metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chlorido[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)ethanamine-κN]palladium(II) di­chloro­methane monosolvate

aDepartment of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 4 July 2012; accepted 16 July 2012; online 21 July 2012)

In the title compound, [PdCl2(C7H13N3)]·CH2Cl2, the 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethanamine ligand chelates the PdII atom via two N atoms forming a six-membered ring resulting in a distorted square-planar metal coordination environment, highlighted by N—Pd—Cl angles of 172.63 (8) and 174.98 (9)°. In addition to N—H⋯Cl hydrogen bonds creating infinite chains along [001], several C—H⋯Cl inter­actions are observed in the crystal structure.

Related literature

For the synthesis and catalytic applications of Schiff base complexes, see: Connor et al. (2003[Connor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. pp. 2272-2273.]); Wang et al. (1998[Wang, C., Friedrich, S., Younkin, T. R., Li, R. T., Grubbs, R. H., Bansleben, D. A. & Day, M. W. (1998). Organometallics, 17, 3149-3151.]). For catalytic hydrolysis of free and bound imines, see: Nolan & Hay (1974[Nolan, K. B. & Hay, R. W. (1974). J. Chem. Soc. Dalton Trans. pp. 914-920.]); Satchell & Satchell (1979[Satchell, D. P. N. & Satchell, R. S. (1979). Annu. Rep. Chem. Sect. A Inorg. Chem. 75, 25-48.]); Hay (1987[Hay, R. W. (1987). Comprehensive Coordination Chemistry., Vol. 6, p. 441. Oxford: Pergamon.]); Bähr & Thämlitz (1955[Bähr, G. & Thämlitz, H. (1955). Z. Anorg. Allg. Chem. 282, 3-11.]); Bähr & Döge (1957[Bähr, G. & Döge, H. G. (1957). Z. Anorg. Allg. Chem. 292, 119-138.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C7H13N3)]·CH2Cl2

  • Mr = 401.43

  • Monoclinic, P 21 /c

  • a = 11.9415 (11) Å

  • b = 11.432 (1) Å

  • c = 10.5901 (10) Å

  • β = 97.087 (2)°

  • V = 1434.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 100 K

  • 0.31 × 0.27 × 0.26 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.574, Tmax = 0.622

  • 18522 measured reflections

  • 3582 independent reflections

  • 3373 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.11

  • 3582 reflections

  • 155 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.28 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl1i 0.87 (2) 2.51 (4) 3.230 (3) 141 (5)
N3—H3B⋯Cl2i 0.87 (2) 2.66 (5) 3.297 (3) 131 (5)
N3—H3A⋯Cl3 0.86 (2) 2.79 (2) 3.631 (3) 169 (4)
C4—H4A⋯Cl2ii 0.99 2.76 3.720 (3) 163
C4—H4A⋯Cl2ii 0.99 2.76 3.720 (3) 163
C7—H7A⋯Cl1 0.98 2.74 3.455 (4) 130
C8—H8A⋯Cl2 0.99 2.71 3.428 (4) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff base complexes have been synthesized and used in a number of catalytic reactions (Connor et al., 2003; Wang et al., 1998). Their popularity stems from their ease of synthesis, their ability to stabilize metals in different oxidation states and the ability to modify both the electronic and steric properties of the ligand. However, several reports of metal ions catalyzing the hydrolysis of free imines (Nolan & Hay, 1974; Satchell & Satchell, 1979; Hay, 1987) and bound imines (Bähr & Thämlitz, 1955; Bähr & Döge, 1957) have been reported. In an attempt to prepare [{2-(3,5-di-methylpyrazol-1-yl)-ethyl-(ferrocenylmethyl-methylene)-imine}PdCl2] as olefin transformation catalyst, we found the title compound 1 formed as a result of hydrolysis of the imine by the Pd(II) starting material.

The title compound 1 (Figure 1) cis-[(3,5-di-methylpyrazol-1-yl-ethylamine)PdCl2] crystallizes in the P21/c (Z=4) space group with an accompanying CH2Cl2 solvate. Chelation of the pyrazolylamine to the metal coordination environment is distorted, highlighted by the dihedral angle of 7.75 (8)° between the Cl1—Pd–Cl2 and N1—Pd—N3 planes. The N—Pd—Cl angles of 172.63 (8) and 174.98 (9)° are further evidence of this distortion. Pd—Cl bond distances of 2.3070 (7) and 2.3004 (7) differ marginally, possibly due to the different electronic capabilities of the donor atoms of the pyrazolylamine.

Several N/C···Cl interactions are observed (see table 1), creating infinite one-dimensional chains along the [001] direction as shown in Figure 2.

Related literature top

For the synthesis and catalytic applications of Schiff base complexes, see: Connor et al. (2003); Wang et al. (1998). For catalytic hydrolysis of free and bound imines, see: Nolan & Hay (1974); Satchell & Satchell (1979); Hay (1987); Bähr & Thämlitz (1955); Bähr & Döge (1957).

Experimental top

A CH2Cl2 solution (20 ml) of 2-(3,5-di-methylpyrazol-1-yl)-ethyl-(ferrocenylmethyl-methylene)-imine (0.10 g, 0.28 mmol) was added to [PdCl2(CNMe)2] (0.07 g, 0.28 mmol) in CH2Cl2 (10 ml) while stirring. The resulting mixture was stirred for 18 h at 25 °C after, which hexane was added to precipitate an orange solid. The solid was filtered, washed three times with hexane and dried in air.

Light yellow single crystals were grown by slow evaporation at room temperature in CH2Cl2. Yield = 0.07 g, 80%.

1H NMR (CDCl3): δ 2.37 (s, 3H, CH3); 2.58 (s, 3H, CH3); 2.36 (s, 3H, CH3); 4.37 (s, 4H, CH2); 5.84 (s, 1H, pz). IR (Diamond ATR, cm-1): 3435 ν(NH)

Refinement top

All hydrogen atoms for methylene, methyl and aromatic H atoms were positioned in geometrically idealized positions with C—H = 0.99 Å, 0.98 Å and 0.95 Å respectively. All these hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The amine hydrogen atoms were obtained from a Fourier difference map and restrained with the standard N—H distance of 0.87 Å. The highest residual peak and hole are 2.28 and -1.12 Å-3 respectively, both within 1 Å from Pd1 and represent no physical meaning.

Structure description top

Schiff base complexes have been synthesized and used in a number of catalytic reactions (Connor et al., 2003; Wang et al., 1998). Their popularity stems from their ease of synthesis, their ability to stabilize metals in different oxidation states and the ability to modify both the electronic and steric properties of the ligand. However, several reports of metal ions catalyzing the hydrolysis of free imines (Nolan & Hay, 1974; Satchell & Satchell, 1979; Hay, 1987) and bound imines (Bähr & Thämlitz, 1955; Bähr & Döge, 1957) have been reported. In an attempt to prepare [{2-(3,5-di-methylpyrazol-1-yl)-ethyl-(ferrocenylmethyl-methylene)-imine}PdCl2] as olefin transformation catalyst, we found the title compound 1 formed as a result of hydrolysis of the imine by the Pd(II) starting material.

The title compound 1 (Figure 1) cis-[(3,5-di-methylpyrazol-1-yl-ethylamine)PdCl2] crystallizes in the P21/c (Z=4) space group with an accompanying CH2Cl2 solvate. Chelation of the pyrazolylamine to the metal coordination environment is distorted, highlighted by the dihedral angle of 7.75 (8)° between the Cl1—Pd–Cl2 and N1—Pd—N3 planes. The N—Pd—Cl angles of 172.63 (8) and 174.98 (9)° are further evidence of this distortion. Pd—Cl bond distances of 2.3070 (7) and 2.3004 (7) differ marginally, possibly due to the different electronic capabilities of the donor atoms of the pyrazolylamine.

Several N/C···Cl interactions are observed (see table 1), creating infinite one-dimensional chains along the [001] direction as shown in Figure 2.

For the synthesis and catalytic applications of Schiff base complexes, see: Connor et al. (2003); Wang et al. (1998). For catalytic hydrolysis of free and bound imines, see: Nolan & Hay (1974); Satchell & Satchell (1979); Hay (1987); Bähr & Thämlitz (1955); Bähr & Döge (1957).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I). Displacement ellipsoids are drawn at a 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) showing the infinite one-dimensional chains created along the [001] direction.
cis-Dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl- κN2)ethanamine-κN]palladium(II) dichloromethane monosolvate top
Crystal data top
[PdCl2(C7H13N3)]·CH2Cl2F(000) = 792
Mr = 401.43Dx = 1.859 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9923 reflections
a = 11.9415 (11) Åθ = 2.5–28.4°
b = 11.432 (1) ŵ = 2.02 mm1
c = 10.5901 (10) ÅT = 100 K
β = 97.087 (2)°Cube, orange
V = 1434.7 (2) Å30.31 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3582 independent reflections
Graphite monochromator3373 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.021
ω & φ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.574, Tmax = 0.622k = 1514
18522 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0378P)2 + 4.6095P]
where P = (Fo2 + 2Fc2)/3
3582 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 2.28 e Å3
2 restraintsΔρmin = 1.12 e Å3
Crystal data top
[PdCl2(C7H13N3)]·CH2Cl2V = 1434.7 (2) Å3
Mr = 401.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9415 (11) ŵ = 2.02 mm1
b = 11.432 (1) ÅT = 100 K
c = 10.5901 (10) Å0.31 × 0.27 × 0.26 mm
β = 97.087 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3373 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.622Rint = 0.021
18522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 2.28 e Å3
3582 reflectionsΔρmin = 1.12 e Å3
155 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1491 frames were collected with a frame width of 0.5° covering up to θ = 28.40° with 99.5% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.560565 (18)0.158108 (19)0.080787 (19)0.01469 (8)
Cl10.64115 (6)0.16169 (7)0.10627 (7)0.02358 (16)
Cl20.38953 (6)0.22298 (6)0.01819 (6)0.01848 (14)
Cl30.18032 (8)0.10624 (10)0.19406 (9)0.0377 (2)
Cl40.07255 (8)0.14275 (8)0.06665 (10)0.0362 (2)
N10.7084 (2)0.1182 (2)0.1833 (2)0.0174 (5)
N20.7127 (2)0.0281 (2)0.2683 (2)0.0187 (5)
N30.4849 (2)0.1402 (3)0.2426 (2)0.0211 (5)
C10.8094 (3)0.1697 (3)0.1996 (3)0.0190 (6)
C20.8790 (3)0.1109 (3)0.2939 (3)0.0241 (6)
H20.95550.12860.32330.029*
C30.8152 (3)0.0221 (3)0.3364 (3)0.0243 (6)
C40.6096 (3)0.0357 (3)0.2823 (3)0.0209 (6)
H4A0.62710.10150.34240.025*
H4B0.57820.06880.1990.025*
C50.5224 (3)0.0435 (3)0.3313 (3)0.0242 (6)
H5A0.4560.0040.34630.029*
H5B0.55480.07710.4140.029*
C60.8449 (4)0.0700 (4)0.4360 (4)0.0400 (9)
H6A0.8030.05560.50840.06*
H6B0.92610.06710.46470.06*
H6C0.82510.14730.40.06*
C70.8348 (3)0.2783 (3)0.1295 (3)0.0270 (7)
H7A0.8220.26360.03770.041*
H7B0.91370.30080.15390.041*
H7C0.78520.34170.15110.041*
C80.1640 (3)0.0524 (3)0.0354 (4)0.0302 (7)
H8A0.23870.04910.00410.036*
H8B0.1330.02790.03410.036*
H3A0.4137 (17)0.137 (4)0.220 (4)0.033 (12)*
H3B0.492 (5)0.204 (3)0.287 (5)0.067 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01967 (12)0.01323 (12)0.01177 (11)0.00021 (7)0.00431 (8)0.00061 (7)
Cl10.0239 (3)0.0321 (4)0.0162 (3)0.0084 (3)0.0083 (3)0.0089 (3)
Cl20.0209 (3)0.0198 (3)0.0152 (3)0.0011 (2)0.0042 (2)0.0005 (2)
Cl30.0388 (5)0.0452 (6)0.0314 (4)0.0025 (4)0.0136 (4)0.0040 (4)
Cl40.0366 (5)0.0254 (4)0.0442 (5)0.0005 (3)0.0050 (4)0.0017 (4)
N10.0235 (12)0.0153 (12)0.0141 (11)0.0003 (9)0.0049 (9)0.0015 (9)
N20.0282 (13)0.0138 (12)0.0140 (11)0.0024 (9)0.0015 (9)0.0015 (9)
N30.0184 (12)0.0343 (16)0.0110 (11)0.0007 (10)0.0033 (9)0.0009 (10)
C10.0225 (14)0.0177 (14)0.0172 (13)0.0002 (11)0.0042 (10)0.0007 (11)
C20.0259 (15)0.0223 (16)0.0229 (14)0.0006 (12)0.0020 (11)0.0023 (12)
C30.0333 (16)0.0184 (15)0.0195 (14)0.0001 (12)0.0031 (12)0.0015 (11)
C40.0334 (16)0.0126 (13)0.0174 (13)0.0052 (11)0.0060 (11)0.0001 (10)
C50.0375 (17)0.0193 (15)0.0179 (13)0.0045 (13)0.0110 (12)0.0002 (11)
C60.049 (2)0.031 (2)0.036 (2)0.0079 (17)0.0139 (17)0.0140 (16)
C70.0290 (16)0.0234 (17)0.0293 (16)0.0047 (13)0.0062 (12)0.0081 (13)
C80.0289 (16)0.0224 (16)0.0400 (19)0.0001 (13)0.0066 (14)0.0009 (14)
Geometric parameters (Å, º) top
Pd1—N12.007 (3)C2—H20.95
Pd1—N32.044 (3)C3—C61.501 (5)
Pd1—Cl22.3004 (7)C4—C51.519 (4)
Pd1—Cl12.3070 (7)C4—H4A0.99
Cl3—C81.777 (4)C4—H4B0.99
Cl4—C81.770 (4)C5—H5A0.99
N1—C11.335 (4)C5—H5B0.99
N1—N21.365 (3)C6—H6A0.98
N2—C31.344 (4)C6—H6B0.98
N2—C41.454 (4)C6—H6C0.98
N3—C51.484 (4)C7—H7A0.98
N3—H3A0.855 (19)C7—H7B0.98
N3—H3B0.87 (2)C7—H7C0.98
C1—C21.391 (4)C8—H8A0.99
C1—C71.496 (4)C8—H8B0.99
C2—C31.378 (5)
N1—Pd1—N388.52 (10)C5—C4—H4A109.4
N1—Pd1—Cl2172.63 (8)N2—C4—H4B109.4
N3—Pd1—Cl287.40 (8)C5—C4—H4B109.4
N1—Pd1—Cl192.08 (7)H4A—C4—H4B108
N3—Pd1—Cl1174.98 (9)N3—C5—C4113.2 (2)
Cl2—Pd1—Cl192.52 (3)N3—C5—H5A108.9
C1—N1—N2106.7 (2)C4—C5—H5A108.9
C1—N1—Pd1133.7 (2)N3—C5—H5B108.9
N2—N1—Pd1119.16 (19)C4—C5—H5B108.9
C3—N2—N1110.5 (3)H5A—C5—H5B107.7
C3—N2—C4130.2 (3)C3—C6—H6A109.5
N1—N2—C4118.9 (2)C3—C6—H6B109.5
C5—N3—Pd1118.4 (2)H6A—C6—H6B109.5
C5—N3—H3A111 (3)C3—C6—H6C109.5
Pd1—N3—H3A107 (3)H6A—C6—H6C109.5
C5—N3—H3B106 (4)H6B—C6—H6C109.5
Pd1—N3—H3B110 (4)C1—C7—H7A109.5
H3A—N3—H3B103 (5)C1—C7—H7B109.5
N1—C1—C2109.3 (3)H7A—C7—H7B109.5
N1—C1—C7122.5 (3)C1—C7—H7C109.5
C2—C1—C7128.1 (3)H7A—C7—H7C109.5
C3—C2—C1106.6 (3)H7B—C7—H7C109.5
C3—C2—H2126.7Cl4—C8—Cl3111.3 (2)
C1—C2—H2126.7Cl4—C8—H8A109.4
N2—C3—C2106.9 (3)Cl3—C8—H8A109.4
N2—C3—C6122.3 (3)Cl4—C8—H8B109.4
C2—C3—C6130.8 (3)Cl3—C8—H8B109.4
N2—C4—C5111.1 (3)H8A—C8—H8B108
N2—C4—H4A109.4
N3—Pd1—N1—C1127.5 (3)Pd1—N1—C1—C73.4 (5)
Cl1—Pd1—N1—C157.5 (3)N1—C1—C2—C31.0 (4)
N3—Pd1—N1—N243.7 (2)C7—C1—C2—C3175.0 (3)
Cl1—Pd1—N1—N2131.3 (2)N1—N2—C3—C20.1 (4)
C1—N1—N2—C30.5 (3)C4—N2—C3—C2172.6 (3)
Pd1—N1—N2—C3173.9 (2)N1—N2—C3—C6179.1 (3)
C1—N1—N2—C4173.0 (3)C4—N2—C3—C68.4 (5)
Pd1—N1—N2—C40.4 (3)C1—C2—C3—N20.7 (4)
N1—Pd1—N3—C539.8 (2)C1—C2—C3—C6179.5 (4)
Cl2—Pd1—N3—C5146.4 (2)C3—N2—C4—C5109.0 (4)
N2—N1—C1—C21.0 (3)N1—N2—C4—C563.0 (3)
Pd1—N1—C1—C2172.9 (2)Pd1—N3—C5—C43.9 (4)
N2—N1—C1—C7175.4 (3)N2—C4—C5—N363.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1i0.87 (2)2.51 (4)3.230 (3)141 (5)
N3—H3B···Cl2i0.87 (2)2.66 (5)3.297 (3)131 (5)
N3—H3A···Cl30.86 (2)2.79 (2)3.631 (3)169 (4)
C4—H4A···Cl2ii0.992.763.720 (3)163
C4—H4A···Cl2ii0.992.763.720 (3)163
C7—H7A···Cl10.982.743.455 (4)130
C8—H8A···Cl20.992.713.428 (4)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PdCl2(C7H13N3)]·CH2Cl2
Mr401.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9415 (11), 11.432 (1), 10.5901 (10)
β (°) 97.087 (2)
V3)1434.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.31 × 0.27 × 0.26
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.574, 0.622
No. of measured, independent and
observed [I > 2σ(I)] reflections
18522, 3582, 3373
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.11
No. of reflections3582
No. of parameters155
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.28, 1.12

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl1i0.87 (2)2.51 (4)3.230 (3)141 (5)
N3—H3B···Cl2i0.87 (2)2.66 (5)3.297 (3)131 (5)
N3—H3A···Cl30.855 (19)2.79 (2)3.631 (3)169 (4)
C4—H4A···Cl2ii0.992.763.720 (3)163.3
C4—H4A···Cl2ii0.992.763.720 (3)163.3
C7—H7A···Cl10.982.743.455 (4)129.7
C8—H8A···Cl20.992.713.428 (4)129.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mrs Z. Phasha is thanked for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBähr, G. & Döge, H. G. (1957). Z. Anorg. Allg. Chem. 292, 119–138.  Google Scholar
First citationBähr, G. & Thämlitz, H. (1955). Z. Anorg. Allg. Chem. 282, 3–11.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnor, E. F., Younkin, T. R., Henderson, J. I., Waltman, A. W. & Grubbs, R. H. (2003). Chem. Commun. pp. 2272–2273.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHay, R. W. (1987). Comprehensive Coordination Chemistry., Vol. 6, p. 441. Oxford: Pergamon.  Google Scholar
First citationNolan, K. B. & Hay, R. W. (1974). J. Chem. Soc. Dalton Trans. pp. 914–920.  CrossRef Web of Science Google Scholar
First citationSatchell, D. P. N. & Satchell, R. S. (1979). Annu. Rep. Chem. Sect. A Inorg. Chem. 75, 25–48.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Friedrich, S., Younkin, T. R., Li, R. T., Grubbs, R. H., Bansleben, D. A. & Day, M. W. (1998). Organometallics, 17, 3149–3151.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds