organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-meth­­oxy­phen­yl)-2-phenyl-3-(4-phenyl-1,2,3-selena­diazol-5-yl)propano­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Sri Sarada College for Women (Autonomous), Fairlands, Salem 636 016, India, and cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 19 May 2012; accepted 22 June 2012; online 7 July 2012)

In the title compound, C26H24N2O3Se, the selenadiazole ring is planar [maximum deviation = 0.002 (2) Å]. The dihedral angle between the selenadiazole ring and the attached phenyl ring is 49.00 (13)°. The crystal structure is stabilized by inter­molecular C—H⋯N and C—H⋯π inter­actions.

Related literature

For general background to selenadiazole derivatives, see: El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent No. 6166054.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O3Se

  • Mr = 491.43

  • Monoclinic, P 21 /c

  • a = 11.8187 (4) Å

  • b = 12.8241 (5) Å

  • c = 16.1837 (6) Å

  • β = 105.280 (2)°

  • V = 2366.16 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.748, Tmax = 0.785

  • 22954 measured reflections

  • 5918 independent reflections

  • 3015 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 0.99

  • 5918 reflections

  • 291 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1i 0.93 2.57 3.420 (3) 152
C12—H12⋯Cg4ii 0.96 2.81 3.673 (3) 154
C24—H24ACg3iii 0.96 2.80 3.580 (3) 138
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Selenium containing compounds, like 1,2,3-selenadiazoles are of increasing interest because of their chemical properties and biological applications such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. In view of the growing importance of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The selenadiazol ring is planar(maximum deviation -0.002 (2) Å). The dihedral angle between the selenadiazol ring and the attached phenyl ring(C2—C7) is 49.00 (13)°. The propanoate group assumes an extended conformation which can be seen from the torsion angle (C16—C23—O1—C24) value of 178.4 (2)°. The methoxy group lies in the plane of the phenyl ring (C10—C15) and twisted away with propanate group & phenyl ring (C17—C22) at angles of 8.21 (12)° & 68.11 (12)°, respectively. The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by C—H···N and C—H···π types of intermolecular interactions in addition to van der Waals forces.

Related literature top

For general background to selenadiazole derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Kuroda et al. (2001); Padmavathi et al. (2002); Plano et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of ethyl-3-(4-methoxyphenyl)-5-oxo-2,5-diphenylpentanoate (1 mmol), semicarbazide hydrochloride(2 mmol) and anhydrous sodium acetate (3 mmol) in ethanol (10 ml) was refluxed for 4 hrs. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixtureof semicarbazone (1 mmol) and SeO2 (2 mmol) in tetrahydrofuran (10 ml) were refluxed on a water bath for 1 h. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60–120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give ethyl 3-(4,5-dihydro-4-phenyl-1,2, 3-selenadiazol-5-yl)-3-(4-methoxyphenyl)-2-phenylpropanoate.

Refinement top

H atoms were positioned geometrically C—H=0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The Uij components of atom pairs C19/C20 and C24/C25 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.01.

Structure description top

Selenium containing compounds, like 1,2,3-selenadiazoles are of increasing interest because of their chemical properties and biological applications such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. In view of the growing importance of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The selenadiazol ring is planar(maximum deviation -0.002 (2) Å). The dihedral angle between the selenadiazol ring and the attached phenyl ring(C2—C7) is 49.00 (13)°. The propanoate group assumes an extended conformation which can be seen from the torsion angle (C16—C23—O1—C24) value of 178.4 (2)°. The methoxy group lies in the plane of the phenyl ring (C10—C15) and twisted away with propanate group & phenyl ring (C17—C22) at angles of 8.21 (12)° & 68.11 (12)°, respectively. The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by C—H···N and C—H···π types of intermolecular interactions in addition to van der Waals forces.

For general background to selenadiazole derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Kuroda et al. (2001); Padmavathi et al. (2002); Plano et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis.
Ethyl 3-(4-methoxyphenyl)-2-phenyl-3-(4-phenyl-1,2,3-selenadiazol-5-yl)propanoate top
Crystal data top
C26H24N2O3SeF(000) = 1008
Mr = 491.43Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5918 reflections
a = 11.8187 (4) Åθ = 1.8–28.4°
b = 12.8241 (5) ŵ = 1.62 mm1
c = 16.1837 (6) ÅT = 293 K
β = 105.280 (2)°Block, white crystalline
V = 2366.16 (15) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5918 independent reflections
Radiation source: fine-focus sealed tube3015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.748, Tmax = 0.785k = 1317
22954 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2327P]
where P = (Fo2 + 2Fc2)/3
5918 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C26H24N2O3SeV = 2366.16 (15) Å3
Mr = 491.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8187 (4) ŵ = 1.62 mm1
b = 12.8241 (5) ÅT = 293 K
c = 16.1837 (6) Å0.20 × 0.15 × 0.15 mm
β = 105.280 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3015 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.785Rint = 0.046
22954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
5918 reflectionsΔρmin = 0.28 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93252 (18)0.38149 (19)0.26921 (14)0.0573 (6)
C20.8634 (2)0.45552 (18)0.30523 (15)0.0600 (6)
C30.8805 (3)0.4614 (2)0.39336 (18)0.0801 (8)
H30.93600.41880.42920.096*
C40.8160 (3)0.5299 (3)0.4282 (2)0.0970 (10)
H40.82840.53350.48730.116*
C50.7334 (3)0.5929 (3)0.3758 (3)0.1004 (10)
H50.68890.63810.39950.120*
C60.7164 (3)0.5894 (2)0.2896 (2)0.0874 (8)
H60.66070.63250.25440.105*
C70.7816 (2)0.5218 (2)0.25363 (17)0.0689 (7)
H70.77060.52080.19460.083*
C80.89231 (18)0.31086 (19)0.20497 (14)0.0552 (6)
C90.76498 (17)0.28768 (18)0.15966 (13)0.0517 (6)
H90.71940.35020.16420.062*
C100.71970 (17)0.20024 (19)0.20511 (13)0.0506 (6)
C110.6465 (2)0.2215 (2)0.25734 (16)0.0621 (6)
H110.62530.29020.26430.075*
C120.6049 (2)0.1429 (2)0.29906 (15)0.0692 (7)
H120.55570.15890.33370.083*
C130.63546 (19)0.0406 (2)0.28997 (14)0.0610 (6)
C140.7102 (2)0.0182 (2)0.23980 (14)0.0602 (6)
H140.73310.05020.23410.072*
C150.75087 (19)0.0977 (2)0.19819 (14)0.0569 (6)
H150.80100.08180.16430.068*
C160.74743 (19)0.26514 (18)0.06321 (14)0.0532 (6)
H160.78540.19840.05810.064*
C170.6178 (2)0.25479 (19)0.01685 (14)0.0559 (6)
C180.5418 (2)0.3368 (2)0.01082 (15)0.0692 (7)
H180.56940.40040.03580.083*
C190.4241 (2)0.3260 (3)0.03218 (17)0.0874 (9)
H190.37330.38210.03570.105*
C200.3833 (3)0.2340 (4)0.06894 (19)0.1056 (13)
H200.30460.22730.09830.127*
C210.4568 (3)0.1517 (3)0.0631 (2)0.1099 (12)
H210.42800.08820.08760.132*
C220.5750 (2)0.1614 (2)0.02057 (16)0.0825 (8)
H220.62510.10480.01740.099*
C230.8048 (2)0.3473 (2)0.02199 (15)0.0636 (6)
C240.9300 (3)0.3684 (3)0.0716 (2)0.1186 (13)
H24A0.89750.36160.13300.142*
H24B0.92330.44090.05630.142*
C251.0508 (3)0.3386 (3)0.0492 (3)0.1373 (15)
H25A1.08660.35790.00910.206*
H25B1.09010.37340.08630.206*
H25C1.05660.26450.05550.206*
C260.6290 (3)0.1371 (3)0.3307 (2)0.0979 (10)
H26A0.61170.16050.27230.147*
H26B0.59000.18130.36240.147*
H26C0.71210.13990.35580.147*
N11.11262 (17)0.3127 (2)0.27663 (15)0.0825 (7)
N21.05298 (17)0.37906 (18)0.30570 (13)0.0737 (6)
O10.79677 (18)0.43897 (17)0.03213 (13)0.0920 (6)
O20.86503 (16)0.30345 (16)0.02744 (11)0.0793 (5)
O30.58939 (16)0.03346 (17)0.33286 (11)0.0845 (6)
Se11.01611 (2)0.23384 (2)0.189123 (19)0.07749 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (12)0.0620 (15)0.0588 (14)0.0054 (11)0.0022 (10)0.0037 (12)
C20.0525 (13)0.0566 (15)0.0631 (15)0.0116 (12)0.0011 (11)0.0054 (12)
C30.087 (2)0.074 (2)0.0717 (19)0.0048 (16)0.0061 (15)0.0003 (15)
C40.124 (3)0.088 (2)0.084 (2)0.012 (2)0.037 (2)0.0146 (19)
C50.099 (2)0.087 (2)0.123 (3)0.002 (2)0.042 (2)0.018 (2)
C60.0725 (18)0.071 (2)0.109 (2)0.0075 (16)0.0075 (17)0.0109 (18)
C70.0575 (14)0.0651 (17)0.0728 (16)0.0058 (13)0.0024 (12)0.0041 (14)
C80.0386 (11)0.0635 (15)0.0582 (13)0.0012 (11)0.0032 (10)0.0024 (12)
C90.0339 (10)0.0581 (15)0.0572 (13)0.0005 (10)0.0018 (9)0.0093 (11)
C100.0333 (10)0.0654 (16)0.0495 (12)0.0019 (10)0.0046 (9)0.0100 (11)
C110.0460 (12)0.0768 (17)0.0615 (15)0.0070 (13)0.0105 (11)0.0119 (14)
C120.0502 (13)0.103 (2)0.0595 (15)0.0009 (15)0.0233 (12)0.0128 (15)
C130.0465 (13)0.083 (2)0.0532 (14)0.0084 (13)0.0119 (11)0.0031 (13)
C140.0530 (13)0.0678 (16)0.0602 (14)0.0020 (12)0.0159 (11)0.0057 (13)
C150.0463 (12)0.0696 (17)0.0577 (14)0.0014 (12)0.0190 (11)0.0060 (13)
C160.0414 (11)0.0583 (14)0.0563 (13)0.0021 (11)0.0065 (10)0.0027 (11)
C170.0450 (12)0.0755 (18)0.0434 (12)0.0083 (12)0.0051 (10)0.0011 (11)
C180.0496 (14)0.091 (2)0.0614 (15)0.0017 (14)0.0058 (11)0.0004 (14)
C190.0488 (15)0.147 (3)0.0614 (16)0.0033 (18)0.0053 (12)0.0100 (18)
C200.0575 (18)0.185 (4)0.0605 (18)0.036 (2)0.0079 (14)0.014 (2)
C210.091 (2)0.128 (3)0.089 (2)0.052 (2)0.0134 (19)0.009 (2)
C220.0764 (18)0.083 (2)0.0766 (17)0.0195 (16)0.0004 (15)0.0111 (16)
C230.0447 (13)0.079 (2)0.0600 (15)0.0092 (14)0.0021 (11)0.0016 (15)
C240.080 (2)0.169 (4)0.110 (2)0.011 (2)0.0330 (19)0.049 (2)
C250.097 (3)0.108 (3)0.229 (5)0.029 (2)0.082 (3)0.020 (3)
C260.105 (2)0.098 (3)0.097 (2)0.017 (2)0.0379 (19)0.0164 (19)
N10.0399 (11)0.1018 (18)0.0956 (17)0.0025 (12)0.0000 (11)0.0053 (14)
N20.0448 (11)0.0841 (16)0.0790 (14)0.0109 (11)0.0068 (10)0.0003 (12)
O10.0964 (15)0.0734 (14)0.1110 (16)0.0179 (12)0.0357 (12)0.0019 (12)
O20.0643 (11)0.1052 (14)0.0741 (11)0.0009 (11)0.0280 (10)0.0144 (11)
O30.0791 (12)0.1050 (16)0.0787 (12)0.0122 (12)0.0376 (10)0.0076 (11)
Se10.04128 (15)0.0978 (3)0.0883 (2)0.00942 (14)0.00818 (13)0.00765 (16)
Geometric parameters (Å, º) top
C1—C81.366 (3)C16—C231.502 (3)
C1—N21.390 (3)C16—C171.524 (3)
C1—C21.470 (3)C16—H160.9800
C2—C71.388 (3)C17—C181.369 (3)
C2—C31.389 (3)C17—C221.377 (3)
C3—C41.377 (4)C18—C191.389 (3)
C3—H30.9300C18—H180.9300
C4—C51.375 (4)C19—C201.351 (5)
C4—H40.9300C19—H190.9300
C5—C61.357 (4)C20—C211.355 (5)
C5—H50.9300C20—H200.9300
C6—C71.386 (4)C21—C221.390 (4)
C6—H60.9300C21—H210.9300
C7—H70.9300C22—H220.9300
C8—C91.520 (3)C23—O11.194 (3)
C8—Se11.838 (2)C23—O21.328 (3)
C9—C101.514 (3)C24—C251.429 (4)
C9—C161.547 (3)C24—O21.444 (3)
C9—H90.9800C24—H24A0.9700
C10—C151.378 (3)C24—H24B0.9700
C10—C111.386 (3)C25—H25A0.9600
C11—C121.375 (3)C25—H25B0.9600
C11—H110.9300C25—H25C0.9600
C12—C131.380 (4)C26—O31.412 (4)
C12—H120.9300C26—H26A0.9600
C13—O31.371 (3)C26—H26B0.9600
C13—C141.378 (3)C26—H26C0.9600
C14—C151.377 (3)N1—N21.272 (3)
C14—H140.9300N1—Se11.865 (2)
C15—H150.9300
C8—C1—N2114.9 (2)C23—C16—C9111.16 (19)
C8—C1—C2127.72 (19)C17—C16—C9111.29 (18)
N2—C1—C2117.4 (2)C23—C16—H16107.8
C7—C2—C3118.3 (3)C17—C16—H16107.8
C7—C2—C1121.9 (2)C9—C16—H16107.8
C3—C2—C1119.8 (2)C18—C17—C22118.6 (2)
C4—C3—C2120.6 (3)C18—C17—C16121.6 (2)
C4—C3—H3119.7C22—C17—C16119.8 (2)
C2—C3—H3119.7C17—C18—C19120.7 (3)
C5—C4—C3120.1 (3)C17—C18—H18119.7
C5—C4—H4119.9C19—C18—H18119.7
C3—C4—H4119.9C20—C19—C18120.1 (3)
C6—C5—C4120.2 (3)C20—C19—H19119.9
C6—C5—H5119.9C18—C19—H19119.9
C4—C5—H5119.9C19—C20—C21120.1 (3)
C5—C6—C7120.3 (3)C19—C20—H20120.0
C5—C6—H6119.9C21—C20—H20120.0
C7—C6—H6119.9C20—C21—C22120.5 (3)
C6—C7—C2120.4 (3)C20—C21—H21119.8
C6—C7—H7119.8C22—C21—H21119.8
C2—C7—H7119.8C17—C22—C21120.0 (3)
C1—C8—C9126.8 (2)C17—C22—H22120.0
C1—C8—Se1109.41 (16)C21—C22—H22120.0
C9—C8—Se1123.43 (17)O1—C23—O2125.1 (2)
C10—C9—C8110.02 (17)O1—C23—C16124.6 (3)
C10—C9—C16112.41 (17)O2—C23—C16110.3 (2)
C8—C9—C16112.08 (18)C25—C24—O2110.2 (3)
C10—C9—H9107.4C25—C24—H24A109.6
C8—C9—H9107.4O2—C24—H24A109.6
C16—C9—H9107.4C25—C24—H24B109.6
C15—C10—C11117.4 (2)O2—C24—H24B109.6
C15—C10—C9122.1 (2)H24A—C24—H24B108.1
C11—C10—C9120.5 (2)C24—C25—H25A109.5
C12—C11—C10121.1 (2)C24—C25—H25B109.5
C12—C11—H11119.4H25A—C25—H25B109.5
C10—C11—H11119.4C24—C25—H25C109.5
C11—C12—C13120.5 (2)H25A—C25—H25C109.5
C11—C12—H12119.8H25B—C25—H25C109.5
C13—C12—H12119.8O3—C26—H26A109.5
O3—C13—C14123.8 (3)O3—C26—H26B109.5
O3—C13—C12117.1 (2)H26A—C26—H26B109.5
C14—C13—C12119.2 (2)O3—C26—H26C109.5
C15—C14—C13119.6 (2)H26A—C26—H26C109.5
C15—C14—H14120.2H26B—C26—H26C109.5
C13—C14—H14120.2N2—N1—Se1110.86 (15)
C14—C15—C10122.1 (2)N1—N2—C1117.6 (2)
C14—C15—H15118.9C23—O2—C24119.5 (3)
C10—C15—H15118.9C13—O3—C26117.4 (2)
C23—C16—C17110.84 (18)C8—Se1—N187.29 (10)
C8—C1—C2—C751.0 (4)C9—C10—C15—C14179.68 (19)
N2—C1—C2—C7131.4 (2)C10—C9—C16—C23173.75 (19)
C8—C1—C2—C3129.9 (3)C8—C9—C16—C2349.2 (3)
N2—C1—C2—C347.6 (3)C10—C9—C16—C1762.2 (2)
C7—C2—C3—C41.3 (4)C8—C9—C16—C17173.29 (19)
C1—C2—C3—C4179.6 (2)C23—C16—C17—C1860.5 (3)
C2—C3—C4—C50.3 (5)C9—C16—C17—C1863.8 (3)
C3—C4—C5—C61.2 (5)C23—C16—C17—C22119.2 (3)
C4—C5—C6—C70.4 (5)C9—C16—C17—C22116.6 (2)
C5—C6—C7—C21.2 (4)C22—C17—C18—C190.0 (4)
C3—C2—C7—C62.1 (4)C16—C17—C18—C19179.6 (2)
C1—C2—C7—C6178.9 (2)C17—C18—C19—C200.3 (4)
N2—C1—C8—C9173.3 (2)C18—C19—C20—C210.8 (5)
C2—C1—C8—C94.3 (4)C19—C20—C21—C221.1 (5)
N2—C1—C8—Se10.4 (3)C18—C17—C22—C210.3 (4)
C2—C1—C8—Se1177.27 (19)C16—C17—C22—C21179.9 (3)
C1—C8—C9—C1091.0 (3)C20—C21—C22—C170.8 (5)
Se1—C8—C9—C1081.0 (2)C17—C16—C23—O178.4 (3)
C1—C8—C9—C16143.1 (2)C9—C16—C23—O146.0 (3)
Se1—C8—C9—C1644.8 (3)C17—C16—C23—O2101.3 (2)
C8—C9—C10—C1574.9 (3)C9—C16—C23—O2134.35 (19)
C16—C9—C10—C1550.8 (3)Se1—N1—N2—C10.1 (3)
C8—C9—C10—C11103.6 (2)C8—C1—N2—N10.2 (3)
C16—C9—C10—C11130.7 (2)C2—C1—N2—N1177.7 (2)
C15—C10—C11—C121.4 (3)O1—C23—O2—C242.0 (4)
C9—C10—C11—C12179.9 (2)C16—C23—O2—C24178.4 (2)
C10—C11—C12—C130.2 (4)C25—C24—O2—C23123.3 (3)
C11—C12—C13—O3179.3 (2)C14—C13—O3—C265.4 (3)
C11—C12—C13—C141.2 (3)C12—C13—O3—C26174.0 (2)
O3—C13—C14—C15179.1 (2)C1—C8—Se1—N10.32 (18)
C12—C13—C14—C151.5 (3)C9—C8—Se1—N1173.5 (2)
C13—C14—C15—C100.3 (3)N2—N1—Se1—C80.2 (2)
C11—C10—C15—C141.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.573.420 (3)152
C12—H12···Cg4ii0.962.813.673 (3)154
C24—H24A···Cg3iii0.962.803.580 (3)138
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H24N2O3Se
Mr491.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8187 (4), 12.8241 (5), 16.1837 (6)
β (°) 105.280 (2)
V3)2366.16 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.748, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
22954, 5918, 3015
Rint0.046
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 0.99
No. of reflections5918
No. of parameters291
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.932.573.420 (3)151.8
C12—H12···Cg4ii0.962.813.673 (3)154
C24—H24A···Cg3iii0.962.803.580 (3)138
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent No. 6166054.  Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds