metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-hy­dr­oxy­meth­yl)pyridine-κ2N,O](pivalato-κO)copper(II)

aDiscipline of Chemistry, School of Basic Sciences, IIT Indore, Indore, Madhya Pradesh 452 017, India
*Correspondence e-mail: xray@iiti.ac.in

(Received 3 July 2012; accepted 6 July 2012; online 14 July 2012)

The structure of the centrosymmetric title complex, [Cu(C5H9O2)2(C6H7NO)2], has the CuII atom on a centre of inversion. The CuII atom is six-coordinate with a distorted octa­hedral geometry, defined by the N and O atoms of the chelating 2-(2-hydroxymethyl)pyridine ligands and two carboxyl­ate O atoms from two monodentate pivalate ions. The crystal packing is stabilized by inter­molecular C—H⋯O and intra­molecular O—H⋯O hydrogen-bond inter­actions.

Related literature

For pyridine alcohol-based biomimetic sensors, see: Shaikh et al. (2010[Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447-1449.]). For solid-state transformations, see: Shaikh et al. (2009[Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2009). Inorg. Chem. 48, 4652-4654.], 2010[Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447-1449.]). For structures with pyridine alcohols, see: Hamamci et al. (2004[Hamamci, S., Yilmaz, V. T. & Thöne, C. (2004). Acta Cryst. E60, m159-m161.]); Lah et al. (2006[Lah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888-4894.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H9O2)2(C6H7NO)2]

  • Mr = 484.04

  • Monoclinic, P 21 /n

  • a = 9.797 (5) Å

  • b = 8.829 (5) Å

  • c = 13.674 (5) Å

  • β = 91.907 (5)°

  • V = 1182.1 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.63 mm−1

  • T = 150 K

  • 0.33 × 0.28 × 0.23 mm

Data collection
  • Oxford Super Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.615, Tmax = 0.706

  • 6929 measured reflections

  • 2282 independent reflections

  • 2052 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.06

  • 2282 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O3 0.95 (4) 1.64 (4) 2.588 (2) 171 (3)
C2—H2⋯O3i 0.95 2.57 3.289 (3) 132
C4—H4⋯O3ii 0.95 2.50 3.392 (3) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y-1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported a series of pyridine alcohol based Cu(II) complexes with a range of applications such as biomimetic sensors (Shaikh et al., 2010) and solid-state transformations (Shaikh et al., 2009). Pyridine alcohols are used because they possess two functional groups, both having the ability to bind the metal centres (Hamamci et al., 2004; Lah et al., 2006).

Herein we report synthesis and crystal structure of a mononuclear Cu(II) complex with hmp-H acting as a bidentate chelating ligand. The Cu(II) atom is surrounded by two N and O atoms from hmp-H in a basal plane and the apical positions are occupied by two O atoms from monodentate pivalate group forming a distorted octahedral geometry (Fig. 1).

The packing reveals intra (O—H···O) and inter (C—H···O) hydrogen bonds. The intramolecular hydrogen bonding involves the alcoholic OH group of hmp-H and an O atom of the pivalate group (Fig. 2). The intermolecular C(4)—H(4)···.O(3) hydrogen bond involves an H-atom of pyridine ring and an O atom of the pivalate group forming one-dimensional chain along the b-axis which binds to a neighbouring one-dimensional chain via C(2)—H(2)···O(3) along c-axis, leading to the formation of hydrogen bonded two-dimensional network (Fig. 3).

Related literature top

For pyridine alcohol-based biomimetic sensors, see: Shaikh et al., (2010). For solid-state transformations, see: Shaikh et al. (2009, 2010). For structures with pyridine alcohols, see: Hamamci et al. (2004); Lah et al. (2006).

Experimental top

A solution of pivalic acid (102 mg, 1.0 mmol) in 10 ml methanol was added to a 30 ml methanolic solution of Cu(CH3COO)2.2H2O (199 mg, 1.0 mmol) and hmp-H (109 mg, 1.0 mmol). The resultant solution was stirred for 12 h at room temperature. The solution was then passed through filter paper (Whatman filter paper, 70 mm) in order to remove any unreacted materials. The filtrate was allowed to stand at room temperature for crystallization. On slow evaporation light-blue single crystals of [Cu(C5H7ON)2(C5H9O2)2] were obtained after 2–3 d. M.p. 476–478 K. Yield: 88%. Anal. Calcd for C22H32CuN2O6 (Mr = 484.04): C, 54.59; H, 6.66; N, 5.79. Found: C 54.62; H 6.70; N 5.76.

Refinement top

H atoms bonded to C were placed geometrically and treated as riding on their parent atoms, with C—H 0.95 (pyridyl), C—H 0.99 (methylene) Å [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)]. The hydroxyl H atom was freely refined.

Structure description top

We have reported a series of pyridine alcohol based Cu(II) complexes with a range of applications such as biomimetic sensors (Shaikh et al., 2010) and solid-state transformations (Shaikh et al., 2009). Pyridine alcohols are used because they possess two functional groups, both having the ability to bind the metal centres (Hamamci et al., 2004; Lah et al., 2006).

Herein we report synthesis and crystal structure of a mononuclear Cu(II) complex with hmp-H acting as a bidentate chelating ligand. The Cu(II) atom is surrounded by two N and O atoms from hmp-H in a basal plane and the apical positions are occupied by two O atoms from monodentate pivalate group forming a distorted octahedral geometry (Fig. 1).

The packing reveals intra (O—H···O) and inter (C—H···O) hydrogen bonds. The intramolecular hydrogen bonding involves the alcoholic OH group of hmp-H and an O atom of the pivalate group (Fig. 2). The intermolecular C(4)—H(4)···.O(3) hydrogen bond involves an H-atom of pyridine ring and an O atom of the pivalate group forming one-dimensional chain along the b-axis which binds to a neighbouring one-dimensional chain via C(2)—H(2)···O(3) along c-axis, leading to the formation of hydrogen bonded two-dimensional network (Fig. 3).

For pyridine alcohol-based biomimetic sensors, see: Shaikh et al., (2010). For solid-state transformations, see: Shaikh et al. (2009, 2010). For structures with pyridine alcohols, see: Hamamci et al. (2004); Lah et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The symmetry-related moiety was generated by (-x, -y, -z).
[Figure 2] Fig. 2. Intra-molecular hydrogen bonding in the title compound.
[Figure 3] Fig. 3. A perspective view of the hydrogen bonded two-dimensional-network; view along the a-axis. Hydrogen bonds are drawn as dashed lines.
Bis[2-(2-hydroxymethyl)pyridine-κ2N,O](pivalato- κO)copper(II) top
Crystal data top
[Cu(C5H9O2)2(C6H7NO)2]F(000) = 510
Mr = 484.04Dx = 1.360 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 3855 reflections
a = 9.797 (5) Åθ = 3.2–71.6°
b = 8.829 (5) ŵ = 1.63 mm1
c = 13.674 (5) ÅT = 150 K
β = 91.907 (5)°Block, blue
V = 1182.1 (10) Å30.33 × 0.28 × 0.23 mm
Z = 2
Data collection top
Oxford Super Nova
diffractometer
2282 independent reflections
Radiation source: Micro-Focus (Cu) X-ray Source2052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 15.9948 pixels mm-1θmax = 71.8°, θmin = 5.5°
ω/θ scansh = 1211
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 710
Tmin = 0.615, Tmax = 0.706l = 1616
6929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5457P]
where P = (Fo2 + 2Fc2)/3
2282 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C5H9O2)2(C6H7NO)2]V = 1182.1 (10) Å3
Mr = 484.04Z = 2
Monoclinic, P21/nCu Kα radiation
a = 9.797 (5) ŵ = 1.63 mm1
b = 8.829 (5) ÅT = 150 K
c = 13.674 (5) Å0.33 × 0.28 × 0.23 mm
β = 91.907 (5)°
Data collection top
Oxford Super Nova
diffractometer
2282 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2052 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.706Rint = 0.036
6929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
2282 reflectionsΔρmin = 0.54 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02121 (17)
O10.52417 (16)0.22601 (17)0.40801 (10)0.0281 (3)
O20.31138 (15)0.04928 (18)0.54027 (11)0.0284 (3)
O30.28735 (16)0.28213 (18)0.47823 (11)0.0323 (4)
N10.57203 (17)0.14564 (18)0.59959 (12)0.0231 (4)
C10.5683 (2)0.1127 (2)0.69555 (15)0.0266 (4)
H10.53050.01850.71470.032*
C20.6170 (2)0.2102 (3)0.76689 (16)0.0315 (5)
H20.61420.18360.83410.038*
C30.6701 (2)0.3477 (3)0.73850 (18)0.0347 (5)
H30.70550.41680.78610.042*
C40.6712 (2)0.3839 (3)0.63980 (18)0.0325 (5)
H40.70490.47920.61920.039*
C50.6222 (2)0.2788 (2)0.57143 (15)0.0251 (4)
C60.6241 (2)0.3092 (3)0.46280 (17)0.0323 (5)
H6A0.71560.28340.43900.039*
H6B0.60900.41860.45120.039*
C70.2550 (2)0.1780 (2)0.53540 (13)0.0227 (4)
C80.1446 (2)0.2117 (3)0.60946 (15)0.0280 (5)
C90.2209 (3)0.2819 (4)0.6974 (2)0.0605 (9)
H9A0.28640.20850.72510.091*
H9B0.26960.37260.67650.091*
H9C0.15550.30970.74700.091*
C100.0713 (3)0.0693 (4)0.6412 (2)0.0593 (8)
H10A0.13820.00350.66800.089*
H10B0.00610.09500.69140.089*
H10C0.02230.02440.58470.089*
C110.0425 (3)0.3258 (4)0.5677 (2)0.0659 (10)
H11A0.09090.41750.54800.099*
H11B0.00590.28190.51050.099*
H11C0.02330.35160.61740.099*
H1010.434 (4)0.251 (4)0.428 (2)0.053 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0266 (3)0.0185 (3)0.0187 (3)0.00076 (14)0.00306 (17)0.00341 (14)
O10.0340 (8)0.0301 (8)0.0206 (7)0.0000 (6)0.0055 (6)0.0007 (6)
O20.0301 (8)0.0233 (8)0.0323 (8)0.0012 (6)0.0069 (6)0.0034 (6)
O30.0342 (8)0.0389 (9)0.0242 (7)0.0084 (6)0.0074 (6)0.0125 (6)
N10.0272 (8)0.0205 (8)0.0219 (8)0.0017 (6)0.0033 (6)0.0019 (6)
C10.0305 (10)0.0265 (10)0.0229 (10)0.0038 (8)0.0003 (8)0.0007 (8)
C20.0338 (11)0.0375 (12)0.0229 (10)0.0062 (9)0.0033 (8)0.0053 (9)
C30.0305 (11)0.0359 (12)0.0371 (12)0.0027 (9)0.0050 (9)0.0155 (10)
C40.0310 (11)0.0247 (11)0.0419 (13)0.0032 (8)0.0010 (9)0.0074 (9)
C50.0255 (10)0.0219 (10)0.0282 (11)0.0009 (8)0.0032 (8)0.0024 (8)
C60.0370 (12)0.0304 (11)0.0298 (11)0.0056 (9)0.0068 (9)0.0018 (9)
C70.0260 (10)0.0271 (10)0.0148 (9)0.0013 (8)0.0011 (7)0.0008 (7)
C80.0300 (11)0.0317 (11)0.0228 (10)0.0058 (8)0.0069 (8)0.0031 (8)
C90.0534 (18)0.096 (2)0.0332 (14)0.0017 (16)0.0136 (12)0.0251 (15)
C100.0640 (19)0.0502 (18)0.066 (2)0.0039 (14)0.0370 (16)0.0086 (15)
C110.0546 (18)0.088 (2)0.0568 (18)0.0427 (17)0.0249 (15)0.0278 (17)
Geometric parameters (Å, º) top
Cu1—N11.9855 (17)C4—H40.9500
Cu1—N1i1.9855 (17)C5—C61.510 (3)
Cu1—O21.9937 (17)C6—H6A0.9900
Cu1—O2i1.9937 (17)C6—H6B0.9900
Cu1—O1i2.3748 (18)C7—O31.254 (3)
Cu1—O12.3748 (18)C7—C81.535 (3)
O1—C61.418 (3)C8—C111.518 (3)
O1—H1010.95 (4)C8—C101.518 (4)
O2—C71.265 (3)C8—C91.526 (4)
O3—C71.254 (3)C9—H9A0.9800
N1—C51.336 (3)C9—H9B0.9800
N1—C11.346 (3)C9—H9C0.9800
C1—C21.375 (3)C10—H10A0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.382 (4)C10—H10C0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.387 (4)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
C4—C51.391 (3)
N1—Cu1—N1i180.00 (7)C4—C5—C6121.8 (2)
N1—Cu1—O288.90 (7)O1—C6—C5113.40 (18)
N1i—Cu1—O291.10 (7)O1—C6—H6A108.9
N1—Cu1—O2i91.10 (7)C5—C6—H6A108.9
N1i—Cu1—O2i88.90 (7)O1—C6—H6B108.9
O2—Cu1—O2i180.0C5—C6—H6B108.9
N1—Cu1—O1i102.73 (7)H6A—C6—H6B107.7
N1i—Cu1—O1i77.27 (7)O3—C7—O2124.95 (19)
O2—Cu1—O1i85.84 (6)O3—C7—O2124.95 (19)
O2i—Cu1—O1i94.16 (6)O3—C7—C8117.88 (18)
N1—Cu1—O177.27 (7)O3—C7—C8117.88 (18)
N1i—Cu1—O1102.73 (7)O2—C7—C8117.07 (17)
O2—Cu1—O194.16 (6)C11—C8—C10110.2 (2)
O2i—Cu1—O185.84 (6)C11—C8—C9109.0 (3)
O1i—Cu1—O1180.0C10—C8—C9109.6 (2)
C6—O1—Cu1103.56 (12)C11—C8—C7110.48 (18)
C6—O1—H101111 (2)C10—C8—C7112.25 (19)
Cu1—O1—H10186.1 (19)C9—C8—C7105.14 (19)
C7—O2—Cu1126.06 (13)C8—C9—H9A109.5
C5—N1—C1119.59 (18)C8—C9—H9B109.5
C5—N1—Cu1119.87 (14)H9A—C9—H9B109.5
C1—N1—Cu1120.52 (14)C8—C9—H9C109.5
N1—C1—C2122.4 (2)H9A—C9—H9C109.5
N1—C1—H1118.8H9B—C9—H9C109.5
C2—C1—H1118.8C8—C10—H10A109.5
C1—C2—C3118.4 (2)C8—C10—H10B109.5
C1—C2—H2120.8H10A—C10—H10B109.5
C3—C2—H2120.8C8—C10—H10C109.5
C2—C3—C4119.4 (2)H10A—C10—H10C109.5
C2—C3—H3120.3H10B—C10—H10C109.5
C4—C3—H3120.3C8—C11—H11A109.5
C3—C4—C5119.1 (2)C8—C11—H11B109.5
C3—C4—H4120.4H11A—C11—H11B109.5
C5—C4—H4120.4C8—C11—H11C109.5
N1—C5—C4121.0 (2)H11A—C11—H11C109.5
N1—C5—C6117.14 (18)H11B—C11—H11C109.5
N1—Cu1—O1—C623.50 (13)Cu1—N1—C5—C4178.92 (16)
N1i—Cu1—O1—C6156.50 (13)C1—N1—C5—C6179.83 (19)
O2—Cu1—O1—C6111.43 (13)Cu1—N1—C5—C61.5 (2)
O2i—Cu1—O1—C668.57 (13)C3—C4—C5—N11.3 (3)
N1—Cu1—O2—C761.13 (16)C3—C4—C5—C6178.2 (2)
N1i—Cu1—O2—C7118.87 (16)Cu1—O1—C6—C530.6 (2)
O1i—Cu1—O2—C7163.98 (16)N1—C5—C6—O125.3 (3)
O1—Cu1—O2—C716.02 (16)C4—C5—C6—O1155.2 (2)
O2—Cu1—N1—C5106.78 (16)O3—O3—C7—O20.00 (19)
O2i—Cu1—N1—C573.22 (16)O3—O3—C7—C80.00 (10)
O1i—Cu1—N1—C5167.74 (15)Cu1—O2—C7—O324.1 (3)
O1—Cu1—N1—C512.26 (15)Cu1—O2—C7—O324.1 (3)
O2—Cu1—N1—C171.87 (16)Cu1—O2—C7—C8152.14 (14)
O2i—Cu1—N1—C1108.13 (16)O3—C7—C8—C1131.3 (3)
O1i—Cu1—N1—C113.62 (16)O3—C7—C8—C1131.3 (3)
O1—Cu1—N1—C1166.38 (16)O2—C7—C8—C11152.3 (2)
C5—N1—C1—C21.4 (3)O3—C7—C8—C10154.7 (2)
Cu1—N1—C1—C2179.99 (16)O3—C7—C8—C10154.7 (2)
N1—C1—C2—C30.8 (3)O2—C7—C8—C1028.8 (3)
C1—C2—C3—C40.8 (3)O3—C7—C8—C986.3 (2)
C2—C3—C4—C51.8 (3)O3—C7—C8—C986.3 (2)
C1—N1—C5—C40.3 (3)O2—C7—C8—C990.2 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O30.95 (4)1.64 (4)2.588 (2)171 (3)
C2—H2···O3ii0.952.573.289 (3)132
C4—H4···O3iii0.952.503.392 (3)157
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C5H9O2)2(C6H7NO)2]
Mr484.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.797 (5), 8.829 (5), 13.674 (5)
β (°) 91.907 (5)
V3)1182.1 (10)
Z2
Radiation typeCu Kα
µ (mm1)1.63
Crystal size (mm)0.33 × 0.28 × 0.23
Data collection
DiffractometerOxford Super Nova
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.615, 0.706
No. of measured, independent and
observed [I > 2σ(I)] reflections
6929, 2282, 2052
Rint0.036
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.06
No. of reflections2282
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O30.95 (4)1.64 (4)2.588 (2)171 (3)
C2—H2···O3i0.952.573.289 (3)132.2
C4—H4···O3ii0.952.503.392 (3)157.4
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the IIT Indore–Agilent Technologies–Aimil Summer Fellowship Programme on X-ray Crystallography. PR and AB would like to thank Agilent Technologies and Aimil Ltd for providing the fellowship. The authors acknowledge the Single-Crystal Diffraction Facility at the Sophisticated X-ray Instrumentation Centre (SIC), IIT Indore.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHamamci, S., Yilmaz, V. T. & Thöne, C. (2004). Acta Cryst. E60, m159–m161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationShaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2009). Inorg. Chem. 48, 4652–4654.  Web of Science PubMed Google Scholar
First citationShaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds