organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis[(prop-2-yn­yl)­­oxy]benzaldehyde

aChemistry Research Centre, National Engineering College, K. R. Nagar, Kovilpatti 628 503, India, and bCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 25, India
*Correspondence e-mail: drmaneelakantan@gmail.com

(Received 29 June 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C13H10O3, two prop-2-yn­yloxy groups are attached to the benzaldehyde ring at positions 2 and 6. The crystal packing features C—H⋯O inter­actions.

Related literature

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007[Zhao, X., Song, D. K., Radbil, A. B. & Radbil, B. A. (2007). Russ. J. Appl. Chem. 80, 1373-1375.]). For related literature, see: Delogu et al. (2010[Delogu, G., Podda, G., Corda, M., Fadda, M. B., Fais, A. & Era, B. (2010). Bioorg. Med. Chem. Lett. 20, 6138-6140.]); Ley & Bertram (2001[Ley, J. P. & Bertram, H. J. (2001). Bioorg. Med. Chem. Lett. 9, 1879-1885.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3

  • Mr = 214.21

  • Monoclinic, P 21 /n

  • a = 4.9219 (2) Å

  • b = 16.8705 (7) Å

  • c = 13.4326 (6) Å

  • β = 98.236 (3)°

  • V = 1103.87 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.982

  • 10446 measured reflections

  • 2754 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.04

  • 2754 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.48 3.3616 (14) 159
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Schiff base derived from amines and substitued benzaldehydes exhibit antibacterial, anticancer and antitumour activities (Zhao et al. (2007)). Several benzaldoximes, benzaldehyde-O-ethyloximes, and acetophenonoximes were synthesized and evaluated as tyrosinase inhibitors (Ley & Bertram (2001)). The bis-salicylaldehydes exhibited greater inhibitory activity than salicylaldehyde (Delogu et al.(2010)).

The ORTEP plot of the molecule is shown in Fig. 1. The dihedral angles of phenyl ring (C2—C7) attached to prop-2-yn-1-yloxy group at 2, 6-positions (O2/C8/C9/C10) & (O3/C11/C12/C13) are 82.3 (1)° & 71.4 (1)°, respectively. The prop-2-yn-1-yloxy group is in an extended conformation which can be seen from torsion angles O2/C8/C9/C10= -177.0 (10)° and O3/C11/C12/C13= 166 (6)°, respectively.

The crystal packing includes an inter-molecular interaction between a terminal ethynyl H atom and an ethynyl group on a glide-related molecule and another interaction between an O-atom-linked methylene H and an ethynyl group of a different glide-related molecule.

The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by C—H···π and bifurcated C—H···O types of intra and intermolecular interactions, which form a dimer C8 chain running along the a axis (Bernstein et al., 1995).

Related literature top

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007). For related literature, see: Delogu et al. (2010); Ley & Bertram (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2,4-dihydroxybenzaldehyde (10 mmol), 3-bromopropyne (20 mmol) and potassium carbonate (15 mmol) were suspended in acetonitrile (40 ml) and refluxed for 30 h in presence of KI (0.1 g) as catalyst. The reaction mixture was filtered while hot to remove insoluble impurities, neutralized with dil.HCl (3 N) and extracted with chloroform and dried with Na2SO4. The extracts were concentrated to obtain a brown solid which was then purified by column chromatography over SiO2 by eluting a mixture of 4% ethyl acetate with n-hexane. Evaporation of the purified extract yielded 2, 4-dipropynoxybenzaldehyde in the form of pure white solid. Yield: 85%. Crystals suitable for X-ray analysis were obtained by slow evaporation method.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The Schiff base derived from amines and substitued benzaldehydes exhibit antibacterial, anticancer and antitumour activities (Zhao et al. (2007)). Several benzaldoximes, benzaldehyde-O-ethyloximes, and acetophenonoximes were synthesized and evaluated as tyrosinase inhibitors (Ley & Bertram (2001)). The bis-salicylaldehydes exhibited greater inhibitory activity than salicylaldehyde (Delogu et al.(2010)).

The ORTEP plot of the molecule is shown in Fig. 1. The dihedral angles of phenyl ring (C2—C7) attached to prop-2-yn-1-yloxy group at 2, 6-positions (O2/C8/C9/C10) & (O3/C11/C12/C13) are 82.3 (1)° & 71.4 (1)°, respectively. The prop-2-yn-1-yloxy group is in an extended conformation which can be seen from torsion angles O2/C8/C9/C10= -177.0 (10)° and O3/C11/C12/C13= 166 (6)°, respectively.

The crystal packing includes an inter-molecular interaction between a terminal ethynyl H atom and an ethynyl group on a glide-related molecule and another interaction between an O-atom-linked methylene H and an ethynyl group of a different glide-related molecule.

The packing of the molecules viewed down a axis is shown in Fig. 2. The molecules are stabilized by C—H···π and bifurcated C—H···O types of intra and intermolecular interactions, which form a dimer C8 chain running along the a axis (Bernstein et al., 1995).

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007). For related literature, see: Delogu et al. (2010); Ley & Bertram (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis.
2,4-Bis[(prop-2-ynyl)oxy]benzaldehyde top
Crystal data top
C13H10O3F(000) = 448
Mr = 214.21Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2754 reflections
a = 4.9219 (2) Åθ = 2.0–28.4°
b = 16.8705 (7) ŵ = 0.09 mm1
c = 13.4326 (6) ÅT = 293 K
β = 98.236 (3)°Block, colourless
V = 1103.87 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2754 independent reflections
Radiation source: fine-focus sealed tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.982, Tmax = 0.982k = 2222
10446 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1741P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2754 reflectionsΔρmax = 0.25 e Å3
154 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (4)
Crystal data top
C13H10O3V = 1103.87 (8) Å3
Mr = 214.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9219 (2) ŵ = 0.09 mm1
b = 16.8705 (7) ÅT = 293 K
c = 13.4326 (6) Å0.20 × 0.20 × 0.20 mm
β = 98.236 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2177 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.025
10446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
2754 reflectionsΔρmin = 0.16 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.05286 (17)0.31557 (5)0.65108 (6)0.0445 (2)
O30.68295 (18)0.16361 (5)0.49674 (7)0.0501 (3)
O10.0285 (2)0.15987 (5)0.87280 (7)0.0554 (3)
C60.3759 (2)0.23786 (7)0.57231 (9)0.0396 (3)
H60.37990.27510.52140.047*
C20.2097 (2)0.19456 (6)0.72497 (8)0.0376 (3)
C30.3673 (2)0.12642 (7)0.72331 (9)0.0430 (3)
H30.36420.08900.77390.052*
C40.5284 (2)0.11234 (7)0.64902 (9)0.0447 (3)
H40.63200.06620.64920.054*
C90.1318 (3)0.43691 (7)0.59180 (9)0.0447 (3)
C70.2148 (2)0.25048 (6)0.64716 (8)0.0361 (2)
C50.5317 (2)0.16901 (7)0.57387 (9)0.0398 (3)
C120.9705 (3)0.09766 (8)0.40030 (11)0.0554 (3)
C10.0455 (3)0.20717 (7)0.80598 (9)0.0459 (3)
H10.05210.25440.80630.055*
C100.2730 (3)0.49054 (8)0.60585 (11)0.0539 (3)
C110.8314 (3)0.09202 (8)0.48871 (10)0.0495 (3)
H11A0.70660.04720.48220.059*
H11B0.96460.08440.54850.059*
C80.0455 (3)0.37140 (7)0.57073 (9)0.0453 (3)
H8A0.02640.34650.50730.054*
H8B0.22900.39070.56630.054*
C131.0861 (4)0.10046 (11)0.33041 (14)0.0791 (5)
H100.379 (4)0.5352 (11)0.6156 (14)0.087 (6)*
H131.176 (5)0.1042 (13)0.2780 (18)0.114 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0548 (5)0.0381 (4)0.0443 (5)0.0099 (4)0.0197 (4)0.0088 (3)
O30.0517 (5)0.0511 (5)0.0520 (5)0.0140 (4)0.0224 (4)0.0074 (4)
O10.0824 (7)0.0460 (5)0.0421 (5)0.0069 (4)0.0231 (5)0.0041 (4)
C60.0420 (6)0.0392 (6)0.0391 (6)0.0024 (5)0.0107 (5)0.0070 (5)
C20.0419 (6)0.0363 (6)0.0351 (5)0.0024 (4)0.0070 (4)0.0019 (4)
C30.0493 (7)0.0398 (6)0.0400 (6)0.0020 (5)0.0068 (5)0.0085 (5)
C40.0453 (6)0.0406 (6)0.0484 (7)0.0091 (5)0.0081 (5)0.0052 (5)
C90.0512 (7)0.0403 (6)0.0432 (6)0.0027 (5)0.0090 (5)0.0061 (5)
C70.0376 (5)0.0335 (5)0.0377 (6)0.0004 (4)0.0072 (4)0.0020 (4)
C50.0361 (5)0.0439 (6)0.0402 (6)0.0021 (4)0.0089 (4)0.0009 (5)
C120.0588 (8)0.0540 (8)0.0555 (8)0.0105 (6)0.0152 (6)0.0073 (6)
C10.0597 (7)0.0398 (6)0.0409 (6)0.0003 (5)0.0158 (5)0.0017 (5)
C100.0645 (8)0.0434 (7)0.0551 (8)0.0106 (6)0.0129 (6)0.0036 (6)
C110.0487 (7)0.0486 (7)0.0533 (7)0.0094 (5)0.0146 (6)0.0023 (6)
C80.0520 (7)0.0425 (6)0.0437 (6)0.0085 (5)0.0147 (5)0.0105 (5)
C130.0998 (13)0.0800 (12)0.0659 (10)0.0122 (10)0.0402 (10)0.0076 (9)
Geometric parameters (Å, º) top
O2—C71.3622 (13)C4—C51.3922 (16)
O2—C81.4292 (14)C4—H40.9300
O3—C51.3626 (13)C9—C101.1722 (18)
O3—C111.4235 (14)C9—C81.4608 (16)
O1—C11.2127 (14)C12—C131.166 (2)
C6—C71.3832 (15)C12—C111.4565 (18)
C6—C51.3905 (15)C1—H10.9300
C6—H60.9300C10—H100.935 (19)
C2—C31.3886 (16)C11—H11A0.9700
C2—C71.4109 (15)C11—H11B0.9700
C2—C11.4611 (15)C8—H8A0.9700
C3—C41.3814 (17)C8—H8B0.9700
C3—H30.9300C13—H130.89 (2)
C7—O2—C8116.99 (8)C6—C5—C4121.39 (10)
C5—O3—C11117.16 (9)C13—C12—C11178.21 (17)
C7—C6—C5119.35 (10)O1—C1—C2124.02 (11)
C7—C6—H6120.3O1—C1—H1118.0
C5—C6—H6120.3C2—C1—H1118.0
C3—C2—C7118.20 (10)C9—C10—H10176.8 (12)
C3—C2—C1120.16 (10)O3—C11—C12108.22 (11)
C7—C2—C1121.65 (10)O3—C11—H11A110.1
C4—C3—C2122.26 (11)C12—C11—H11A110.1
C4—C3—H3118.9O3—C11—H11B110.1
C2—C3—H3118.9C12—C11—H11B110.1
C3—C4—C5118.25 (11)H11A—C11—H11B108.4
C3—C4—H4120.9O2—C8—C9107.67 (9)
C5—C4—H4120.9O2—C8—H8A110.2
C10—C9—C8177.88 (13)C9—C8—H8A110.2
O2—C7—C6123.48 (9)O2—C8—H8B110.2
O2—C7—C2115.97 (9)C9—C8—H8B110.2
C6—C7—C2120.55 (10)H8A—C8—H8B108.5
O3—C5—C6113.87 (10)C12—C13—H13178.1 (16)
O3—C5—C4124.74 (10)
C7—C2—C3—C40.52 (18)C11—O3—C5—C44.98 (17)
C1—C2—C3—C4179.18 (11)C7—C6—C5—O3179.57 (10)
C2—C3—C4—C50.20 (19)C7—C6—C5—C40.22 (18)
C8—O2—C7—C62.28 (16)C3—C4—C5—O3179.19 (11)
C8—O2—C7—C2177.39 (10)C3—C4—C5—C60.58 (18)
C5—C6—C7—O2179.13 (10)C3—C2—C1—O12.48 (19)
C5—C6—C7—C20.53 (17)C7—C2—C1—O1177.83 (12)
C3—C2—C7—O2178.80 (10)C5—O3—C11—C12178.25 (10)
C1—C2—C7—O21.51 (16)C13—C12—C11—O3166 (6)
C3—C2—C7—C60.89 (16)C7—O2—C8—C9178.20 (10)
C1—C2—C7—C6178.81 (11)C10—C9—C8—O2177 (100)
C11—O3—C5—C6175.24 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.483.3616 (14)159
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H10O3
Mr214.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.9219 (2), 16.8705 (7), 13.4326 (6)
β (°) 98.236 (3)
V3)1103.87 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10446, 2754, 2177
Rint0.025
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.04
No. of reflections2754
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.483.3616 (14)158.5
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank TBI Consultancy, University of Madras, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelogu, G., Podda, G., Corda, M., Fadda, M. B., Fais, A. & Era, B. (2010). Bioorg. Med. Chem. Lett. 20, 6138–6140.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLey, J. P. & Bertram, H. J. (2001). Bioorg. Med. Chem. Lett. 9, 1879–1885.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X., Song, D. K., Radbil, A. B. & Radbil, B. A. (2007). Russ. J. Appl. Chem. 80, 1373–1375.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds