organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,9,10,15,16-Hexa­aza­tetra­cyclo­[6.6.2.04,16.011,15]hexa­decane dihydrate

aDepartment of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: nadiahhalim@@um.edu.my

(Received 5 July 2012; accepted 5 July 2012; online 25 July 2012)

The four six-membered fused rings in the title compound, C10H20N6·2H2O, adopt chair conformations; the H atoms of the four secondary N atoms occupy axial positions. Hydrogen bonds of the types N—H⋯N, N—H⋯O and O—H⋯N link the organic and water mol­ecules into a three-dimensional network.

Related literature

For background to the reaction of glutaraldehyde and monosubstituted hydrazines, see: Katritzky & Fan (1990[Katritzky, A. R. & Fan, W.-Q. (1990). J. Org. Chem. 55, 3205-3209.]).

[Scheme 1]

Experimental

Crystal data
  • C10H20N6·2H2O

  • Mr = 260.35

  • Monoclinic, P 21 /c

  • a = 9.5154 (10) Å

  • b = 16.0667 (17) Å

  • c = 9.1097 (10) Å

  • β = 114.916 (1)°

  • V = 1263.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 14226 measured reflections

  • 2896 independent reflections

  • 2138 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.02

  • 2896 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯N3i 0.93 (3) 1.99 (3) 2.922 (2) 174 (2)
O1W—H12⋯N5ii 0.92 (3) 2.05 (3) 2.960 (2) 178 (2)
O2W—H21⋯N2 0.88 (3) 2.05 (3) 2.925 (2) 172 (2)
O2W—H22⋯N4ii 0.86 (3) 2.02 (3) 2.863 (2) 167 (2)
N1—H1⋯O1W 0.88 (2) 2.08 (2) 2.964 (2) 175 (2)
N2—H2⋯O2Wiii 0.91 (2) 2.18 (2) 3.071 (2) 166 (2)
N4—H4⋯N5iv 0.87 (2) 2.57 (2) 3.354 (2) 150.1 (15)
N5—H5⋯N1iii 0.96 (2) 2.25 (2) 3.163 (2) 159 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Glutaraldehyde, CHO(CH2)3CHO, condenses with mono-substituted hydrazines to yield N-substituted piperidines; for example, it reacts with phenylhydrazine to yield N-phenylpiperidin-1-amine (Katritzky & Fan, 1990). The direct reaction of the di-aldehyde with hydrazine itself does not lead to the formation of a polymeric Schiff-base product; the compound is, in fact, 2,3,9,10,15,16-hexaazatetracyclo[6,2,04,16.011,15]hexadecane, which crystallizes as a dihydrate (Scheme I). The four six-membered fused rings adopt chair conformations (Fig. 1). Hydrogen bonds of the type N–H···N, N–H···O and O–H···N link the organic and water molecules into a three dimensional network (Table 1).

There is no precedent for the fused-ring system in the crystallographic literature.

Related literature top

For background to the reaction of glutaraldehyde and monosubstituted hydrazines, see: Katritzky & Fan (1990).

Experimental top

Hydrazine hydrate (0.08 mol, 2.7 ml) was added to glutaraldehyde (0.08 g, 8.1 ml) to give a white solid. and stirred at room temperature to yield a white solid. This was recrystallized from ethanol; several drops of DMSO was added to aid crystallization.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C).

The amino and water H-atoms were located in a difference Fourier map, and were freely refined.

Structure description top

Glutaraldehyde, CHO(CH2)3CHO, condenses with mono-substituted hydrazines to yield N-substituted piperidines; for example, it reacts with phenylhydrazine to yield N-phenylpiperidin-1-amine (Katritzky & Fan, 1990). The direct reaction of the di-aldehyde with hydrazine itself does not lead to the formation of a polymeric Schiff-base product; the compound is, in fact, 2,3,9,10,15,16-hexaazatetracyclo[6,2,04,16.011,15]hexadecane, which crystallizes as a dihydrate (Scheme I). The four six-membered fused rings adopt chair conformations (Fig. 1). Hydrogen bonds of the type N–H···N, N–H···O and O–H···N link the organic and water molecules into a three dimensional network (Table 1).

There is no precedent for the fused-ring system in the crystallographic literature.

For background to the reaction of glutaraldehyde and monosubstituted hydrazines, see: Katritzky & Fan (1990).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C10H20N6.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2,3,9,10,15,16-Hexaazatetracyclo[6.6.2.04,16.011,15]hexadecane dihydrate top
Crystal data top
C10H20N6·2H2OF(000) = 568
Mr = 260.35Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2285 reflections
a = 9.5154 (10) Åθ = 2.3–30.0°
b = 16.0667 (17) ŵ = 0.10 mm1
c = 9.1097 (10) ÅT = 100 K
β = 114.916 (1)°Prism, colorless
V = 1263.1 (2) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 1212
14226 measured reflectionsk = 2020
2896 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.6276P]
where P = (Fo2 + 2Fc2)/3
2896 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H20N6·2H2OV = 1263.1 (2) Å3
Mr = 260.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5154 (10) ŵ = 0.10 mm1
b = 16.0667 (17) ÅT = 100 K
c = 9.1097 (10) Å0.20 × 0.20 × 0.05 mm
β = 114.916 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2138 reflections with I > 2σ(I)
14226 measured reflectionsRint = 0.048
2896 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
2896 reflectionsΔρmin = 0.23 e Å3
195 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.34037 (14)0.59785 (8)0.67888 (15)0.0195 (3)
O2W0.75367 (14)0.67859 (7)0.93500 (16)0.0182 (3)
N10.47258 (15)0.70228 (8)0.49990 (16)0.0129 (3)
N20.63553 (16)0.68083 (8)0.58207 (16)0.0134 (3)
N30.60274 (15)0.57645 (8)0.36983 (15)0.0115 (3)
N40.61057 (16)0.59177 (9)0.11065 (16)0.0138 (3)
N50.44386 (15)0.60328 (8)0.03409 (16)0.0136 (3)
N60.43683 (15)0.59445 (8)0.30232 (15)0.0111 (3)
C10.66679 (19)0.59553 (9)0.54388 (18)0.0132 (3)
H1A0.61750.55640.59370.016*
C20.84013 (19)0.57828 (10)0.6218 (2)0.0170 (4)
H2A0.85760.51760.62030.020*
H2B0.88370.59650.73620.020*
C30.92503 (19)0.62308 (10)0.5346 (2)0.0177 (4)
H3A0.91820.68400.54620.021*
H3B1.03580.60710.58390.021*
C40.85215 (18)0.59957 (10)0.3555 (2)0.0166 (3)
H4A0.90390.63070.29840.020*
H4B0.86730.53940.34390.020*
C50.68021 (18)0.61943 (9)0.27960 (18)0.0128 (3)
H5A0.66570.68090.28370.015*
C60.36997 (18)0.56712 (10)0.13338 (19)0.0130 (3)
H60.38510.50550.13440.016*
C70.19610 (19)0.58261 (10)0.0546 (2)0.0168 (4)
H7A0.14510.54420.10210.020*
H7B0.15560.57030.06260.020*
C80.15525 (19)0.67222 (10)0.0773 (2)0.0170 (4)
H8A0.19200.71040.01570.020*
H8B0.04140.67810.03530.020*
C90.23099 (19)0.69524 (10)0.25679 (19)0.0156 (3)
H9A0.20830.75420.27000.019*
H9B0.18670.66040.31650.019*
C100.40528 (18)0.68252 (9)0.32748 (18)0.0125 (3)
H10A0.45080.71990.27110.015*
H10.427 (2)0.6716 (12)0.548 (2)0.018 (5)*
H20.687 (2)0.7182 (13)0.547 (2)0.023 (5)*
H40.629 (2)0.5389 (14)0.108 (2)0.027 (5)*
H50.427 (2)0.6621 (13)0.024 (2)0.024 (5)*
H110.364 (3)0.5434 (17)0.661 (3)0.053 (7)*
H120.371 (3)0.5987 (15)0.789 (3)0.051 (7)*
H210.711 (3)0.6761 (14)0.829 (3)0.039 (7)*
H220.704 (3)0.6475 (15)0.974 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0256 (7)0.0162 (6)0.0178 (6)0.0021 (5)0.0100 (5)0.0008 (5)
O2W0.0192 (7)0.0204 (6)0.0158 (6)0.0034 (5)0.0083 (5)0.0005 (5)
N10.0130 (7)0.0144 (7)0.0120 (6)0.0006 (5)0.0060 (6)0.0009 (5)
N20.0135 (7)0.0115 (6)0.0147 (7)0.0002 (5)0.0054 (6)0.0009 (5)
N30.0114 (7)0.0122 (6)0.0118 (6)0.0001 (5)0.0057 (5)0.0003 (5)
N40.0162 (7)0.0121 (7)0.0137 (7)0.0023 (5)0.0070 (6)0.0006 (5)
N50.0149 (7)0.0134 (7)0.0128 (7)0.0014 (5)0.0060 (6)0.0006 (5)
N60.0106 (6)0.0101 (6)0.0117 (6)0.0007 (5)0.0040 (5)0.0005 (5)
C10.0166 (8)0.0111 (7)0.0119 (7)0.0001 (6)0.0060 (6)0.0002 (6)
C20.0162 (8)0.0156 (8)0.0163 (8)0.0016 (6)0.0041 (7)0.0002 (6)
C30.0121 (8)0.0171 (8)0.0220 (9)0.0017 (6)0.0055 (7)0.0011 (6)
C40.0142 (8)0.0171 (8)0.0199 (8)0.0012 (6)0.0084 (7)0.0005 (6)
C50.0137 (8)0.0121 (7)0.0145 (8)0.0007 (6)0.0076 (6)0.0004 (6)
C60.0159 (8)0.0112 (7)0.0122 (7)0.0010 (6)0.0061 (6)0.0006 (6)
C70.0147 (8)0.0191 (8)0.0147 (8)0.0030 (6)0.0044 (7)0.0020 (6)
C80.0120 (8)0.0194 (8)0.0177 (8)0.0020 (6)0.0043 (7)0.0005 (6)
C90.0153 (8)0.0161 (8)0.0160 (8)0.0023 (6)0.0073 (7)0.0003 (6)
C100.0149 (8)0.0108 (7)0.0127 (8)0.0005 (6)0.0066 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1W—H110.93 (3)C2—H2A0.9900
O1W—H120.92 (3)C2—H2B0.9900
O2W—H210.88 (3)C3—C41.528 (2)
O2W—H220.86 (3)C3—H3A0.9900
N1—N21.4509 (19)C3—H3B0.9900
N1—C101.460 (2)C4—C51.518 (2)
N1—H10.88 (2)C4—H4A0.9900
N2—C11.4748 (19)C4—H4B0.9900
N2—H20.91 (2)C5—H5A1.0000
N3—N61.4615 (17)C6—C71.521 (2)
N3—C11.4715 (19)C6—H61.0000
N3—C51.4853 (19)C7—C81.528 (2)
N4—N51.4508 (19)C7—H7A0.9900
N4—C51.465 (2)C7—H7B0.9900
N4—H40.87 (2)C8—C91.528 (2)
N5—C61.479 (2)C8—H8A0.9900
N5—H50.96 (2)C8—H8B0.9900
N6—C61.4633 (19)C9—C101.519 (2)
N6—C101.4843 (19)C9—H9A0.9900
C1—C21.521 (2)C9—H9B0.9900
C1—H1A1.0000C10—H10A1.0000
C2—C31.530 (2)
H11—O1W—H12103 (2)C3—C4—H4A109.5
H21—O2W—H22110 (2)C5—C4—H4B109.5
N2—N1—C10113.12 (12)C3—C4—H4B109.5
N2—N1—H1104.6 (12)H4A—C4—H4B108.1
C10—N1—H1109.1 (13)N4—C5—N3109.28 (12)
N1—N2—C1112.14 (12)N4—C5—C4109.79 (13)
N1—N2—H2106.1 (12)N3—C5—C4109.95 (13)
C1—N2—H2109.9 (13)N4—C5—H5A109.3
N6—N3—C1107.21 (11)N3—C5—H5A109.3
N6—N3—C5112.03 (11)C4—C5—H5A109.3
C1—N3—C5115.01 (12)N6—C6—N5114.67 (12)
N5—N4—C5112.67 (12)N6—C6—C7110.60 (13)
N5—N4—H4107.5 (13)N5—C6—C7110.49 (13)
C5—N4—H4108.6 (13)N6—C6—H6106.9
N4—N5—C6111.18 (12)N5—C6—H6106.9
N4—N5—H5106.0 (12)C7—C6—H6106.9
C6—N5—H5110.3 (12)C6—C7—C8112.24 (13)
N3—N6—C6107.29 (11)C6—C7—H7A109.2
N3—N6—C10112.12 (11)C8—C7—H7A109.2
C6—N6—C10114.95 (12)C6—C7—H7B109.2
N3—C1—N2114.49 (12)C8—C7—H7B109.2
N3—C1—C2109.88 (13)H7A—C7—H7B107.9
N2—C1—C2110.24 (13)C9—C8—C7109.92 (13)
N3—C1—H1A107.3C9—C8—H8A109.7
N2—C1—H1A107.3C7—C8—H8A109.7
C2—C1—H1A107.3C9—C8—H8B109.7
C1—C2—C3112.22 (13)C7—C8—H8B109.7
C1—C2—H2A109.2H8A—C8—H8B108.2
C3—C2—H2A109.2C10—C9—C8111.07 (13)
C1—C2—H2B109.2C10—C9—H9A109.4
C3—C2—H2B109.2C8—C9—H9A109.4
H2A—C2—H2B107.9C10—C9—H9B109.4
C4—C3—C2109.67 (14)C8—C9—H9B109.4
C4—C3—H3A109.7H9A—C9—H9B108.0
C2—C3—H3A109.7N1—C10—N6110.36 (12)
C4—C3—H3B109.7N1—C10—C9109.43 (13)
C2—C3—H3B109.7N6—C10—C9108.58 (12)
H3A—C3—H3B108.2N1—C10—H10A109.5
C5—C4—C3110.60 (13)N6—C10—H10A109.5
C5—C4—H4A109.5C9—C10—H10A109.5
C10—N1—N2—C148.61 (17)C1—N3—C5—C456.60 (16)
C5—N4—N5—C650.99 (16)C3—C4—C5—N4176.52 (13)
C1—N3—N6—C6174.01 (11)C3—C4—C5—N356.27 (17)
C5—N3—N6—C658.93 (14)N3—N6—C6—N555.08 (16)
C1—N3—N6—C1058.87 (15)C10—N6—C6—N570.36 (17)
C5—N3—N6—C1068.19 (15)N3—N6—C6—C7179.18 (12)
N6—N3—C1—N255.16 (16)C10—N6—C6—C755.38 (17)
C5—N3—C1—N270.13 (17)N4—N5—C6—N652.05 (17)
N6—N3—C1—C2179.84 (12)N4—N5—C6—C7177.85 (12)
C5—N3—C1—C254.55 (16)N6—C6—C7—C851.81 (18)
N1—N2—C1—N351.03 (17)N5—C6—C7—C876.24 (17)
N1—N2—C1—C2175.52 (12)C6—C7—C8—C953.06 (18)
N3—C1—C2—C353.32 (17)C7—C8—C9—C1056.33 (18)
N2—C1—C2—C373.78 (17)N2—N1—C10—N652.49 (17)
C1—C2—C3—C455.36 (17)N2—N1—C10—C9171.91 (12)
C2—C3—C4—C556.48 (17)N3—N6—C10—N159.00 (16)
N5—N4—C5—N355.05 (16)C6—N6—C10—N1178.11 (12)
N5—N4—C5—C4175.72 (12)N3—N6—C10—C9178.95 (11)
N6—N3—C5—N460.10 (15)C6—N6—C10—C958.17 (16)
C1—N3—C5—N4177.16 (12)C8—C9—C10—N1178.00 (13)
N6—N3—C5—C4179.34 (12)C8—C9—C10—N657.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···N3i0.93 (3)1.99 (3)2.922 (2)174 (2)
O1W—H12···N5ii0.92 (3)2.05 (3)2.960 (2)178 (2)
O2W—H21···N20.88 (3)2.05 (3)2.925 (2)172 (2)
O2W—H22···N4ii0.86 (3)2.02 (3)2.863 (2)167 (2)
N1—H1···O1W0.88 (2)2.08 (2)2.964 (2)175 (2)
N2—H2···O2Wiii0.91 (2)2.18 (2)3.071 (2)166 (2)
N4—H4···N5iv0.87 (2)2.57 (2)3.354 (2)150.1 (15)
N5—H5···N1iii0.96 (2)2.25 (2)3.163 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H20N6·2H2O
Mr260.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5154 (10), 16.0667 (17), 9.1097 (10)
β (°) 114.916 (1)
V3)1263.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14226, 2896, 2138
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.02
No. of reflections2896
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···N3i0.93 (3)1.99 (3)2.922 (2)174 (2)
O1W—H12···N5ii0.92 (3)2.05 (3)2.960 (2)178 (2)
O2W—H21···N20.88 (3)2.05 (3)2.925 (2)172 (2)
O2W—H22···N4ii0.86 (3)2.02 (3)2.863 (2)167 (2)
N1—H1···O1W0.88 (2)2.08 (2)2.964 (2)175 (2)
N2—H2···O2Wiii0.91 (2)2.18 (2)3.071 (2)166 (2)
N4—H4···N5iv0.87 (2)2.57 (2)3.354 (2)150.1 (15)
N5—H5···N1iii0.96 (2)2.25 (2)3.163 (2)159 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z.
 

Acknowledgements

We thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatritzky, A. R. & Fan, W.-Q. (1990). J. Org. Chem. 55, 3205–3209.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds