organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­hydro-1,4-benzodioxin-6-yl)-4-fluoro­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cQuestioned Documents Unit, Punjab Forensic Science Agency, Home Department, Lahore, Pakistan, and dThe Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: koolmuneeb@yahoo.com

(Received 5 July 2012; accepted 6 July 2012; online 10 July 2012)

In the title compound, C14H12FNO4S, the dihedral angle between the aromatic rings is 50.26 (9)° and the C—S—N—C bond adopts a gauche conformation [torsion angle = −68.12 (15)°]. The dihydro­dioxine ring is disordered over two orientations, which both approximate to half-chairs, in a 0.880 (7):0.120 (7) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [100]. Weak C—H⋯O and C—H⋯F inter­actions consolidate the packing.

Related literature

For related structures, see: Khan et al. (2011[Khan, M. H., Khan, I. U., Arshad, M. N., Mughal, S. Y. & Akkurt, M. (2011). Acta Cryst. E67, o885-o886.]); Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12FNO4S

  • Mr = 309.31

  • Monoclinic, P 21 /n

  • a = 5.1542 (5) Å

  • b = 22.237 (3) Å

  • c = 12.0706 (13) Å

  • β = 94.422 (3)°

  • V = 1379.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11762 measured reflections

  • 3156 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.02

  • 3156 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.81 (2) 2.22 (2) 3.009 (2) 164 (2)
C3—H3⋯O1ii 0.93 2.53 3.368 (3) 150
C5—H5⋯O4iii 0.93 2.56 3.391 (2) 149
C8—H8⋯O3iv 0.93 2.52 3.446 (2) 172
C13—H13B⋯F1v 0.97 2.48 3.129 (3) 125
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1) was examined as part of our ongoing interest in the structural chemistry of sulfonamides (Khan et al., 2011). A number of related structures have been reported by Gelbrich et al. (2007).

The dihedral angle between the C1—C6 and C7—C12 benzene rings in (I) is 50.26 (9)°. The C1—S1—N1—C7 linkage adopts a gauche conformation [torsion angle = -68.12 (15)°] and the bond-angle sum about N1 (H atom coordinates freely refined) is 347.2°, possibly suggesting a hybridization state intermediate between sp2 and sp3. The largest bond angle at the distorted tetrahedral S atom is O1—S1—O2 [120.26 (9)°], which is typical for this class of compound (Khan et al., 2011).

Atoms C13 and C14 and their attached H atoms of the dihydro-dioxin ring are disordered over two sets of sites in a 0.880 (7):0.120 (7) ratio. Both major and minor conformations approximate to a half-chair. In the major conformation, C13 and C14 are displaced from the plane defined by C7—C12/O3/O4 (r.m.s. deviation = 0.037 Å) by 0.212 (3) and -0.556 (3) Å, respectively. The equivalent atoms in the minor component are displaced by -0.44 (3) and 0.41 (2) Å, respectively.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1) to generate C(4) chains propagating in [100] (Figure 2). Weak C—H···O and C—H···F interactions also occur but there is no aromatic π-π stacking in the structure of (I).

Related literature top

For related structures, see: Khan et al. (2011); Gelbrich et al. (2007).

Experimental top

0.2 g of 6-amino 1,4-benzodioxan was dissolved in 15 ml dichloromethane and 0.25 g of 4-fluorobenzene sulfonyl chloride was added to the mixture, which was stirred at room temperature overnight. The pH was maintained at 8–9 with triethyamine. On completion of reaction (after TLC) the pH was adjusted to 1–2 with 1 M HCl solution. The organic fraction was collected and the solvent was allowed to evaporate at room temperature. Colourless prisms of (I) were obtained in 95% yield.

Refinement top

The N-bond H atom was located in a difference map and its position was freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C,N) was applied.

Structure description top

The title compound, (I), (Fig. 1) was examined as part of our ongoing interest in the structural chemistry of sulfonamides (Khan et al., 2011). A number of related structures have been reported by Gelbrich et al. (2007).

The dihedral angle between the C1—C6 and C7—C12 benzene rings in (I) is 50.26 (9)°. The C1—S1—N1—C7 linkage adopts a gauche conformation [torsion angle = -68.12 (15)°] and the bond-angle sum about N1 (H atom coordinates freely refined) is 347.2°, possibly suggesting a hybridization state intermediate between sp2 and sp3. The largest bond angle at the distorted tetrahedral S atom is O1—S1—O2 [120.26 (9)°], which is typical for this class of compound (Khan et al., 2011).

Atoms C13 and C14 and their attached H atoms of the dihydro-dioxin ring are disordered over two sets of sites in a 0.880 (7):0.120 (7) ratio. Both major and minor conformations approximate to a half-chair. In the major conformation, C13 and C14 are displaced from the plane defined by C7—C12/O3/O4 (r.m.s. deviation = 0.037 Å) by 0.212 (3) and -0.556 (3) Å, respectively. The equivalent atoms in the minor component are displaced by -0.44 (3) and 0.41 (2) Å, respectively.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1) to generate C(4) chains propagating in [100] (Figure 2). Weak C—H···O and C—H···F interactions also occur but there is no aromatic π-π stacking in the structure of (I).

For related structures, see: Khan et al. (2011); Gelbrich et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. The partial packing diagram for (I) showing the formation of C(4) chains: hydrogen bonds are shown as double-dashed lines and all C-bound H atoms are omitted for clarity. Symmetry code: (i) x–1, y, z.
N-(2,3-Dihydro-1,4-benzodioxin-6-yl)-4-fluorobenzenesulfonamide top
Crystal data top
C14H12FNO4SF(000) = 640
Mr = 309.31Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.1542 (5) ÅCell parameters from 1453 reflections
b = 22.237 (3) Åθ = 2.5–25.5°
c = 12.0706 (13) ŵ = 0.26 mm1
β = 94.422 (3)°T = 296 K
V = 1379.3 (3) Å3Prism, colourless
Z = 40.39 × 0.34 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 65
11762 measured reflectionsk = 2828
3156 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.3224P]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H12FNO4SV = 1379.3 (3) Å3
Mr = 309.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.1542 (5) ŵ = 0.26 mm1
b = 22.237 (3) ÅT = 296 K
c = 12.0706 (13) Å0.39 × 0.34 × 0.23 mm
β = 94.422 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2336 reflections with I > 2σ(I)
11762 measured reflectionsRint = 0.024
3156 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
3156 reflectionsΔρmin = 0.32 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5881 (3)0.25665 (7)0.60034 (14)0.0404 (4)
C20.7189 (4)0.23608 (9)0.51210 (17)0.0565 (5)
H20.85150.25900.48520.068*
C30.6514 (5)0.18133 (10)0.46402 (18)0.0664 (6)
H30.73750.16680.40460.080*
C40.4572 (4)0.14930 (9)0.50536 (17)0.0564 (5)
C50.3224 (4)0.16869 (8)0.59056 (17)0.0543 (5)
H50.18760.14580.61540.065*
C60.3891 (4)0.22311 (8)0.63959 (15)0.0482 (4)
H60.30060.23710.69870.058*
F10.3949 (3)0.09489 (6)0.45976 (12)0.0886 (4)
C70.4989 (3)0.39470 (7)0.48965 (15)0.0429 (4)
C80.6750 (3)0.43897 (7)0.46691 (15)0.0434 (4)
H80.78590.45490.52390.052*
C90.6860 (3)0.45950 (7)0.35926 (14)0.0415 (4)
C100.5168 (3)0.43651 (8)0.27495 (15)0.0457 (4)
C110.3469 (4)0.39124 (9)0.29867 (18)0.0613 (5)
H110.23780.37460.24170.074*
C120.3366 (4)0.37037 (9)0.40506 (18)0.0583 (5)
H120.22080.33990.42020.070*
C130.8923 (7)0.51508 (15)0.2265 (2)0.0598 (8)0.880 (7)
H13A1.00290.48420.19850.072*0.880 (7)
H13B0.97700.55360.21850.072*0.880 (7)
C13A0.794 (6)0.5341 (11)0.2265 (19)0.064 (7)*0.120 (7)
H13C0.62990.55550.22690.076*0.120 (7)
H13D0.92830.56280.21110.076*0.120 (7)
C140.6350 (6)0.51509 (11)0.1600 (2)0.0578 (9)0.880 (7)
H14A0.52390.54590.18790.069*0.880 (7)
H14B0.66010.52410.08300.069*0.880 (7)
C14A0.775 (4)0.4882 (9)0.1419 (15)0.058 (6)*0.120 (7)
H14C0.91990.46030.15040.070*0.120 (7)
H14D0.76540.50540.06790.070*0.120 (7)
S10.66702 (8)0.32659 (2)0.66316 (4)0.04491 (14)
N10.4773 (3)0.37724 (7)0.60361 (14)0.0490 (4)
H10.330 (4)0.3731 (9)0.6218 (16)0.059*
O10.5996 (3)0.32377 (7)0.77539 (11)0.0620 (4)
O20.9274 (2)0.34095 (6)0.63905 (12)0.0603 (4)
O30.8603 (2)0.50425 (6)0.34055 (10)0.0564 (4)
O40.5128 (3)0.45743 (6)0.16736 (11)0.0586 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0334 (9)0.0456 (9)0.0420 (9)0.0026 (7)0.0025 (7)0.0036 (7)
C20.0493 (12)0.0695 (12)0.0524 (11)0.0057 (9)0.0153 (9)0.0025 (9)
C30.0714 (15)0.0770 (14)0.0526 (12)0.0018 (11)0.0160 (10)0.0162 (10)
C40.0634 (14)0.0503 (10)0.0537 (12)0.0027 (9)0.0074 (10)0.0055 (9)
C50.0500 (12)0.0474 (10)0.0659 (13)0.0054 (8)0.0062 (9)0.0070 (9)
C60.0437 (11)0.0485 (9)0.0536 (11)0.0015 (8)0.0120 (8)0.0043 (8)
F10.1154 (12)0.0617 (8)0.0870 (10)0.0070 (7)0.0023 (8)0.0230 (7)
C70.0333 (9)0.0413 (8)0.0543 (11)0.0025 (7)0.0050 (7)0.0014 (7)
C80.0368 (9)0.0424 (9)0.0500 (10)0.0032 (7)0.0025 (7)0.0069 (7)
C90.0337 (9)0.0372 (8)0.0530 (10)0.0017 (6)0.0007 (7)0.0061 (7)
C100.0435 (10)0.0427 (9)0.0500 (11)0.0015 (7)0.0034 (8)0.0053 (7)
C110.0547 (13)0.0606 (12)0.0653 (13)0.0182 (9)0.0154 (10)0.0056 (10)
C120.0457 (11)0.0553 (11)0.0725 (14)0.0174 (9)0.0049 (9)0.0033 (10)
C130.0550 (18)0.0660 (17)0.0580 (16)0.0102 (14)0.0026 (12)0.0107 (12)
C140.0650 (19)0.0518 (13)0.0555 (15)0.0002 (11)0.0029 (12)0.0041 (10)
S10.0329 (2)0.0524 (3)0.0494 (3)0.00419 (18)0.00263 (17)0.00209 (19)
N10.0342 (8)0.0510 (8)0.0630 (10)0.0015 (7)0.0122 (7)0.0001 (7)
O10.0648 (9)0.0763 (9)0.0449 (8)0.0063 (7)0.0039 (6)0.0058 (6)
O20.0297 (7)0.0679 (9)0.0833 (10)0.0074 (6)0.0038 (6)0.0003 (7)
O30.0567 (9)0.0584 (8)0.0529 (8)0.0218 (6)0.0032 (6)0.0030 (6)
O40.0665 (9)0.0568 (8)0.0505 (8)0.0093 (6)0.0090 (6)0.0024 (6)
Geometric parameters (Å, º) top
C1—C61.381 (2)C11—C121.370 (3)
C1—C21.381 (2)C11—H110.9300
C1—S11.7640 (17)C12—H120.9300
C2—C31.382 (3)C13—O31.419 (3)
C2—H20.9300C13—C141.496 (4)
C3—C41.355 (3)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.355 (3)C13A—C14A1.44 (3)
C4—F11.357 (2)C13A—O31.54 (2)
C5—C61.379 (3)C13A—H13C0.9700
C5—H50.9300C13A—H13D0.9700
C6—H60.9300C14—O41.434 (3)
C7—C121.379 (2)C14—H14A0.9700
C7—C81.381 (2)C14—H14B0.9700
C7—N11.442 (2)C14A—O41.566 (18)
C8—C91.383 (2)C14A—H14C0.9700
C8—H80.9300C14A—H14D0.9700
C9—O31.371 (2)S1—O11.4256 (14)
C9—C101.386 (2)S1—O21.4312 (13)
C10—O41.378 (2)S1—N11.6228 (16)
C10—C111.379 (3)N1—H10.81 (2)
C6—C1—C2120.33 (17)O3—C13—H13A109.5
C6—C1—S1118.77 (13)C14—C13—H13A109.5
C2—C1—S1120.88 (14)O3—C13—H13B109.5
C1—C2—C3119.58 (19)C14—C13—H13B109.5
C1—C2—H2120.2H13A—C13—H13B108.1
C3—C2—H2120.2C14A—C13A—O3109.0 (18)
C4—C3—C2118.54 (19)C14A—C13A—H13C109.9
C4—C3—H3120.7O3—C13A—H13C109.9
C2—C3—H3120.7C14A—C13A—H13D109.9
C3—C4—C5123.30 (19)O3—C13A—H13D109.9
C3—C4—F1118.53 (19)H13C—C13A—H13D108.3
C5—C4—F1118.17 (19)O4—C14—C13110.0 (2)
C4—C5—C6118.64 (18)O4—C14—H14A109.7
C4—C5—H5120.7C13—C14—H14A109.7
C6—C5—H5120.7O4—C14—H14B109.7
C5—C6—C1119.59 (17)C13—C14—H14B109.7
C5—C6—H6120.2H14A—C14—H14B108.2
C1—C6—H6120.2C13A—C14A—O4100.5 (18)
C12—C7—C8120.18 (17)C13A—C14A—H14C111.7
C12—C7—N1120.90 (16)O4—C14A—H14C111.7
C8—C7—N1118.81 (16)C13A—C14A—H14D111.7
C7—C8—C9119.83 (16)O4—C14A—H14D111.7
C7—C8—H8120.1H14C—C14A—H14D109.4
C9—C8—H8120.1O1—S1—O2120.26 (9)
O3—C9—C8117.99 (14)O1—S1—N1105.59 (9)
O3—C9—C10122.01 (16)O2—S1—N1107.32 (9)
C8—C9—C10119.95 (16)O1—S1—C1107.74 (8)
O4—C10—C11118.58 (16)O2—S1—C1107.34 (8)
O4—C10—C9122.02 (16)N1—S1—C1108.09 (8)
C11—C10—C9119.39 (17)C7—N1—S1121.42 (12)
C12—C11—C10120.85 (17)C7—N1—H1115.5 (14)
C12—C11—H11119.6S1—N1—H1110.2 (15)
C10—C11—H11119.6C9—O3—C13114.18 (15)
C11—C12—C7119.74 (17)C9—O3—C13A110.9 (10)
C11—C12—H12120.1C10—O4—C14112.66 (14)
C7—C12—H12120.1C10—O4—C14A112.4 (7)
O3—C13—C14110.8 (2)
C6—C1—C2—C30.8 (3)C2—C1—S1—O1153.38 (16)
S1—C1—C2—C3179.50 (16)C6—C1—S1—O2158.72 (14)
C1—C2—C3—C40.0 (3)C2—C1—S1—O222.52 (18)
C2—C3—C4—C51.1 (3)C6—C1—S1—N185.80 (15)
C2—C3—C4—F1178.54 (19)C2—C1—S1—N192.95 (16)
C3—C4—C5—C61.5 (3)C12—C7—N1—S197.69 (19)
F1—C4—C5—C6178.17 (17)C8—C7—N1—S186.06 (19)
C4—C5—C6—C10.7 (3)O1—S1—N1—C7176.79 (14)
C2—C1—C6—C50.4 (3)O2—S1—N1—C747.37 (16)
S1—C1—C6—C5179.15 (14)C1—S1—N1—C768.12 (15)
C12—C7—C8—C90.9 (3)C8—C9—O3—C13169.3 (2)
N1—C7—C8—C9175.37 (15)C10—C9—O3—C1313.3 (3)
C7—C8—C9—O3178.83 (15)C8—C9—O3—C13A163.5 (11)
C7—C8—C9—C101.3 (3)C10—C9—O3—C13A13.9 (11)
O3—C9—C10—O40.3 (3)C14—C13—O3—C943.1 (3)
C8—C9—C10—O4177.12 (15)C14—C13—O3—C13A45 (2)
O3—C9—C10—C11179.60 (17)C14A—C13A—O3—C954 (2)
C8—C9—C10—C113.0 (3)C14A—C13A—O3—C1348.9 (19)
O4—C10—C11—C12177.64 (18)C11—C10—O4—C14161.9 (2)
C9—C10—C11—C122.5 (3)C9—C10—O4—C1418.2 (3)
C10—C11—C12—C70.3 (3)C11—C10—O4—C14A157.3 (9)
C8—C7—C12—C111.5 (3)C9—C10—O4—C14A22.6 (9)
N1—C7—C12—C11174.74 (18)C13—C14—O4—C1047.5 (3)
O3—C13—C14—O461.6 (4)C13—C14—O4—C14A50.3 (11)
O3—C13A—C14A—O472 (2)C13A—C14A—O4—C1057.2 (18)
C6—C1—S1—O127.86 (16)C13A—C14A—O4—C1441.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (2)2.22 (2)3.009 (2)164 (2)
C3—H3···O1ii0.932.533.368 (3)150
C5—H5···O4iii0.932.563.391 (2)149
C8—H8···O3iv0.932.523.446 (2)172
C13—H13B···F1v0.972.483.129 (3)125
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12FNO4S
Mr309.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.1542 (5), 22.237 (3), 12.0706 (13)
β (°) 94.422 (3)
V3)1379.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.39 × 0.34 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11762, 3156, 2336
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.02
No. of reflections3156
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (2)2.22 (2)3.009 (2)164 (2)
C3—H3···O1ii0.932.533.368 (3)150
C5—H5···O4iii0.932.563.391 (2)149
C8—H8···O3iv0.932.523.446 (2)172
C13—H13B···F1v0.972.483.129 (3)125
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the Higher Education Commission of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. H., Khan, I. U., Arshad, M. N., Mughal, S. Y. & Akkurt, M. (2011). Acta Cryst. E67, o885–o886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds