organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3S,4R)-3,4-Iso­propyl­idenedi­­oxy-2-(phenyl­sulfonyl­meth­yl)pyrrolidin-1-ol

aDepartamento de Quimica Organica, Universidad de Salamanca, Plaza de los Caidos, 37008 Salamanca, Spain, and bServicio General de Rayos X, Universidad de Salamanca, Plaza de los Caidos, 37008 Salamanca, Spain
*Correspondence e-mail: ddm@usal.es

(Received 18 July 2012; accepted 20 July 2012; online 28 July 2012)

The title compound, C14H19NO5S, was prepared by nucleophilic addition of the lithium derivative of methyl­phenyl­sulfone to (3S,4R)-3,4-isopropyl­idene­dioxy­pyrroline 1-oxide. There are four mol­ecules in the asymmetric unit. The crystal structure determination confirms the configuration of the chiral centres as 2R,3S,4R. In the crystal, pairs of O—H⋯N hydrogen bonds link the mol­ecules into dimers.

Related literature

For asymmetric organocatalysis, see: Macmillan (2008[Macmillan, D. W. C. (2008). Nature (London), 455, 304-308.]); List (2007[List, B. (2007). Chem. Rev. 107, 5413-5415.]). For proline and its derivatives as organocatalysts, see: Pellissier (2007[Pellissier, H. (2007). Tetrahedron, 63, 9267-9331.]); Lattanzi (2009[Lattanzi, A. (2009). Chem. Commun. pp. 1452-1463.]); Mielgo et al. (2008[Mielgo, A. & Palomo, C. (2008). Chem. Asian J. 3, 922-948.]); Panday (2011[Panday, S. K. (2011). Tetrahedron Asymmetry, 22, 1817-1847.]). For the preparation, see: Flores et al. (2010[Flores, M. F., Nuñez, M. G., Moro, R. F., Garrido, N. M., Marcos, I. S., Iglesias, E. F., Garcia, P. & Diez, D. (2010). Molecules, 15, 1501-1512.]). For C-branched pyrrolidines, see: Flores et al. (2011a[Flores, M. F., Garcia, P., Garrido, N. M., Marcos, I. S., Sanz, F. & Diez, D. (2011a). Tetrahedron Asymmetry, 22, 1467-1472.]). For hydroxyl­amines in synthesis, see: Chevrier et al. (2011[Chevrier, C., Le Nouën, D., Defoin, A. & Tarnus, C. (2011). Carbohydr. Res. 346, 1202-1211.]); Li et al. (2011[Li, X., Qin, Z., Wang, R., Chen, H. & Zhang, P. (2011). Tetrahedron, 67, 1792-1798.]). For (3R,4S)-3,4-isopropyl­idenedi­oxy-5-phenyl­sulf­on­yl­methyl-3,4-dihydro-2H-pyrrole 1-oxide, see: Flores et al. (2011b[Flores, M. F., Garcia, P. M., Garrido, N., Sanz, F. & Diez, D. (2011b). Acta Cryst. E67, o1115.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO5S

  • Mr = 313.36

  • Monoclinic, P 21

  • a = 9.1876 (2) Å

  • b = 19.5284 (5) Å

  • c = 17.9187 (5) Å

  • β = 102.658 (2)°

  • V = 3136.82 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.02 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.730, Tmax = 0.817

  • 46376 measured reflections

  • 10345 independent reflections

  • 9616 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.03

  • 10345 reflections

  • 769 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4863 Friedel pairs

  • Flack parameter: 0.040 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5AO⋯N1Bi 0.82 2.04 2.752 (3) 144
O5B—H5BO⋯N1Aii 0.82 2.11 2.807 (3) 142
O5C—H5CO⋯N1Di 0.82 2.10 2.802 (4) 144
O5D—H5DO⋯N1Cii 0.82 2.06 2.766 (3) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Asymmetric organocatalysis has become a very attractive methodology in recent years, since environmentally friendly and metal-free transformations are desired (Macmillan, 2008; List, 2007). It is well known that proline and its derivatives have been widely employed as organocatalysts (Pellissier, 2007; Lattanzi, 2009; Mielgo et al. 2008; Panday, 2011). In our research group we have developed new organocatalysts using nitrones as starting material (Flores et al., 2010). This catalyst was obtained from the reduction of the chiral hydroxylamine (II) (Fig. 1). Moreover, this hydroxylamine has been employed as starting material to tackle the synthesis of a C-branched substituted pyrrolidine (Flores et al., 2011a). Hydroxylamines are important tools for the synthesis of biologically active compounds (Chevrier et al., 2011; Li et al., 2011).

The title compound, C14H19NO5S, consists of a N-hydroxypyrrolidine ring with a phenylsulfonylmethyl group and an isopropylidenedioxy group as susbtituents. This compound crystallizes in space group P21 with four independent molecules (A, B, C and D) in the asymmetric unit which differ slightly in conformation but retain the same (3S,4R) configuration in the acetonide group (Fig. 2). All the bond lengths and angles are within the normal ranges. The C—S—C angles in molecules A, B, C and D are 108.5 (2)°, 104.9 (2)°, 106.4 (2)° and 106.1 (2)°, respectively and the O—S—O angles are 115.6 (3)°, 119.8 (2)°, 116.9 (3)° and 118.3 (2)°, respectively. The large O—S—O angle and this deviation from the optimal 109.5° angle can be explained by the repulsion of the lone pairs of the oxygen placing the oxygen atoms as far away from each other as possible and thus minimizing the C—S—C angle. Torsion-angle differences in molecules A, B, C and D are evident from C6—S1—C7—C8, with values of 78.6 (3)°, 60.6 (3)°, 81.6 (3)° and 60.2 (3)°, respectively. The hydroxyl group at N1 atom is displaced from the planar conformation with the pyrrolidine ring. The O5—N1—C8—C9 torsion angles are very similar in the four molecules, having values of 165.3 (2)°, 164.6 (2)°, 166.0 (2)° and 163.5 (2)°, respectively.

In the crystal, O—H···N hydrogen bonds between the hydroxyl group and the nitrogen atom of the N-hydroxypyrrolidine link adjacent molecules into dimers (Table 1 and Fig. 3). The dimers form six-membered rings and present an anti-parallel orientation along the [010] direction, as is shown in the crystal packing (Fig. 4).

The structure of (3R,4S)-3,4-Isopropylidenedioxy-5-phenylsulfonylmethyl-3,4-dihydro-2H-pyrrole 1-oxide has been determined by Flores et al. (2011b).

Related literature top

For asymmetric organocatalysis, see: Macmillan (2008); List (2007). For proline and its derivatives as organocatalysts, see: Pellissier (2007); Lattanzi (2009); Mielgo et al. (2008); Panday (2011). For the preparation, see: Flores et al. (2010). For C-branched pyrrolidines, see: Flores et al. (2011a). For hydroxylamines in synthesis, see: Chevrier et al. (2011); Li et al. (2011). For (3R,4S)-3,4-isopropylidenedioxy-5-phenylsulfonylmethyl-3,4-dihydro-2H-pyrrole 1-oxide, see: Flores et al. (2011b).

Experimental top

The title hydroxylamine, (II), was obtained stereoselectively by nucleophilic addition of lithio(phenylsulfonyl)methane to (3S,4R)-3,4-isopropylidenedioxypyrroline-1-oxide (I) according to the methodology described by us (Flores et al. 2010). The stereochemistry of (II) was established studying its NMR spectra and observation of the nOes that this molecule displays. The X-ray analysis corroborated its configuration. Well shaped colourless single crystals were obtained by crystallization from hexane/EtOAc.

Refinement top

The hydrogen atoms were positioned geometrically, with C—H distances constrained to 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and refined in riding mode with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms. The hydroxyl hydrogen atoms were positined with an O—H distance of 0.82 Å, starting from the difference Fourier map coordinates and with Uiso(H) = 1.5 Ueq(O).

Structure description top

Asymmetric organocatalysis has become a very attractive methodology in recent years, since environmentally friendly and metal-free transformations are desired (Macmillan, 2008; List, 2007). It is well known that proline and its derivatives have been widely employed as organocatalysts (Pellissier, 2007; Lattanzi, 2009; Mielgo et al. 2008; Panday, 2011). In our research group we have developed new organocatalysts using nitrones as starting material (Flores et al., 2010). This catalyst was obtained from the reduction of the chiral hydroxylamine (II) (Fig. 1). Moreover, this hydroxylamine has been employed as starting material to tackle the synthesis of a C-branched substituted pyrrolidine (Flores et al., 2011a). Hydroxylamines are important tools for the synthesis of biologically active compounds (Chevrier et al., 2011; Li et al., 2011).

The title compound, C14H19NO5S, consists of a N-hydroxypyrrolidine ring with a phenylsulfonylmethyl group and an isopropylidenedioxy group as susbtituents. This compound crystallizes in space group P21 with four independent molecules (A, B, C and D) in the asymmetric unit which differ slightly in conformation but retain the same (3S,4R) configuration in the acetonide group (Fig. 2). All the bond lengths and angles are within the normal ranges. The C—S—C angles in molecules A, B, C and D are 108.5 (2)°, 104.9 (2)°, 106.4 (2)° and 106.1 (2)°, respectively and the O—S—O angles are 115.6 (3)°, 119.8 (2)°, 116.9 (3)° and 118.3 (2)°, respectively. The large O—S—O angle and this deviation from the optimal 109.5° angle can be explained by the repulsion of the lone pairs of the oxygen placing the oxygen atoms as far away from each other as possible and thus minimizing the C—S—C angle. Torsion-angle differences in molecules A, B, C and D are evident from C6—S1—C7—C8, with values of 78.6 (3)°, 60.6 (3)°, 81.6 (3)° and 60.2 (3)°, respectively. The hydroxyl group at N1 atom is displaced from the planar conformation with the pyrrolidine ring. The O5—N1—C8—C9 torsion angles are very similar in the four molecules, having values of 165.3 (2)°, 164.6 (2)°, 166.0 (2)° and 163.5 (2)°, respectively.

In the crystal, O—H···N hydrogen bonds between the hydroxyl group and the nitrogen atom of the N-hydroxypyrrolidine link adjacent molecules into dimers (Table 1 and Fig. 3). The dimers form six-membered rings and present an anti-parallel orientation along the [010] direction, as is shown in the crystal packing (Fig. 4).

The structure of (3R,4S)-3,4-Isopropylidenedioxy-5-phenylsulfonylmethyl-3,4-dihydro-2H-pyrrole 1-oxide has been determined by Flores et al. (2011b).

For asymmetric organocatalysis, see: Macmillan (2008); List (2007). For proline and its derivatives as organocatalysts, see: Pellissier (2007); Lattanzi (2009); Mielgo et al. (2008); Panday (2011). For the preparation, see: Flores et al. (2010). For C-branched pyrrolidines, see: Flores et al. (2011a). For hydroxylamines in synthesis, see: Chevrier et al. (2011); Li et al. (2011). For (3R,4S)-3,4-isopropylidenedioxy-5-phenylsulfonylmethyl-3,4-dihydro-2H-pyrrole 1-oxide, see: Flores et al. (2011b).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. Views of molecules A, B, C and D with the atomic numbering schemes. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. A view of the N—H···O hydrogen bonds in a dimer.
[Figure 4] Fig. 4. Crystal packing of C14H19NO5S viewed along a axis, showing intermolecular hydrogen bonding.
(2R,3S,4R)-3,4-Isopropylidenedioxy-2- (phenylsulfonylmethyl)pyrrolidin-1-ol top
Crystal data top
C14H19NO5SF(000) = 1328
Mr = 313.36Dx = 1.327 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9406 reflections
a = 9.1876 (2) Åθ = 4.9–63.6°
b = 19.5284 (5) ŵ = 2.02 mm1
c = 17.9187 (5) ÅT = 298 K
β = 102.658 (2)°Monoclinic, colorless
V = 3136.82 (14) Å30.20 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10345 independent reflections
Radiation source: fine-focus sealed tube9616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 67.3°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 109
Tmin = 0.730, Tmax = 0.817k = 2222
46376 measured reflectionsl = 1921
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0765P)2 + 1.156P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
10345 reflectionsΔρmax = 0.34 e Å3
769 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 4863 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.040 (14)
Crystal data top
C14H19NO5SV = 3136.82 (14) Å3
Mr = 313.36Z = 8
Monoclinic, P21Cu Kα radiation
a = 9.1876 (2) ŵ = 2.02 mm1
b = 19.5284 (5) ÅT = 298 K
c = 17.9187 (5) Å0.20 × 0.15 × 0.10 mm
β = 102.658 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
9616 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.817Rint = 0.036
46376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.34 e Å3
S = 1.03Δρmin = 0.37 e Å3
10345 reflectionsAbsolute structure: Flack (1983), 4863 Friedel pairs
769 parametersAbsolute structure parameter: 0.040 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.19647 (12)0.61777 (4)0.05085 (6)0.0652 (2)
O1A0.3193 (6)0.6595 (2)0.0564 (3)0.1277 (16)
O2A0.0537 (5)0.64490 (18)0.08459 (18)0.1012 (12)
O3A0.1249 (3)0.62313 (16)0.19626 (14)0.0765 (8)
O4A0.1892 (3)0.60587 (18)0.06966 (15)0.0759 (8)
O5A0.2162 (2)0.49040 (11)0.14264 (14)0.0548 (5)
H5AO0.19000.45080.14720.082*
N1A0.0905 (3)0.53544 (12)0.13787 (14)0.0436 (5)
C1A0.2376 (4)0.47657 (19)0.0578 (2)0.0601 (9)
H1A0.23600.47380.00620.072*
C2A0.2580 (5)0.4184 (2)0.0980 (3)0.0755 (11)
H2A0.26820.37600.07370.091*
C3A0.2633 (7)0.4228 (3)0.1733 (3)0.1013 (17)
H3A0.28160.38370.19950.122*
C4A0.2419 (8)0.4842 (3)0.2107 (3)0.114 (2)
H4A0.24210.48640.26250.137*
C5A0.2199 (7)0.5428 (3)0.1721 (2)0.0944 (15)
H5A0.20550.58460.19750.113*
C6A0.2196 (4)0.53896 (18)0.09506 (19)0.0548 (8)
C7A0.2040 (4)0.60265 (18)0.0472 (2)0.0563 (8)
H7A10.22740.64540.07470.068*
H7A20.28490.57100.06630.068*
C8A0.0619 (3)0.57383 (15)0.06490 (17)0.0438 (6)
H8A0.01010.54480.02280.053*
C9A0.0419 (4)0.62954 (17)0.08194 (19)0.0556 (8)
H9A0.03360.67200.05400.067*
C10A0.2494 (5)0.6259 (3)0.1332 (2)0.0866 (15)
C11A0.0040 (4)0.63964 (18)0.1709 (2)0.0604 (9)
H11A0.03820.68630.18500.072*
C12A0.1243 (4)0.58701 (17)0.19824 (19)0.0567 (8)
H12A0.11740.56810.24740.068*
H12B0.22290.60630.20210.068*
C13A0.3073 (9)0.6989 (4)0.1226 (4)0.159 (4)
H13A0.23790.72670.10300.238*
H13B0.40230.69940.08730.238*
H13C0.31810.71690.17100.238*
C14A0.3633 (6)0.5742 (5)0.1443 (4)0.138 (3)
H14A0.40430.58730.18710.207*
H14B0.44170.57210.09900.207*
H14C0.31700.53000.15380.207*
S1B0.74157 (11)0.17691 (4)0.93555 (5)0.0663 (3)
O1B0.5883 (4)0.19608 (18)0.9256 (2)0.0996 (11)
O2B0.8381 (5)0.21718 (17)0.90313 (18)0.1016 (11)
O3B1.2830 (2)0.19731 (12)1.17829 (11)0.0503 (5)
O4B1.2291 (3)0.17175 (14)1.05340 (13)0.0614 (6)
O5B0.8899 (2)0.07129 (12)1.14583 (16)0.0598 (6)
H5BO0.91830.03151.15270.090*
N1B1.0105 (3)0.11334 (12)1.13398 (14)0.0431 (5)
C1B0.6650 (6)0.0428 (2)0.9269 (3)0.0841 (12)
H1B0.60670.05450.96140.101*
C2B0.6667 (8)0.0242 (3)0.9021 (3)0.1065 (18)
H2B0.61480.05820.92170.128*
C3B0.7454 (10)0.0391 (4)0.8490 (4)0.124 (3)
H3B0.74180.08330.82940.149*
C4B0.8280 (7)0.0079 (4)0.8240 (4)0.114 (2)
H4B0.88320.00420.78830.137*
C5B0.8330 (6)0.0757 (3)0.8509 (3)0.0877 (13)
H5B0.89300.10830.83450.105*
C6B0.7480 (4)0.09241 (19)0.9013 (2)0.0576 (8)
C7B0.8145 (4)0.17107 (19)1.03508 (19)0.0558 (8)
H7B10.81040.21601.05760.067*
H7B20.75160.14071.05700.067*
C8B0.9762 (3)0.14469 (15)1.05684 (16)0.0430 (6)
H8B0.99300.11121.01890.052*
C9B1.0931 (4)0.19970 (16)1.06625 (16)0.0472 (7)
H9B1.05990.23981.03410.057*
C10B1.3488 (4)0.1946 (2)1.1131 (2)0.0613 (9)
C11B1.1306 (3)0.21753 (15)1.15338 (16)0.0455 (7)
H11B1.11520.26611.16300.055*
C12B1.0312 (3)0.17174 (16)1.18733 (16)0.0450 (6)
H12C1.07890.15771.23880.054*
H12D0.93700.19381.18820.054*
C13B1.3996 (6)0.2649 (3)1.0944 (3)0.0967 (17)
H13D1.45030.26141.05310.145*
H13E1.46620.28351.13860.145*
H13F1.31450.29431.07960.145*
C14B1.4696 (5)0.1411 (3)1.1277 (3)0.0930 (15)
H14D1.42730.09751.13580.140*
H14E1.54390.15341.17230.140*
H14F1.51490.13821.08430.140*
S1C0.25570 (12)0.15006 (5)0.44754 (7)0.0776 (3)
O1C0.1349 (5)0.1036 (2)0.4415 (3)0.145 (2)
O2C0.3711 (5)0.13160 (18)0.40943 (19)0.1102 (13)
O3C0.8029 (3)0.14324 (16)0.68788 (15)0.0760 (8)
O4C0.7499 (3)0.16513 (15)0.56239 (16)0.0707 (7)
O5C0.4103 (3)0.27178 (12)0.64572 (17)0.0641 (6)
H5CO0.43410.31190.64180.096*
N1C0.5301 (3)0.22795 (12)0.63647 (15)0.0463 (6)
C1C0.2105 (5)0.2920 (2)0.4527 (3)0.0880 (14)
H1C0.27000.29280.50190.106*
C2C0.1503 (6)0.3513 (2)0.4191 (3)0.1004 (17)
H2C0.17150.39280.44470.120*
C3C0.0603 (8)0.3497 (3)0.3490 (3)0.116 (2)
H3C0.02600.39050.32470.139*
C4C0.0181 (10)0.2883 (4)0.3127 (4)0.155 (3)
H4C0.04990.28740.26590.186*
C5C0.0775 (8)0.2287 (3)0.3464 (3)0.121 (2)
H5C0.04580.18690.32360.145*
C6C0.1829 (4)0.2301 (2)0.4133 (2)0.0645 (9)
C7C0.3370 (4)0.16135 (19)0.5455 (2)0.0603 (9)
H7C10.34090.11730.57080.072*
H7C20.27280.19090.56760.072*
C8C0.4938 (3)0.19196 (15)0.56218 (17)0.0453 (7)
H8C0.50590.22270.52080.054*
C9C0.6151 (4)0.13780 (16)0.57601 (18)0.0530 (8)
H9C0.58450.09600.54650.064*
C10C0.8674 (5)0.1434 (3)0.6235 (3)0.0810 (13)
C11C0.6494 (4)0.12466 (17)0.6639 (2)0.0606 (9)
H11C0.63040.07720.67660.073*
C12C0.5546 (4)0.17463 (18)0.6950 (2)0.0582 (8)
H12E0.60640.19250.74420.070*
H12F0.46130.15400.70020.070*
C13C0.9889 (6)0.1981 (4)0.6367 (5)0.128 (3)
H13G1.07090.18330.67640.192*
H13H1.02300.20520.59030.192*
H13I0.94940.24020.65170.192*
C14C0.9201 (8)0.0723 (4)0.6074 (4)0.127 (2)
H14G0.83820.04080.60130.190*
H14H0.95720.07330.56130.190*
H14I0.99820.05790.64930.190*
S1D0.32357 (13)0.05362 (4)0.57451 (5)0.0674 (3)
O1D0.1838 (5)0.03538 (18)0.5906 (2)0.1052 (12)
O2D0.4457 (5)0.00924 (17)0.59922 (17)0.1037 (12)
O3D0.5969 (3)0.03630 (14)0.30822 (13)0.0653 (7)
O4D0.6770 (3)0.05050 (17)0.43411 (15)0.0727 (7)
O5D0.2675 (2)0.16902 (11)0.37198 (13)0.0501 (5)
H5DO0.29180.20840.36440.075*
N1D0.3916 (3)0.12378 (11)0.37304 (13)0.0400 (5)
C1D0.2912 (8)0.1919 (3)0.5823 (3)0.1070 (18)
H1D0.21360.18730.53960.128*
C2D0.3254 (11)0.2554 (3)0.6154 (4)0.143 (3)
H2D0.27210.29420.59510.172*
C3D0.4400 (14)0.2599 (4)0.6787 (4)0.170 (4)
H3D0.46210.30220.70250.204*
C4D0.5208 (14)0.2051 (5)0.7073 (4)0.182 (4)
H4D0.59940.21010.74960.218*
C5D0.4885 (9)0.1410 (3)0.6747 (3)0.127 (2)
H5D0.54470.10290.69450.152*
C6D0.3732 (5)0.13519 (18)0.6132 (2)0.0682 (10)
C7D0.2956 (4)0.06272 (18)0.47465 (18)0.0545 (8)
H7D10.26460.01890.45100.065*
H7D20.21470.09490.45750.065*
C8D0.4322 (3)0.08745 (15)0.44659 (16)0.0412 (6)
H8D0.49310.11730.48520.049*
C9D0.5275 (4)0.02939 (16)0.42674 (17)0.0483 (7)
H9D0.51940.01230.45590.058*
C10D0.7248 (4)0.0301 (2)0.3660 (2)0.0712 (10)
C11D0.4722 (4)0.01849 (16)0.33885 (17)0.0511 (7)
H11D0.43870.02860.32610.061*
C12D0.3484 (4)0.06992 (15)0.31499 (17)0.0467 (7)
H12G0.34520.08730.26390.056*
H12H0.25220.05040.31680.056*
C13D0.7763 (7)0.0446 (3)0.3751 (3)0.1072 (19)
H13J0.70170.07170.39130.161*
H13K0.86820.04740.41280.161*
H13L0.79120.06140.32710.161*
C14D0.8396 (6)0.0794 (4)0.3508 (5)0.127 (2)
H14J0.88020.06280.30920.191*
H14K0.91800.08380.39580.191*
H14L0.79420.12330.33760.191*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0921 (7)0.0466 (4)0.0666 (5)0.0044 (4)0.0387 (5)0.0031 (4)
O1A0.182 (4)0.095 (3)0.138 (3)0.074 (3)0.104 (3)0.029 (2)
O2A0.153 (3)0.084 (2)0.0693 (18)0.063 (2)0.0301 (19)0.0204 (16)
O3A0.0891 (19)0.096 (2)0.0490 (13)0.0356 (16)0.0249 (13)0.0121 (13)
O4A0.0602 (15)0.113 (2)0.0548 (14)0.0340 (15)0.0123 (11)0.0012 (14)
O5A0.0446 (11)0.0444 (11)0.0738 (14)0.0118 (9)0.0093 (10)0.0071 (11)
N1A0.0443 (13)0.0385 (12)0.0464 (13)0.0101 (10)0.0062 (10)0.0048 (10)
C1A0.077 (2)0.053 (2)0.0553 (19)0.0063 (17)0.0243 (17)0.0004 (16)
C2A0.101 (3)0.057 (2)0.072 (3)0.012 (2)0.027 (2)0.0054 (19)
C3A0.155 (5)0.080 (3)0.073 (3)0.019 (3)0.035 (3)0.021 (3)
C4A0.189 (6)0.107 (4)0.055 (2)0.023 (4)0.045 (3)0.011 (3)
C5A0.153 (5)0.081 (3)0.053 (2)0.020 (3)0.032 (3)0.009 (2)
C6A0.061 (2)0.0546 (19)0.0514 (18)0.0075 (15)0.0185 (15)0.0015 (15)
C7A0.0594 (19)0.0469 (18)0.065 (2)0.0071 (14)0.0184 (16)0.0080 (15)
C8A0.0474 (16)0.0421 (15)0.0421 (15)0.0039 (12)0.0104 (12)0.0034 (12)
C9A0.071 (2)0.0517 (18)0.0472 (17)0.0183 (15)0.0192 (15)0.0140 (14)
C10A0.080 (3)0.125 (4)0.062 (2)0.056 (3)0.031 (2)0.024 (2)
C11A0.080 (2)0.0460 (18)0.0578 (19)0.0129 (16)0.0204 (17)0.0057 (15)
C12A0.068 (2)0.0527 (19)0.0450 (16)0.0023 (16)0.0022 (15)0.0037 (14)
C13A0.199 (7)0.198 (7)0.091 (4)0.157 (7)0.059 (4)0.043 (4)
C14A0.068 (3)0.225 (9)0.132 (5)0.017 (4)0.045 (3)0.031 (5)
S1B0.0772 (6)0.0489 (5)0.0603 (5)0.0084 (4)0.0121 (4)0.0012 (4)
O1B0.084 (2)0.093 (2)0.100 (2)0.0439 (17)0.0280 (16)0.0245 (18)
O2B0.145 (3)0.080 (2)0.0660 (17)0.030 (2)0.0066 (18)0.0094 (16)
O3B0.0491 (12)0.0598 (13)0.0417 (10)0.0069 (9)0.0093 (9)0.0027 (9)
O4B0.0612 (14)0.0806 (16)0.0475 (11)0.0209 (12)0.0227 (10)0.0118 (12)
O5B0.0470 (12)0.0517 (13)0.0858 (17)0.0083 (9)0.0259 (12)0.0049 (12)
N1B0.0422 (13)0.0404 (13)0.0487 (13)0.0034 (10)0.0144 (10)0.0029 (10)
C1B0.096 (3)0.070 (3)0.090 (3)0.005 (2)0.028 (2)0.011 (2)
C2B0.141 (5)0.074 (3)0.093 (4)0.024 (3)0.001 (3)0.017 (3)
C3B0.173 (7)0.082 (4)0.094 (4)0.030 (4)0.025 (4)0.037 (3)
C4B0.111 (4)0.133 (5)0.096 (4)0.029 (4)0.018 (3)0.056 (4)
C5B0.085 (3)0.104 (4)0.075 (3)0.001 (3)0.020 (2)0.022 (2)
C6B0.0563 (19)0.0568 (19)0.0513 (18)0.0067 (15)0.0067 (15)0.0052 (15)
C7B0.0544 (18)0.0526 (18)0.0549 (18)0.0076 (15)0.0001 (14)0.0086 (15)
C8B0.0462 (15)0.0395 (14)0.0414 (15)0.0006 (12)0.0056 (12)0.0070 (12)
C9B0.0568 (18)0.0470 (16)0.0369 (14)0.0018 (13)0.0081 (12)0.0073 (12)
C10B0.0557 (19)0.079 (2)0.0515 (17)0.0242 (17)0.0178 (15)0.0005 (16)
C11B0.0563 (17)0.0384 (15)0.0393 (14)0.0010 (13)0.0053 (12)0.0062 (12)
C12B0.0490 (16)0.0460 (15)0.0400 (14)0.0043 (13)0.0101 (12)0.0018 (13)
C13B0.117 (4)0.105 (4)0.073 (3)0.068 (3)0.031 (2)0.001 (2)
C14B0.056 (2)0.126 (4)0.107 (4)0.004 (2)0.038 (2)0.003 (3)
S1C0.0818 (7)0.0426 (5)0.0882 (7)0.0055 (4)0.0254 (5)0.0047 (5)
O1C0.130 (3)0.094 (3)0.165 (4)0.063 (2)0.068 (3)0.028 (3)
O2C0.147 (3)0.090 (2)0.0768 (19)0.055 (2)0.012 (2)0.0305 (17)
O3C0.0683 (16)0.088 (2)0.0619 (15)0.0182 (14)0.0078 (12)0.0126 (14)
O4C0.0583 (15)0.084 (2)0.0704 (16)0.0222 (13)0.0149 (12)0.0018 (13)
O5C0.0557 (13)0.0464 (12)0.0955 (18)0.0001 (10)0.0283 (13)0.0059 (13)
N1C0.0506 (14)0.0362 (12)0.0523 (14)0.0023 (10)0.0119 (11)0.0035 (10)
C1C0.094 (3)0.063 (3)0.088 (3)0.005 (2)0.022 (2)0.003 (2)
C2C0.109 (4)0.059 (2)0.114 (4)0.015 (2)0.019 (3)0.012 (3)
C3C0.167 (6)0.085 (3)0.077 (3)0.057 (4)0.013 (3)0.006 (3)
C4C0.226 (8)0.116 (5)0.084 (4)0.065 (5)0.053 (4)0.024 (3)
C5C0.171 (6)0.085 (3)0.079 (3)0.042 (4)0.035 (3)0.030 (3)
C6C0.062 (2)0.057 (2)0.068 (2)0.0115 (16)0.0003 (17)0.0035 (17)
C7C0.0513 (18)0.051 (2)0.074 (2)0.0101 (15)0.0025 (16)0.0061 (16)
C8C0.0467 (17)0.0404 (15)0.0460 (16)0.0004 (12)0.0041 (12)0.0025 (12)
C9C0.064 (2)0.0427 (17)0.0467 (16)0.0060 (14)0.0005 (14)0.0052 (13)
C10C0.061 (2)0.088 (3)0.086 (3)0.027 (2)0.002 (2)0.016 (2)
C11C0.080 (2)0.0399 (16)0.0526 (18)0.0041 (15)0.0064 (16)0.0023 (14)
C12C0.076 (2)0.0495 (18)0.0500 (18)0.0105 (16)0.0152 (16)0.0039 (14)
C13C0.048 (3)0.142 (6)0.185 (7)0.008 (3)0.006 (3)0.022 (5)
C14C0.133 (5)0.124 (5)0.113 (4)0.080 (4)0.004 (4)0.018 (4)
S1D0.1189 (8)0.0413 (4)0.0509 (4)0.0020 (5)0.0376 (5)0.0055 (4)
O1D0.156 (3)0.092 (2)0.093 (2)0.046 (2)0.081 (2)0.0096 (18)
O2D0.180 (4)0.0728 (19)0.0583 (16)0.045 (2)0.0269 (19)0.0101 (14)
O3D0.0701 (15)0.0782 (17)0.0527 (12)0.0171 (13)0.0243 (12)0.0067 (12)
O4D0.0553 (14)0.097 (2)0.0608 (14)0.0177 (13)0.0025 (11)0.0193 (14)
O5D0.0487 (11)0.0422 (11)0.0606 (12)0.0061 (9)0.0143 (9)0.0057 (10)
N1D0.0470 (13)0.0344 (12)0.0377 (12)0.0020 (9)0.0076 (10)0.0020 (9)
C1D0.164 (5)0.057 (3)0.096 (4)0.019 (3)0.019 (3)0.012 (2)
C2D0.287 (10)0.049 (3)0.103 (5)0.008 (4)0.062 (6)0.010 (3)
C3D0.367 (14)0.075 (4)0.079 (4)0.048 (6)0.067 (6)0.017 (3)
C4D0.292 (12)0.132 (7)0.091 (5)0.068 (7)0.024 (6)0.011 (5)
C5D0.195 (7)0.092 (4)0.069 (3)0.022 (4)0.022 (4)0.000 (3)
C6D0.113 (3)0.0465 (19)0.054 (2)0.0021 (19)0.037 (2)0.0034 (15)
C7D0.069 (2)0.0500 (18)0.0480 (16)0.0104 (15)0.0215 (15)0.0006 (14)
C8D0.0497 (16)0.0391 (14)0.0346 (13)0.0017 (12)0.0091 (11)0.0008 (11)
C9D0.0622 (19)0.0439 (16)0.0379 (14)0.0088 (13)0.0088 (13)0.0076 (12)
C10D0.065 (2)0.082 (3)0.066 (2)0.020 (2)0.0156 (18)0.004 (2)
C11D0.066 (2)0.0420 (16)0.0450 (16)0.0021 (14)0.0109 (14)0.0063 (13)
C12D0.0551 (17)0.0465 (16)0.0364 (14)0.0018 (13)0.0057 (12)0.0039 (12)
C13D0.127 (4)0.109 (4)0.084 (3)0.073 (3)0.021 (3)0.002 (3)
C14D0.073 (3)0.163 (6)0.156 (6)0.006 (4)0.049 (4)0.007 (5)
Geometric parameters (Å, º) top
S1A—O1A1.414 (3)S1C—O1C1.419 (4)
S1A—O2A1.421 (4)S1C—O2C1.427 (4)
S1A—C6A1.765 (4)S1C—C6C1.757 (4)
S1A—C7A1.767 (4)S1C—C7C1.764 (4)
O3A—C11A1.395 (5)O3C—C10C1.407 (6)
O3A—C10A1.422 (5)O3C—C11C1.428 (5)
O4A—C9A1.401 (5)O4C—C9C1.418 (4)
O4A—C10A1.425 (5)O4C—C10C1.424 (5)
O5A—N1A1.439 (3)O5C—N1C1.432 (3)
O5A—H5AO0.8200O5C—H5CO0.8200
N1A—C12A1.461 (4)N1C—C12C1.460 (4)
N1A—C8A1.480 (4)N1C—C8C1.477 (4)
C1A—C2A1.380 (5)C1C—C2C1.366 (7)
C1A—C6A1.382 (5)C1C—C6C1.394 (6)
C1A—H1A0.9300C1C—H1C0.9300
C2A—C3A1.363 (7)C2C—C3C1.345 (7)
C2A—H2A0.9300C2C—H2C0.9300
C3A—C4A1.366 (8)C3C—C4C1.379 (9)
C3A—H3A0.9300C3C—H3C0.9300
C4A—C5A1.374 (7)C4C—C5C1.367 (8)
C4A—H4A0.9300C4C—H4C0.9300
C5A—C6A1.383 (5)C5C—C6C1.367 (6)
C5A—H5A0.9300C5C—H5C0.9300
C7A—C8A1.518 (4)C7C—C8C1.528 (4)
C7A—H7A10.9700C7C—H7C10.9700
C7A—H7A20.9700C7C—H7C20.9700
C8A—C9A1.521 (4)C8C—C9C1.517 (4)
C8A—H8A0.9800C8C—H8C0.9800
C9A—C11A1.570 (5)C9C—C11C1.558 (5)
C9A—H9A0.9800C9C—H9C0.9800
C10A—C14A1.498 (9)C10C—C14C1.520 (7)
C10A—C13A1.520 (8)C10C—C13C1.525 (8)
C11A—C12A1.510 (5)C11C—C12C1.494 (5)
C11A—H11A0.9800C11C—H11C0.9800
C12A—H12A0.9700C12C—H12E0.9700
C12A—H12B0.9700C12C—H12F0.9700
C13A—H13A0.9600C13C—H13G0.9600
C13A—H13B0.9600C13C—H13H0.9600
C13A—H13C0.9600C13C—H13I0.9600
C14A—H14A0.9600C14C—H14G0.9600
C14A—H14B0.9600C14C—H14H0.9600
C14A—H14C0.9600C14C—H14I0.9600
S1B—O2B1.403 (4)S1D—O2D1.410 (4)
S1B—O1B1.430 (3)S1D—O1D1.422 (3)
S1B—C7B1.766 (3)S1D—C6D1.757 (4)
S1B—C6B1.766 (4)S1D—C7D1.760 (3)
O3B—C10B1.428 (4)O3D—C10D1.391 (5)
O3B—C11B1.429 (4)O3D—C11D1.418 (4)
O4B—C10B1.427 (4)O4D—C9D1.412 (4)
O4B—C9B1.428 (4)O4D—C10D1.440 (5)
O5B—N1B1.432 (3)O5D—N1D1.439 (3)
O5B—H5BO0.8200O5D—H5DO0.8200
N1B—C12B1.473 (4)N1D—C8D1.471 (4)
N1B—C8B1.481 (4)N1D—C12D1.471 (4)
C1B—C6B1.372 (6)C1D—C2D1.380 (8)
C1B—C2B1.384 (7)C1D—C6D1.385 (7)
C1B—H1B0.9300C1D—H1D0.9300
C2B—C3B1.347 (10)C2D—C3D1.372 (13)
C2B—H2B0.9300C2D—H2D0.9300
C3B—C4B1.329 (10)C3D—C4D1.339 (13)
C3B—H3B0.9300C3D—H3D0.9300
C4B—C5B1.406 (9)C4D—C5D1.386 (10)
C4B—H4B0.9300C4D—H4D0.9300
C5B—C6B1.356 (6)C5D—C6D1.356 (7)
C5B—H5B0.9300C5D—H5D0.9300
C7B—C8B1.540 (4)C7D—C8D1.529 (4)
C7B—H7B10.9700C7D—H7D10.9700
C7B—H7B20.9700C7D—H7D20.9700
C8B—C9B1.502 (4)C8D—C9D1.522 (4)
C8B—H8B0.9800C8D—H8D0.9800
C9B—C11B1.563 (4)C9D—C11D1.560 (4)
C9B—H9B0.9800C9D—H9D0.9800
C10B—C14B1.505 (7)C10D—C14D1.496 (8)
C10B—C13B1.511 (6)C10D—C13D1.531 (7)
C11B—C12B1.499 (4)C11D—C12D1.508 (4)
C11B—H11B0.9800C11D—H11D0.9800
C12B—H12C0.9700C12D—H12G0.9700
C12B—H12D0.9700C12D—H12H0.9700
C13B—H13D0.9600C13D—H13J0.9600
C13B—H13E0.9600C13D—H13K0.9600
C13B—H13F0.9600C13D—H13L0.9600
C14B—H14D0.9600C14D—H14J0.9600
C14B—H14E0.9600C14D—H14K0.9600
C14B—H14F0.9600C14D—H14L0.9600
O1A—S1A—O2A115.6 (3)O1C—S1C—O2C116.9 (3)
O1A—S1A—C6A107.1 (2)O1C—S1C—C6C108.1 (2)
O2A—S1A—C6A109.0 (2)O2C—S1C—C6C108.9 (2)
O1A—S1A—C7A108.0 (2)O1C—S1C—C7C108.0 (2)
O2A—S1A—C7A108.44 (18)O2C—S1C—C7C108.11 (19)
C6A—S1A—C7A108.54 (16)C6C—S1C—C7C106.37 (18)
C11A—O3A—C10A109.0 (3)C10C—O3C—C11C108.7 (3)
C9A—O4A—C10A108.3 (3)C9C—O4C—C10C107.4 (3)
N1A—O5A—H5AO109.5N1C—O5C—H5CO109.5
O5A—N1A—C12A109.9 (2)O5C—N1C—C12C110.2 (3)
O5A—N1A—C8A110.3 (2)O5C—N1C—C8C111.2 (2)
C12A—N1A—C8A105.8 (2)C12C—N1C—C8C106.1 (2)
C2A—C1A—C6A119.3 (3)C2C—C1C—C6C120.1 (4)
C2A—C1A—H1A120.4C2C—C1C—H1C120.0
C6A—C1A—H1A120.4C6C—C1C—H1C120.0
C3A—C2A—C1A120.2 (4)C3C—C2C—C1C119.9 (5)
C3A—C2A—H2A119.9C3C—C2C—H2C120.0
C1A—C2A—H2A119.9C1C—C2C—H2C120.0
C2A—C3A—C4A120.5 (4)C2C—C3C—C4C120.8 (5)
C2A—C3A—H3A119.8C2C—C3C—H3C119.6
C4A—C3A—H3A119.8C4C—C3C—H3C119.6
C3A—C4A—C5A120.4 (4)C5C—C4C—C3C119.3 (5)
C3A—C4A—H4A119.8C5C—C4C—H4C120.4
C5A—C4A—H4A119.8C3C—C4C—H4C120.4
C4A—C5A—C6A119.3 (4)C6C—C5C—C4C120.5 (5)
C4A—C5A—H5A120.4C6C—C5C—H5C119.8
C6A—C5A—H5A120.4C4C—C5C—H5C119.8
C1A—C6A—C5A120.2 (4)C5C—C6C—C1C118.5 (4)
C1A—C6A—S1A124.4 (3)C5C—C6C—S1C115.5 (3)
C5A—C6A—S1A115.3 (3)C1C—C6C—S1C125.5 (3)
C8A—C7A—S1A115.0 (2)C8C—C7C—S1C114.8 (3)
C8A—C7A—H7A1108.5C8C—C7C—H7C1108.6
S1A—C7A—H7A1108.5S1C—C7C—H7C1108.6
C8A—C7A—H7A2108.5C8C—C7C—H7C2108.6
S1A—C7A—H7A2108.5S1C—C7C—H7C2108.6
H7A1—C7A—H7A2107.5H7C1—C7C—H7C2107.6
N1A—C8A—C7A112.3 (3)N1C—C8C—C9C99.9 (2)
N1A—C8A—C9A100.5 (2)N1C—C8C—C7C112.3 (3)
C7A—C8A—C9A112.5 (3)C9C—C8C—C7C112.8 (3)
N1A—C8A—H8A110.4N1C—C8C—H8C110.5
C7A—C8A—H8A110.4C9C—C8C—H8C110.5
C9A—C8A—H8A110.4C7C—C8C—H8C110.5
O4A—C9A—C8A111.1 (3)O4C—C9C—C8C110.3 (3)
O4A—C9A—C11A103.7 (3)O4C—C9C—C11C104.2 (3)
C8A—C9A—C11A104.7 (3)C8C—C9C—C11C105.0 (3)
O4A—C9A—H9A112.3O4C—C9C—H9C112.3
C8A—C9A—H9A112.3C8C—C9C—H9C112.3
C11A—C9A—H9A112.3C11C—C9C—H9C112.3
O3A—C10A—O4A103.8 (3)O3C—C10C—O4C104.3 (3)
O3A—C10A—C14A109.5 (4)O3C—C10C—C14C111.3 (5)
O4A—C10A—C14A109.0 (5)O4C—C10C—C14C110.2 (4)
O3A—C10A—C13A109.4 (5)O3C—C10C—C13C107.5 (4)
O4A—C10A—C13A110.1 (4)O4C—C10C—C13C108.5 (5)
C14A—C10A—C13A114.4 (5)C14C—C10C—C13C114.6 (5)
O3A—C11A—C12A110.5 (3)O3C—C11C—C12C109.8 (3)
O3A—C11A—C9A104.1 (3)O3C—C11C—C9C103.3 (3)
C12A—C11A—C9A105.0 (3)C12C—C11C—C9C105.3 (3)
O3A—C11A—H11A112.2O3C—C11C—H11C112.6
C12A—C11A—H11A112.2C12C—C11C—H11C112.6
C9A—C11A—H11A112.2C9C—C11C—H11C112.6
N1A—C12A—C11A102.0 (3)N1C—C12C—C11C102.1 (3)
N1A—C12A—H12A111.4N1C—C12C—H12E111.4
C11A—C12A—H12A111.4C11C—C12C—H12E111.4
N1A—C12A—H12B111.4N1C—C12C—H12F111.4
C11A—C12A—H12B111.4C11C—C12C—H12F111.4
H12A—C12A—H12B109.2H12E—C12C—H12F109.2
C10A—C13A—H13A109.5C10C—C13C—H13G109.5
C10A—C13A—H13B109.5C10C—C13C—H13H109.5
H13A—C13A—H13B109.5H13G—C13C—H13H109.5
C10A—C13A—H13C109.5C10C—C13C—H13I109.5
H13A—C13A—H13C109.5H13G—C13C—H13I109.5
H13B—C13A—H13C109.5H13H—C13C—H13I109.5
C10A—C14A—H14A109.5C10C—C14C—H14G109.5
C10A—C14A—H14B109.5C10C—C14C—H14H109.5
H14A—C14A—H14B109.5H14G—C14C—H14H109.5
C10A—C14A—H14C109.5C10C—C14C—H14I109.5
H14A—C14A—H14C109.5H14G—C14C—H14I109.5
H14B—C14A—H14C109.5H14H—C14C—H14I109.5
O2B—S1B—O1B119.8 (2)O2D—S1D—O1D118.3 (2)
O2B—S1B—C7B108.65 (18)O2D—S1D—C6D108.3 (2)
O1B—S1B—C7B106.76 (19)O1D—S1D—C6D108.4 (2)
O2B—S1B—C6B107.9 (2)O2D—S1D—C7D108.06 (18)
O1B—S1B—C6B107.96 (18)O1D—S1D—C7D107.1 (2)
C7B—S1B—C6B104.84 (17)C6D—S1D—C7D106.10 (17)
C10B—O3B—C11B108.4 (2)C10D—O3D—C11D108.2 (3)
C10B—O4B—C9B108.5 (3)C9D—O4D—C10D108.1 (3)
N1B—O5B—H5BO109.5N1D—O5D—H5DO109.5
O5B—N1B—C12B110.0 (2)O5D—N1D—C8D110.7 (2)
O5B—N1B—C8B111.2 (2)O5D—N1D—C12D109.8 (2)
C12B—N1B—C8B104.9 (2)C8D—N1D—C12D105.4 (2)
C6B—C1B—C2B120.9 (5)C2D—C1D—C6D119.7 (6)
C6B—C1B—H1B119.5C2D—C1D—H1D120.2
C2B—C1B—H1B119.5C6D—C1D—H1D120.2
C3B—C2B—C1B118.5 (6)C3D—C2D—C1D118.3 (7)
C3B—C2B—H2B120.8C3D—C2D—H2D120.9
C1B—C2B—H2B120.8C1D—C2D—H2D120.9
C4B—C3B—C2B121.6 (5)C4D—C3D—C2D121.7 (6)
C4B—C3B—H3B119.2C4D—C3D—H3D119.1
C2B—C3B—H3B119.2C2D—C3D—H3D119.1
C3B—C4B—C5B120.8 (6)C3D—C4D—C5D120.8 (7)
C3B—C4B—H4B119.6C3D—C4D—H4D119.6
C5B—C4B—H4B119.6C5D—C4D—H4D119.6
C6B—C5B—C4B118.3 (6)C6D—C5D—C4D118.4 (7)
C6B—C5B—H5B120.8C6D—C5D—H5D120.8
C4B—C5B—H5B120.8C4D—C5D—H5D120.8
C5B—C6B—C1B119.7 (4)C5D—C6D—C1D121.2 (5)
C5B—C6B—S1B121.6 (4)C5D—C6D—S1D119.1 (4)
C1B—C6B—S1B118.7 (3)C1D—C6D—S1D119.7 (4)
C8B—C7B—S1B114.1 (2)C8D—C7D—S1D114.8 (2)
C8B—C7B—H7B1108.7C8D—C7D—H7D1108.6
S1B—C7B—H7B1108.7S1D—C7D—H7D1108.6
C8B—C7B—H7B2108.7C8D—C7D—H7D2108.6
S1B—C7B—H7B2108.7S1D—C7D—H7D2108.6
H7B1—C7B—H7B2107.6H7D1—C7D—H7D2107.6
N1B—C8B—C9B101.0 (2)N1D—C8D—C9D101.3 (2)
N1B—C8B—C7B111.8 (2)N1D—C8D—C7D112.4 (2)
C9B—C8B—C7B114.6 (3)C9D—C8D—C7D113.4 (3)
N1B—C8B—H8B109.7N1D—C8D—H8D109.8
C9B—C8B—H8B109.7C9D—C8D—H8D109.8
C7B—C8B—H8B109.7C7D—C8D—H8D109.8
O4B—C9B—C8B109.8 (3)O4D—C9D—C8D111.0 (3)
O4B—C9B—C11B103.7 (2)O4D—C9D—C11D103.3 (2)
C8B—C9B—C11B105.5 (2)C8D—C9D—C11D105.1 (2)
O4B—C9B—H9B112.4O4D—C9D—H9D112.3
C8B—C9B—H9B112.4C8D—C9D—H9D112.3
C11B—C9B—H9B112.4C11D—C9D—H9D112.3
O4B—C10B—O3B103.3 (2)O3D—C10D—O4D104.0 (3)
O4B—C10B—C14B109.3 (4)O3D—C10D—C14D108.8 (4)
O3B—C10B—C14B108.2 (3)O4D—C10D—C14D109.6 (4)
O4B—C10B—C13B110.0 (3)O3D—C10D—C13D110.6 (4)
O3B—C10B—C13B110.7 (3)O4D—C10D—C13D108.5 (4)
C14B—C10B—C13B114.6 (4)C14D—C10D—C13D114.7 (5)
O3B—C11B—C12B110.5 (2)O3D—C11D—C12D110.5 (3)
O3B—C11B—C9B103.7 (2)O3D—C11D—C9D104.2 (3)
C12B—C11B—C9B104.6 (2)C12D—C11D—C9D104.7 (2)
O3B—C11B—H11B112.5O3D—C11D—H11D112.3
C12B—C11B—H11B112.5C12D—C11D—H11D112.3
C9B—C11B—H11B112.5C9D—C11D—H11D112.3
N1B—C12B—C11B101.6 (2)N1D—C12D—C11D101.9 (2)
N1B—C12B—H12C111.4N1D—C12D—H12G111.4
C11B—C12B—H12C111.4C11D—C12D—H12G111.4
N1B—C12B—H12D111.4N1D—C12D—H12H111.4
C11B—C12B—H12D111.4C11D—C12D—H12H111.4
H12C—C12B—H12D109.3H12G—C12D—H12H109.3
C10B—C13B—H13D109.5C10D—C13D—H13J109.5
C10B—C13B—H13E109.5C10D—C13D—H13K109.5
H13D—C13B—H13E109.5H13J—C13D—H13K109.5
C10B—C13B—H13F109.5C10D—C13D—H13L109.5
H13D—C13B—H13F109.5H13J—C13D—H13L109.5
H13E—C13B—H13F109.5H13K—C13D—H13L109.5
C10B—C14B—H14D109.5C10D—C14D—H14J109.5
C10B—C14B—H14E109.5C10D—C14D—H14K109.5
H14D—C14B—H14E109.5H14J—C14D—H14K109.5
C10B—C14B—H14F109.5C10D—C14D—H14L109.5
H14D—C14B—H14F109.5H14J—C14D—H14L109.5
H14E—C14B—H14F109.5H14K—C14D—H14L109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5AO···N1Bi0.822.042.752 (3)144
O5B—H5BO···N1Aii0.822.112.807 (3)142
O5C—H5CO···N1Di0.822.102.802 (4)144
O5D—H5DO···N1Cii0.822.062.766 (3)144
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H19NO5S
Mr313.36
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.1876 (2), 19.5284 (5), 17.9187 (5)
β (°) 102.658 (2)
V3)3136.82 (14)
Z8
Radiation typeCu Kα
µ (mm1)2.02
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.730, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
46376, 10345, 9616
Rint0.036
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.03
No. of reflections10345
No. of parameters769
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.37
Absolute structureFlack (1983), 4863 Friedel pairs
Absolute structure parameter0.040 (14)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5AO···N1Bi0.822.042.752 (3)144
O5B—H5BO···N1Aii0.822.112.807 (3)142
O5C—H5CO···N1Di0.822.102.802 (4)144
O5D—H5DO···N1Cii0.822.062.766 (3)144
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to FES, MICINN (CTQ2009–1172) Junta de Castilla y Leon for financial support (GR178 and SA063A07) and for the doctoral fellowships awarded to MFF.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChevrier, C., Le Nouën, D., Defoin, A. & Tarnus, C. (2011). Carbohydr. Res. 346, 1202–1211.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlores, M. F., Garcia, P., Garrido, N. M., Marcos, I. S., Sanz, F. & Diez, D. (2011a). Tetrahedron Asymmetry, 22, 1467–1472.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlores, M. F., Garcia, P. M., Garrido, N., Sanz, F. & Diez, D. (2011b). Acta Cryst. E67, o1115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlores, M. F., Nuñez, M. G., Moro, R. F., Garrido, N. M., Marcos, I. S., Iglesias, E. F., Garcia, P. & Diez, D. (2010). Molecules, 15, 1501–1512.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLattanzi, A. (2009). Chem. Commun. pp. 1452–1463.  Web of Science CrossRef Google Scholar
First citationLi, X., Qin, Z., Wang, R., Chen, H. & Zhang, P. (2011). Tetrahedron, 67, 1792–1798.  Web of Science CrossRef CAS Google Scholar
First citationList, B. (2007). Chem. Rev. 107, 5413–5415.  Web of Science CrossRef CAS Google Scholar
First citationMacmillan, D. W. C. (2008). Nature (London), 455, 304–308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMielgo, A. & Palomo, C. (2008). Chem. Asian J. 3, 922–948.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanday, S. K. (2011). Tetrahedron Asymmetry, 22, 1817–1847.  Web of Science CrossRef CAS Google Scholar
First citationPellissier, H. (2007). Tetrahedron, 63, 9267–9331.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds