metal-organic compounds
Bis[2-(2-hydroxymethyl)pyridine-κ2N,O](pivalato-κO)copper(II)
aDiscipline of Chemistry, School of Basic Sciences, IIT Indore, Indore, Madhya Pradesh 452 017, India
*Correspondence e-mail: xray@iiti.ac.in
The structure of the centrosymmetric title complex, [Cu(C5H9O2)2(C6H7NO)2], has the CuII atom on a centre of inversion. The CuII atom is six-coordinate with a distorted octahedral geometry, defined by the N and O atoms of the chelating 2-(2-hydroxymethyl)pyridine ligands and two carboxylate O atoms from two monodentate pivalate ions. The crystal packing is stabilized by intermolecular C—H⋯O and intramolecular O—H⋯O hydrogen-bond interactions.
Related literature
For pyridine alcohol-based biomimetic sensors, see: Shaikh et al. (2010). For solid-state transformations, see: Shaikh et al. (2009, 2010). For structures with pyridine see: Hamamci et al. (2004); Lah et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812030917/bt5967sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812030917/bt5967Isup2.hkl
A solution of pivalic acid (102 mg, 1.0 mmol) in 10 ml methanol was added to a 30 ml methanolic solution of Cu(CH3COO)2.2H2O (199 mg, 1.0 mmol) and hmp-H (109 mg, 1.0 mmol). The resultant solution was stirred for 12 h at room temperature. The solution was then passed through filter paper (Whatman filter paper, 70 mm) in order to remove any unreacted materials. The filtrate was allowed to stand at room temperature for crystallization. On slow evaporation light-blue single crystals of [Cu(C5H7ON)2(C5H9O2)2] were obtained after 2–3 d. M.p. 476–478 K. Yield: 88%. Anal. Calcd for C22H32CuN2O6 (Mr = 484.04): C, 54.59; H, 6.66; N, 5.79. Found: C 54.62; H 6.70; N 5.76.
H atoms bonded to C were placed geometrically and treated as riding on their parent atoms, with C—H 0.95 (pyridyl), C—H 0.99 (methylene) Å [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(Cmethyl)]. The hydroxyl H atom was freely refined.
We have reported a series of pyridine alcohol based Cu(II) complexes with a range of applications such as biomimetic sensors (Shaikh et al., 2010) and solid-state transformations (Shaikh et al., 2009). Pyridine
are used because they possess two functional groups, both having the ability to bind the metal centres (Hamamci et al., 2004; Lah et al., 2006).Herein we report synthesis and
of a mononuclear Cu(II) complex with hmp-H acting as a bidentate chelating ligand. The Cu(II) atom is surrounded by two N and O atoms from hmp-H in a basal plane and the apical positions are occupied by two O atoms from monodentate pivalate group forming a distorted octahedral geometry (Fig. 1).The packing reveals intra (O—H···O) and inter (C—H···O) hydrogen bonds. The intramolecular hydrogen bonding involves the alcoholic OH group of hmp-H and an O atom of the pivalate group (Fig. 2). The intermolecular C(4)—H(4)···.O(3) hydrogen bond involves an H-atom of pyridine ring and an O atom of the pivalate group forming one-dimensional chain along the b-axis which binds to a neighbouring one-dimensional chain via C(2)—H(2)···O(3) along c-axis, leading to the formation of hydrogen bonded two-dimensional network (Fig. 3).
For pyridine alcohol-based biomimetic sensors, see: Shaikh et al., (2010). For solid-state transformations, see: Shaikh et al. (2009, 2010). For structures with pyridine
see: Hamamci et al. (2004); Lah et al. (2006).Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C5H9O2)2(C6H7NO)2] | F(000) = 510 |
Mr = 484.04 | Dx = 1.360 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2yn | Cell parameters from 3855 reflections |
a = 9.797 (5) Å | θ = 3.2–71.6° |
b = 8.829 (5) Å | µ = 1.63 mm−1 |
c = 13.674 (5) Å | T = 150 K |
β = 91.907 (5)° | Block, blue |
V = 1182.1 (10) Å3 | 0.33 × 0.28 × 0.23 mm |
Z = 2 |
Oxford Super Nova diffractometer | 2282 independent reflections |
Radiation source: Micro-Focus (Cu) X-ray Source | 2052 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 15.9948 pixels mm-1 | θmax = 71.8°, θmin = 5.5° |
ω/θ scans | h = −12→11 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −7→10 |
Tmin = 0.615, Tmax = 0.706 | l = −16→16 |
6929 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5457P] where P = (Fo2 + 2Fc2)/3 |
2282 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
[Cu(C5H9O2)2(C6H7NO)2] | V = 1182.1 (10) Å3 |
Mr = 484.04 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 9.797 (5) Å | µ = 1.63 mm−1 |
b = 8.829 (5) Å | T = 150 K |
c = 13.674 (5) Å | 0.33 × 0.28 × 0.23 mm |
β = 91.907 (5)° |
Oxford Super Nova diffractometer | 2282 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 2052 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.706 | Rint = 0.036 |
6929 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.43 e Å−3 |
2282 reflections | Δρmin = −0.54 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.5000 | 0.02121 (17) | |
O1 | 0.52417 (16) | −0.22601 (17) | 0.40801 (10) | 0.0281 (3) | |
O2 | 0.31138 (15) | −0.04928 (18) | 0.54027 (11) | 0.0284 (3) | |
O3 | 0.28735 (16) | −0.28213 (18) | 0.47823 (11) | 0.0323 (4) | |
N1 | 0.57203 (17) | −0.14564 (18) | 0.59959 (12) | 0.0231 (4) | |
C1 | 0.5683 (2) | −0.1127 (2) | 0.69555 (15) | 0.0266 (4) | |
H1 | 0.5305 | −0.0185 | 0.7147 | 0.032* | |
C2 | 0.6170 (2) | −0.2102 (3) | 0.76689 (16) | 0.0315 (5) | |
H2 | 0.6142 | −0.1836 | 0.8341 | 0.038* | |
C3 | 0.6701 (2) | −0.3477 (3) | 0.73850 (18) | 0.0347 (5) | |
H3 | 0.7055 | −0.4168 | 0.7861 | 0.042* | |
C4 | 0.6712 (2) | −0.3839 (3) | 0.63980 (18) | 0.0325 (5) | |
H4 | 0.7049 | −0.4792 | 0.6192 | 0.039* | |
C5 | 0.6222 (2) | −0.2788 (2) | 0.57143 (15) | 0.0251 (4) | |
C6 | 0.6241 (2) | −0.3092 (3) | 0.46280 (17) | 0.0323 (5) | |
H6A | 0.7156 | −0.2834 | 0.4390 | 0.039* | |
H6B | 0.6090 | −0.4186 | 0.4512 | 0.039* | |
C7 | 0.2550 (2) | −0.1780 (2) | 0.53540 (13) | 0.0227 (4) | |
C8 | 0.1446 (2) | −0.2117 (3) | 0.60946 (15) | 0.0280 (5) | |
C9 | 0.2209 (3) | −0.2819 (4) | 0.6974 (2) | 0.0605 (9) | |
H9A | 0.2864 | −0.2085 | 0.7251 | 0.091* | |
H9B | 0.2696 | −0.3726 | 0.6765 | 0.091* | |
H9C | 0.1555 | −0.3097 | 0.7470 | 0.091* | |
C10 | 0.0713 (3) | −0.0693 (4) | 0.6412 (2) | 0.0593 (8) | |
H10A | 0.1382 | 0.0035 | 0.6680 | 0.089* | |
H10B | 0.0061 | −0.0950 | 0.6914 | 0.089* | |
H10C | 0.0223 | −0.0244 | 0.5847 | 0.089* | |
C11 | 0.0425 (3) | −0.3258 (4) | 0.5677 (2) | 0.0659 (10) | |
H11A | 0.0909 | −0.4175 | 0.5480 | 0.099* | |
H11B | −0.0059 | −0.2819 | 0.5105 | 0.099* | |
H11C | −0.0233 | −0.3516 | 0.6174 | 0.099* | |
H101 | 0.434 (4) | −0.251 (4) | 0.428 (2) | 0.053 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0266 (3) | 0.0185 (3) | 0.0187 (3) | −0.00076 (14) | 0.00306 (17) | 0.00341 (14) |
O1 | 0.0340 (8) | 0.0301 (8) | 0.0206 (7) | 0.0000 (6) | 0.0055 (6) | −0.0007 (6) |
O2 | 0.0301 (8) | 0.0233 (8) | 0.0323 (8) | −0.0012 (6) | 0.0069 (6) | 0.0034 (6) |
O3 | 0.0342 (8) | 0.0389 (9) | 0.0242 (7) | −0.0084 (6) | 0.0074 (6) | −0.0125 (6) |
N1 | 0.0272 (8) | 0.0205 (8) | 0.0219 (8) | −0.0017 (6) | 0.0033 (6) | 0.0019 (6) |
C1 | 0.0305 (10) | 0.0265 (10) | 0.0229 (10) | −0.0038 (8) | 0.0003 (8) | −0.0007 (8) |
C2 | 0.0338 (11) | 0.0375 (12) | 0.0229 (10) | −0.0062 (9) | −0.0033 (8) | 0.0053 (9) |
C3 | 0.0305 (11) | 0.0359 (12) | 0.0371 (12) | −0.0027 (9) | −0.0050 (9) | 0.0155 (10) |
C4 | 0.0310 (11) | 0.0247 (11) | 0.0419 (13) | 0.0032 (8) | 0.0010 (9) | 0.0074 (9) |
C5 | 0.0255 (10) | 0.0219 (10) | 0.0282 (11) | −0.0009 (8) | 0.0032 (8) | 0.0024 (8) |
C6 | 0.0370 (12) | 0.0304 (11) | 0.0298 (11) | 0.0056 (9) | 0.0068 (9) | −0.0018 (9) |
C7 | 0.0260 (10) | 0.0271 (10) | 0.0148 (9) | −0.0013 (8) | −0.0011 (7) | 0.0008 (7) |
C8 | 0.0300 (11) | 0.0317 (11) | 0.0228 (10) | −0.0058 (8) | 0.0069 (8) | −0.0031 (8) |
C9 | 0.0534 (18) | 0.096 (2) | 0.0332 (14) | 0.0017 (16) | 0.0136 (12) | 0.0251 (15) |
C10 | 0.0640 (19) | 0.0502 (18) | 0.066 (2) | 0.0039 (14) | 0.0370 (16) | −0.0086 (15) |
C11 | 0.0546 (18) | 0.088 (2) | 0.0568 (18) | −0.0427 (17) | 0.0249 (15) | −0.0278 (17) |
Cu1—N1 | 1.9855 (17) | C4—H4 | 0.9500 |
Cu1—N1i | 1.9855 (17) | C5—C6 | 1.510 (3) |
Cu1—O2 | 1.9937 (17) | C6—H6A | 0.9900 |
Cu1—O2i | 1.9937 (17) | C6—H6B | 0.9900 |
Cu1—O1i | 2.3748 (18) | C7—O3 | 1.254 (3) |
Cu1—O1 | 2.3748 (18) | C7—C8 | 1.535 (3) |
O1—C6 | 1.418 (3) | C8—C11 | 1.518 (3) |
O1—H101 | 0.95 (4) | C8—C10 | 1.518 (4) |
O2—C7 | 1.265 (3) | C8—C9 | 1.526 (4) |
O3—C7 | 1.254 (3) | C9—H9A | 0.9800 |
N1—C5 | 1.336 (3) | C9—H9B | 0.9800 |
N1—C1 | 1.346 (3) | C9—H9C | 0.9800 |
C1—C2 | 1.375 (3) | C10—H10A | 0.9800 |
C1—H1 | 0.9500 | C10—H10B | 0.9800 |
C2—C3 | 1.382 (4) | C10—H10C | 0.9800 |
C2—H2 | 0.9500 | C11—H11A | 0.9800 |
C3—C4 | 1.387 (4) | C11—H11B | 0.9800 |
C3—H3 | 0.9500 | C11—H11C | 0.9800 |
C4—C5 | 1.391 (3) | ||
N1—Cu1—N1i | 180.00 (7) | C4—C5—C6 | 121.8 (2) |
N1—Cu1—O2 | 88.90 (7) | O1—C6—C5 | 113.40 (18) |
N1i—Cu1—O2 | 91.10 (7) | O1—C6—H6A | 108.9 |
N1—Cu1—O2i | 91.10 (7) | C5—C6—H6A | 108.9 |
N1i—Cu1—O2i | 88.90 (7) | O1—C6—H6B | 108.9 |
O2—Cu1—O2i | 180.0 | C5—C6—H6B | 108.9 |
N1—Cu1—O1i | 102.73 (7) | H6A—C6—H6B | 107.7 |
N1i—Cu1—O1i | 77.27 (7) | O3—C7—O2 | 124.95 (19) |
O2—Cu1—O1i | 85.84 (6) | O3—C7—O2 | 124.95 (19) |
O2i—Cu1—O1i | 94.16 (6) | O3—C7—C8 | 117.88 (18) |
N1—Cu1—O1 | 77.27 (7) | O3—C7—C8 | 117.88 (18) |
N1i—Cu1—O1 | 102.73 (7) | O2—C7—C8 | 117.07 (17) |
O2—Cu1—O1 | 94.16 (6) | C11—C8—C10 | 110.2 (2) |
O2i—Cu1—O1 | 85.84 (6) | C11—C8—C9 | 109.0 (3) |
O1i—Cu1—O1 | 180.0 | C10—C8—C9 | 109.6 (2) |
C6—O1—Cu1 | 103.56 (12) | C11—C8—C7 | 110.48 (18) |
C6—O1—H101 | 111 (2) | C10—C8—C7 | 112.25 (19) |
Cu1—O1—H101 | 86.1 (19) | C9—C8—C7 | 105.14 (19) |
C7—O2—Cu1 | 126.06 (13) | C8—C9—H9A | 109.5 |
C5—N1—C1 | 119.59 (18) | C8—C9—H9B | 109.5 |
C5—N1—Cu1 | 119.87 (14) | H9A—C9—H9B | 109.5 |
C1—N1—Cu1 | 120.52 (14) | C8—C9—H9C | 109.5 |
N1—C1—C2 | 122.4 (2) | H9A—C9—H9C | 109.5 |
N1—C1—H1 | 118.8 | H9B—C9—H9C | 109.5 |
C2—C1—H1 | 118.8 | C8—C10—H10A | 109.5 |
C1—C2—C3 | 118.4 (2) | C8—C10—H10B | 109.5 |
C1—C2—H2 | 120.8 | H10A—C10—H10B | 109.5 |
C3—C2—H2 | 120.8 | C8—C10—H10C | 109.5 |
C2—C3—C4 | 119.4 (2) | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 120.3 | H10B—C10—H10C | 109.5 |
C4—C3—H3 | 120.3 | C8—C11—H11A | 109.5 |
C3—C4—C5 | 119.1 (2) | C8—C11—H11B | 109.5 |
C3—C4—H4 | 120.4 | H11A—C11—H11B | 109.5 |
C5—C4—H4 | 120.4 | C8—C11—H11C | 109.5 |
N1—C5—C4 | 121.0 (2) | H11A—C11—H11C | 109.5 |
N1—C5—C6 | 117.14 (18) | H11B—C11—H11C | 109.5 |
N1—Cu1—O1—C6 | −23.50 (13) | Cu1—N1—C5—C4 | −178.92 (16) |
N1i—Cu1—O1—C6 | 156.50 (13) | C1—N1—C5—C6 | −179.83 (19) |
O2—Cu1—O1—C6 | −111.43 (13) | Cu1—N1—C5—C6 | 1.5 (2) |
O2i—Cu1—O1—C6 | 68.57 (13) | C3—C4—C5—N1 | −1.3 (3) |
N1—Cu1—O2—C7 | −61.13 (16) | C3—C4—C5—C6 | 178.2 (2) |
N1i—Cu1—O2—C7 | 118.87 (16) | Cu1—O1—C6—C5 | 30.6 (2) |
O1i—Cu1—O2—C7 | −163.98 (16) | N1—C5—C6—O1 | −25.3 (3) |
O1—Cu1—O2—C7 | 16.02 (16) | C4—C5—C6—O1 | 155.2 (2) |
O2—Cu1—N1—C5 | 106.78 (16) | O3—O3—C7—O2 | 0.00 (19) |
O2i—Cu1—N1—C5 | −73.22 (16) | O3—O3—C7—C8 | 0.00 (10) |
O1i—Cu1—N1—C5 | −167.74 (15) | Cu1—O2—C7—O3 | −24.1 (3) |
O1—Cu1—N1—C5 | 12.26 (15) | Cu1—O2—C7—O3 | −24.1 (3) |
O2—Cu1—N1—C1 | −71.87 (16) | Cu1—O2—C7—C8 | 152.14 (14) |
O2i—Cu1—N1—C1 | 108.13 (16) | O3—C7—C8—C11 | −31.3 (3) |
O1i—Cu1—N1—C1 | 13.62 (16) | O3—C7—C8—C11 | −31.3 (3) |
O1—Cu1—N1—C1 | −166.38 (16) | O2—C7—C8—C11 | 152.3 (2) |
C5—N1—C1—C2 | 1.4 (3) | O3—C7—C8—C10 | −154.7 (2) |
Cu1—N1—C1—C2 | −179.99 (16) | O3—C7—C8—C10 | −154.7 (2) |
N1—C1—C2—C3 | −0.8 (3) | O2—C7—C8—C10 | 28.8 (3) |
C1—C2—C3—C4 | −0.8 (3) | O3—C7—C8—C9 | 86.3 (2) |
C2—C3—C4—C5 | 1.8 (3) | O3—C7—C8—C9 | 86.3 (2) |
C1—N1—C5—C4 | −0.3 (3) | O2—C7—C8—C9 | −90.2 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H101···O3 | 0.95 (4) | 1.64 (4) | 2.588 (2) | 171 (3) |
C2—H2···O3ii | 0.95 | 2.57 | 3.289 (3) | 132 |
C4—H4···O3iii | 0.95 | 2.50 | 3.392 (3) | 157 |
Symmetry codes: (ii) x+1/2, −y−1/2, z+1/2; (iii) −x+1, −y−1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C5H9O2)2(C6H7NO)2] |
Mr | 484.04 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 9.797 (5), 8.829 (5), 13.674 (5) |
β (°) | 91.907 (5) |
V (Å3) | 1182.1 (10) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.63 |
Crystal size (mm) | 0.33 × 0.28 × 0.23 |
Data collection | |
Diffractometer | Oxford Super Nova |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.615, 0.706 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6929, 2282, 2052 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.119, 1.06 |
No. of reflections | 2282 |
No. of parameters | 146 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.54 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H101···O3 | 0.95 (4) | 1.64 (4) | 2.588 (2) | 171 (3) |
C2—H2···O3i | 0.95 | 2.57 | 3.289 (3) | 132.2 |
C4—H4···O3ii | 0.95 | 2.50 | 3.392 (3) | 157.4 |
Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) −x+1, −y−1, −z+1. |
Acknowledgements
The authors gratefully acknowledge the IIT Indore–Agilent Technologies–Aimil Summer Fellowship Programme on X-ray Crystallography. PR and AB would like to thank Agilent Technologies and Aimil Ltd for providing the fellowship. The authors acknowledge the Single-Crystal Diffraction Facility at the Sophisticated X-ray Instrumentation Centre (SIC), IIT Indore.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Hamamci, S., Yilmaz, V. T. & Thöne, C. (2004). Acta Cryst. E60, m159–m161. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894. Web of Science CSD CrossRef Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2009). Inorg. Chem. 48, 4652–4654. Web of Science PubMed Google Scholar
Shaikh, M. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have reported a series of pyridine alcohol based Cu(II) complexes with a range of applications such as biomimetic sensors (Shaikh et al., 2010) and solid-state transformations (Shaikh et al., 2009). Pyridine alcohols are used because they possess two functional groups, both having the ability to bind the metal centres (Hamamci et al., 2004; Lah et al., 2006).
Herein we report synthesis and crystal structure of a mononuclear Cu(II) complex with hmp-H acting as a bidentate chelating ligand. The Cu(II) atom is surrounded by two N and O atoms from hmp-H in a basal plane and the apical positions are occupied by two O atoms from monodentate pivalate group forming a distorted octahedral geometry (Fig. 1).
The packing reveals intra (O—H···O) and inter (C—H···O) hydrogen bonds. The intramolecular hydrogen bonding involves the alcoholic OH group of hmp-H and an O atom of the pivalate group (Fig. 2). The intermolecular C(4)—H(4)···.O(3) hydrogen bond involves an H-atom of pyridine ring and an O atom of the pivalate group forming one-dimensional chain along the b-axis which binds to a neighbouring one-dimensional chain via C(2)—H(2)···O(3) along c-axis, leading to the formation of hydrogen bonded two-dimensional network (Fig. 3).