0578 (7)
H16A0.89100.47920.08510.087*
H16B0.92960.39760.03090.087*
H16C0.87280.34880.09390.087*
C170.6047 (4)0.3087 (3)0.01612 (14)0.0691 (8)
H17A0.48280.31500.00430.104*
H17B0.61810.24670.04360.104*
H17C0.67650.29610.01910.104*
C180.1107 (3)0.4866 (2)0.22900 (11)0.0489 (6)
C190.0469 (3)0.4320 (2)0.24044 (12)0.0521 (6)
H190.07960.37200.21590.063*
C200.1579 (4)0.4634 (3)0.28710 (12)0.0577 (7)
H200.26270.42430.29390.069*
C210.1124 (4)0.5531 (3)0.32367 (12)0.0579 (7)
C220.0451 (4)0.6089 (3)0.31305 (13)0.0625 (8)
H220.07740.66890.33770.075*
C230.1547 (4)0.5767 (2)0.26643 (13)0.0577 (7)
H230.25970.61560.25980.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0953 (15)0.0511 (11)0.0502 (11)0.0043 (11)0.0027 (10)0.0050 (9)
O20.0696 (13)0.0697 (14)0.0927 (15)0.0253 (12)0.0052 (11)0.0272 (12)
O30.0879 (16)0.1049 (19)0.0665 (14)0.0023 (15)0.0205 (12)0.0176 (13)
N10.0394 (10)0.0469 (13)0.0475 (12)0.0030 (10)0.0020 (9)0.0051 (10)
C20.0364 (10)0.0433 (14)0.0503 (13)0.0006 (10)0.0025 (10)0.0002 (11)
C30.0401 (11)0.0420 (14)0.0532 (14)0.0022 (10)0.0056 (11)0.0021 (13)
C40.0427 (13)0.0603 (18)0.0638 (17)0.0085 (13)0.0080 (12)0.0113 (15)
C50.0638 (17)0.085 (2)0.0543 (16)0.0188 (17)0.0014 (14)0.0201 (16)
C60.0504 (13)0.0529 (16)0.0487 (14)0.0018 (12)0.0016 (11)0.0082 (13)
C70.108 (2)0.068 (2)0.0435 (16)0.0003 (19)0.0086 (17)0.0070 (15)
C80.096 (3)0.137 (4)0.083 (2)0.012 (3)0.038 (2)0.014 (2)
C90.0333 (10)0.0407 (14)0.0499 (14)0.0004 (10)0.0019 (10)0.0008 (11)
C100.0588 (15)0.0479 (16)0.0457 (14)0.0043 (13)0.0080 (12)0.0018 (13)
C110.0693 (17)0.0400 (15)0.0572 (16)0.0103 (13)0.0047 (14)0.0029 (13)
C120.0519 (13)0.0414 (16)0.0478 (14)0.0024 (12)0.0057 (11)0.0012 (12)
C130.0661 (16)0.0472 (16)0.0420 (14)0.0008 (12)0.0071 (12)0.0036 (12)
C140.0567 (14)0.0383 (14)0.0529 (15)0.0021 (11)0.0056 (12)0.0028 (12)
C150.0413 (11)0.0454 (14)0.0543 (14)0.0048 (11)0.0024 (11)0.0031 (12)
C160.0431 (13)0.0596 (18)0.0706 (18)0.0027 (12)0.0004 (13)0.0089 (15)
C170.0547 (16)0.0677 (19)0.085 (2)0.0008 (15)0.0062 (15)0.0205 (17)
C180.0478 (13)0.0529 (16)0.0461 (13)0.0025 (12)0.0039 (11)0.0104 (13)
C190.0509 (13)0.0556 (16)0.0498 (14)0.0027 (13)0.0045 (12)0.0008 (13)
C200.0513 (13)0.073 (2)0.0485 (14)0.0068 (14)0.0014 (12)0.0042 (14)
C210.0625 (15)0.0669 (19)0.0443 (14)0.0046 (14)0.0016 (13)0.0002 (14)
C220.0728 (18)0.0581 (19)0.0566 (17)0.0064 (15)0.0047 (15)0.0039 (15)
C230.0561 (15)0.0556 (17)0.0615 (17)0.0095 (14)0.0029 (13)0.0068 (14)
Geometric parameters (Å, º) top
O1—C121.373 (3)C10—C111.376 (4)
O1—C71.423 (3)C10—H100.9300
O2—C41.215 (3)C11—C121.377 (4)
O3—C211.364 (3)C11—H110.9300
O3—C81.419 (5)C12—C131.379 (4)
N1—C61.461 (3)C13—C141.381 (4)
N1—C21.466 (3)C13—H130.9300
N1—H10.90 (3)C14—H140.9300
C2—C91.507 (3)C15—C171.515 (4)
C2—C31.557 (3)C15—C161.531 (3)
C2—H20.9800C15—H150.9800
C3—C41.512 (4)C16—H16A0.9600
C3—C151.538 (3)C16—H16B0.9600
C3—H30.9800C16—H16C0.9600
C4—C51.493 (4)C17—H17A0.9600
C5—C61.533 (4)C17—H17B0.9600
C5—H5A0.9700C17—H17C0.9600
C5—H5B0.9700C18—C191.380 (4)
C6—C181.501 (4)C18—C231.392 (4)
C6—H60.9800C19—C201.381 (4)
C7—H7A0.9600C19—H190.9300
C7—H7B0.9600C20—C211.382 (4)
C7—H7C0.9600C20—H200.9300
C8—H8A0.9600C21—C221.382 (4)
C8—H8B0.9600C22—C231.377 (4)
C8—H8C0.9600C22—H220.9300
C9—C141.377 (3)C23—H230.9300
C9—C101.393 (4)
C12—O1—C7118.0 (2)C9—C10—H10119.4
C21—O3—C8117.5 (3)C10—C11—C12120.4 (3)
C6—N1—C2111.9 (2)C10—C11—H11119.8
C6—N1—H1111.7 (16)C12—C11—H11119.8
C2—N1—H1109.9 (16)O1—C12—C11115.9 (2)
N1—C2—C9110.95 (19)O1—C12—C13124.6 (2)
N1—C2—C3108.06 (19)C11—C12—C13119.5 (2)
C9—C2—C3112.40 (18)C12—C13—C14119.3 (2)
N1—C2—H2108.4C12—C13—H13120.4
C9—C2—H2108.4C14—C13—H13120.4
C3—C2—H2108.4C9—C14—C13122.6 (2)
C4—C3—C15115.4 (2)C9—C14—H14118.7
C4—C3—C2108.5 (2)C13—C14—H14118.7
C15—C3—C2114.1 (2)C17—C15—C16111.0 (2)
C4—C3—H3106.0C17—C15—C3115.3 (2)
C15—C3—H3106.0C16—C15—C3111.4 (2)
C2—C3—H3106.0C17—C15—H15106.2
O2—C4—C5120.4 (3)C16—C15—H15106.2
O2—C4—C3123.9 (3)C3—C15—H15106.2
C5—C4—C3115.8 (2)C15—C16—H16A109.5
C4—C5—C6112.1 (2)C15—C16—H16B109.5
C4—C5—H5A109.2H16A—C16—H16B109.5
C6—C5—H5A109.2C15—C16—H16C109.5
C4—C5—H5B109.2H16A—C16—H16C109.5
C6—C5—H5B109.2H16B—C16—H16C109.5
H5A—C5—H5B107.9C15—C17—H17A109.5
N1—C6—C18112.5 (2)C15—C17—H17B109.5
N1—C6—C5106.8 (2)H17A—C17—H17B109.5
C18—C6—C5112.4 (2)C15—C17—H17C109.5
N1—C6—H6108.4H17A—C17—H17C109.5
C18—C6—H6108.4H17B—C17—H17C109.5
C5—C6—H6108.4C19—C18—C23117.3 (2)
O1—C7—H7A109.5C19—C18—C6120.4 (2)
O1—C7—H7B109.5C23—C18—C6122.4 (2)
H7A—C7—H7B109.5C18—C19—C20122.3 (3)
O1—C7—H7C109.5C18—C19—H19118.9
H7A—C7—H7C109.5C20—C19—H19118.9
H7B—C7—H7C109.5C19—C20—C21119.6 (3)
O3—C8—H8A109.5C19—C20—H20120.2
O3—C8—H8B109.5C21—C20—H20120.2
H8A—C8—H8B109.5O3—C21—C22116.2 (3)
O3—C8—H8C109.5O3—C21—C20124.8 (3)
H8A—C8—H8C109.5C22—C21—C20119.0 (3)
H8B—C8—H8C109.5C23—C22—C21120.8 (3)
C14—C9—C10117.0 (2)C23—C22—H22119.6
C14—C9—C2121.6 (2)C21—C22—H22119.6
C10—C9—C2121.3 (2)C22—C23—C18121.0 (3)
C11—C10—C9121.3 (2)C22—C23—H23119.5
C11—C10—H10119.4C18—C23—H23119.5
C6—N1—C2—C9168.49 (19)C10—C11—C12—C130.7 (4)
C6—N1—C2—C367.9 (2)O1—C12—C13—C14179.8 (2)
N1—C2—C3—C454.9 (3)C11—C12—C13—C140.5 (4)
C9—C2—C3—C4177.7 (2)C10—C9—C14—C130.1 (4)
N1—C2—C3—C15174.9 (2)C2—C9—C14—C13177.6 (2)
C9—C2—C3—C1552.1 (3)C12—C13—C14—C90.1 (4)
C15—C3—C4—O23.0 (4)C4—C3—C15—C1761.6 (3)
C2—C3—C4—O2132.5 (3)C2—C3—C15—C1765.1 (3)
C15—C3—C4—C5177.4 (2)C4—C3—C15—C1666.0 (3)
C2—C3—C4—C547.9 (3)C2—C3—C15—C16167.3 (2)
O2—C4—C5—C6131.9 (3)N1—C6—C18—C19120.8 (3)
C3—C4—C5—C648.5 (4)C5—C6—C18—C19118.7 (3)
C2—N1—C6—C18170.4 (2)N1—C6—C18—C2361.0 (3)
C2—N1—C6—C565.9 (3)C5—C6—C18—C2359.5 (3)
C4—C5—C6—N153.8 (3)C23—C18—C19—C200.5 (4)
C4—C5—C6—C18177.6 (3)C6—C18—C19—C20177.9 (2)
N1—C2—C9—C14131.8 (2)C18—C19—C20—C210.7 (4)
C3—C2—C9—C14107.1 (3)C8—O3—C21—C22178.0 (3)
N1—C2—C9—C1050.7 (3)C8—O3—C21—C201.6 (5)
C3—C2—C9—C1070.4 (3)C19—C20—C21—O3179.7 (3)
C14—C9—C10—C110.2 (4)C19—C20—C21—C220.8 (4)
C2—C9—C10—C11177.4 (2)O3—C21—C22—C23179.7 (3)
C9—C10—C11—C120.6 (4)C20—C21—C22—C230.7 (4)
C7—O1—C12—C11175.9 (3)C21—C22—C23—C180.5 (4)
C7—O1—C12—C134.4 (4)C19—C18—C23—C220.4 (4)
C10—C11—C12—O1179.6 (2)C6—C18—C23—C22177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)2.66 (2)3.538 (2)167.4 (17)
C16—H16A···O1ii0.962.573.474 (4)156
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC22H27NO3
Mr353.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.5547 (3), 11.8792 (6), 22.1103 (10)
V3)1984.26 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10956, 2801, 1835
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.03
No. of reflections2801
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)2.66 (2)3.538 (2)167.4 (17)
C16—H16A···O1ii0.962.573.474 (4)156.0
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z.
 

Acknowledgements

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamilnadu, India, for the encouragement. SP thanks UGC, New Delhi, for financial assistance in the form of a major research project.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGanellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619–625.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.  Google Scholar
First citationKatritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationRavindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833–4840.  CrossRef CAS Web of Science Google Scholar
First citationSevers, W. B., Kinnard, W. J. & Buckley, J. P. (1965). Chem. Abstr. 63, 10538.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds