organic compounds
N-(3-Chlorophenyl)-2-nitrobenzenesulfonamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C12H9ClN2O4S, the dihedral angle between the aromatic rings is 73.65 (7)°. The amide H atom shows bifurcated hydrogen bonding, generating an intramolecular S(7) and an intermolecular C(4) motif.
Related literature
For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-aroylsulfonamides, see: Suchetan et al. (2012), of N-arylsulfonamides, see: Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001); Allen et al. (1998); Bernstein et al. (1995); Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812033272/bt5982sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812033272/bt5982Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812033272/bt5982Isup3.cml
The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 3-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(3-chlorophenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.
Rod like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.
H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The amino H atom was freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set to 1.2 Ueq of the parent atom.
As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-aroylsulfonamides (Suchetan et al., 2012); N-arylsulfonamides (Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the
of N-(3-Chlorophenyl)-2-nitrobenzenesulfonamide has been determined (Fig. 1).The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsion with respect to the S═O bonds (Fig.1), similar to that observed in N-(3-chlorobenzoyl)-2-nitrobenzenesulfonamide (I) (Suchetan et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to both the ortho-nitro group in the sulfonyl benzene ring and meta-Cl atom in the anilino ring. The molecule is twisted at the S—N bond with the torsional angle of 48.46 (18)°, compared to the value of 65.41 (38)° in (I).
The dihedral angle between the sulfonyl and the anilino rings is 73.65 (7)°, compared to the value of 89.1 (1)° in (I).
The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating S(7) and C(4) motifs (Adsmond et al., 2001; Allen et al., 1998; Bernstein et al., 1995; Etter, 1990).
In the crystal, the intermolecular N–H···O (S) hydrogen bonds(Table 1) link the molecules into chains. Part of the
is shown in Fig. 2.For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-aroylsulfonamides, see: Suchetan et al. (2012), of N-arylsulfonamides, see: Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001); Allen et al. (1998); Bernstein et al. (1995); Etter (1990).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H9ClN2O4S | F(000) = 640 |
Mr = 312.72 | Dx = 1.569 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2323 reflections |
a = 8.9856 (7) Å | θ = 2.6–27.8° |
b = 9.5794 (8) Å | µ = 0.46 mm−1 |
c = 15.796 (1) Å | T = 293 K |
β = 103.120 (8)° | Rod, colourless |
V = 1324.17 (17) Å3 | 0.48 × 0.48 × 0.24 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2702 independent reflections |
Radiation source: fine-focus sealed tube | 2201 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
Rotation method data acquisition using ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −11→11 |
Tmin = 0.809, Tmax = 0.898 | k = −11→10 |
5230 measured reflections | l = −19→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0414P)2 + 0.7223P] where P = (Fo2 + 2Fc2)/3 |
2702 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.39 e Å−3 |
1 restraint | Δρmin = −0.51 e Å−3 |
C12H9ClN2O4S | V = 1324.17 (17) Å3 |
Mr = 312.72 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.9856 (7) Å | µ = 0.46 mm−1 |
b = 9.5794 (8) Å | T = 293 K |
c = 15.796 (1) Å | 0.48 × 0.48 × 0.24 mm |
β = 103.120 (8)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 2702 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 2201 reflections with I > 2σ(I) |
Tmin = 0.809, Tmax = 0.898 | Rint = 0.013 |
5230 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 1 restraint |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.39 e Å−3 |
2702 reflections | Δρmin = −0.51 e Å−3 |
184 parameters |
Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1289 (2) | 0.1345 (2) | 0.41117 (13) | 0.0364 (4) | |
C2 | 0.0829 (2) | 0.1878 (2) | 0.48339 (13) | 0.0395 (5) | |
C3 | 0.1398 (3) | 0.1350 (3) | 0.56563 (14) | 0.0523 (6) | |
H3 | 0.1062 | 0.1705 | 0.6128 | 0.063* | |
C4 | 0.2467 (3) | 0.0298 (3) | 0.57749 (17) | 0.0606 (7) | |
H4 | 0.2859 | −0.0054 | 0.6329 | 0.073* | |
C5 | 0.2954 (3) | −0.0235 (3) | 0.50813 (18) | 0.0578 (6) | |
H5 | 0.3687 | −0.0938 | 0.5165 | 0.069* | |
C6 | 0.2350 (3) | 0.0278 (2) | 0.42487 (16) | 0.0487 (5) | |
H6 | 0.2667 | −0.0105 | 0.3778 | 0.058* | |
C7 | 0.2763 (2) | 0.3656 (2) | 0.30709 (12) | 0.0350 (4) | |
C8 | 0.3206 (2) | 0.4862 (2) | 0.35429 (13) | 0.0403 (5) | |
H8 | 0.2492 | 0.5418 | 0.3726 | 0.048* | |
C9 | 0.4733 (3) | 0.5219 (3) | 0.37354 (15) | 0.0518 (6) | |
C10 | 0.5814 (3) | 0.4401 (3) | 0.34821 (19) | 0.0673 (8) | |
H10 | 0.6839 | 0.4657 | 0.3619 | 0.081* | |
C11 | 0.5348 (3) | 0.3200 (3) | 0.3024 (2) | 0.0681 (8) | |
H11 | 0.6072 | 0.2635 | 0.2855 | 0.082* | |
C12 | 0.3822 (3) | 0.2810 (3) | 0.28080 (16) | 0.0518 (6) | |
H12 | 0.3518 | 0.1998 | 0.2493 | 0.062* | |
N1 | 0.11632 (18) | 0.33458 (18) | 0.28331 (11) | 0.0370 (4) | |
H1N | 0.064 (2) | 0.398 (2) | 0.2966 (14) | 0.044* | |
N2 | −0.0256 (2) | 0.3049 (2) | 0.47737 (12) | 0.0466 (5) | |
O1 | −0.11286 (16) | 0.19931 (18) | 0.28970 (10) | 0.0530 (4) | |
O2 | 0.10397 (19) | 0.08275 (17) | 0.24876 (10) | 0.0543 (4) | |
O3 | −0.02102 (19) | 0.39843 (19) | 0.42550 (11) | 0.0568 (4) | |
O4 | −0.1124 (2) | 0.3039 (2) | 0.52670 (14) | 0.0756 (6) | |
Cl1 | 0.52921 (10) | 0.67414 (9) | 0.43224 (5) | 0.0871 (3) | |
S1 | 0.04801 (6) | 0.18286 (6) | 0.30104 (3) | 0.03894 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0351 (10) | 0.0342 (10) | 0.0412 (10) | −0.0101 (8) | 0.0112 (8) | −0.0039 (8) |
C2 | 0.0373 (10) | 0.0400 (12) | 0.0428 (11) | −0.0128 (9) | 0.0122 (8) | −0.0069 (9) |
C3 | 0.0558 (14) | 0.0600 (15) | 0.0418 (12) | −0.0198 (12) | 0.0128 (10) | −0.0053 (11) |
C4 | 0.0624 (16) | 0.0595 (16) | 0.0550 (14) | −0.0185 (13) | 0.0031 (12) | 0.0140 (12) |
C5 | 0.0468 (13) | 0.0469 (14) | 0.0770 (18) | −0.0033 (11) | 0.0087 (12) | 0.0124 (13) |
C6 | 0.0481 (12) | 0.0412 (12) | 0.0606 (14) | −0.0033 (10) | 0.0200 (10) | −0.0003 (11) |
C7 | 0.0323 (10) | 0.0396 (11) | 0.0348 (10) | 0.0003 (8) | 0.0110 (8) | 0.0069 (8) |
C8 | 0.0388 (11) | 0.0426 (12) | 0.0409 (11) | −0.0022 (9) | 0.0118 (8) | 0.0069 (9) |
C9 | 0.0441 (12) | 0.0574 (15) | 0.0518 (13) | −0.0154 (11) | 0.0068 (10) | 0.0139 (11) |
C10 | 0.0340 (12) | 0.080 (2) | 0.0860 (19) | −0.0089 (13) | 0.0097 (12) | 0.0291 (16) |
C11 | 0.0415 (13) | 0.0696 (19) | 0.100 (2) | 0.0161 (13) | 0.0311 (14) | 0.0207 (16) |
C12 | 0.0445 (12) | 0.0476 (14) | 0.0681 (15) | 0.0053 (10) | 0.0232 (11) | 0.0053 (11) |
N1 | 0.0313 (9) | 0.0385 (10) | 0.0425 (9) | 0.0017 (7) | 0.0111 (7) | −0.0010 (7) |
N2 | 0.0455 (10) | 0.0482 (11) | 0.0501 (11) | −0.0116 (9) | 0.0193 (8) | −0.0181 (9) |
O1 | 0.0340 (8) | 0.0703 (11) | 0.0527 (9) | −0.0150 (7) | 0.0058 (7) | −0.0102 (8) |
O2 | 0.0677 (10) | 0.0496 (10) | 0.0501 (9) | −0.0113 (8) | 0.0227 (8) | −0.0193 (7) |
O3 | 0.0660 (11) | 0.0543 (10) | 0.0548 (10) | 0.0076 (8) | 0.0234 (8) | −0.0031 (8) |
O4 | 0.0798 (13) | 0.0675 (12) | 0.1002 (15) | −0.0106 (10) | 0.0640 (12) | −0.0179 (11) |
Cl1 | 0.0842 (5) | 0.0888 (6) | 0.0840 (5) | −0.0501 (4) | 0.0103 (4) | −0.0107 (4) |
S1 | 0.0383 (3) | 0.0421 (3) | 0.0372 (3) | −0.0093 (2) | 0.0102 (2) | −0.0102 (2) |
C1—C6 | 1.381 (3) | C8—C9 | 1.379 (3) |
C1—C2 | 1.395 (3) | C8—H8 | 0.9300 |
C1—S1 | 1.788 (2) | C9—C10 | 1.376 (4) |
C2—C3 | 1.380 (3) | C9—Cl1 | 1.740 (3) |
C2—N2 | 1.475 (3) | C10—C11 | 1.374 (4) |
C3—C4 | 1.376 (4) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—C12 | 1.387 (3) |
C4—C5 | 1.368 (4) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C5—C6 | 1.393 (3) | N1—S1 | 1.6265 (18) |
C5—H5 | 0.9300 | N1—H1N | 0.823 (16) |
C6—H6 | 0.9300 | N2—O3 | 1.221 (2) |
C7—C8 | 1.383 (3) | N2—O4 | 1.222 (2) |
C7—C12 | 1.384 (3) | O1—S1 | 1.4243 (15) |
C7—N1 | 1.432 (2) | O2—S1 | 1.4294 (16) |
C6—C1—C2 | 117.7 (2) | C10—C9—C8 | 121.8 (2) |
C6—C1—S1 | 117.27 (16) | C10—C9—Cl1 | 119.61 (19) |
C2—C1—S1 | 124.76 (16) | C8—C9—Cl1 | 118.6 (2) |
C3—C2—C1 | 121.3 (2) | C11—C10—C9 | 118.6 (2) |
C3—C2—N2 | 116.0 (2) | C11—C10—H10 | 120.7 |
C1—C2—N2 | 122.67 (19) | C9—C10—H10 | 120.7 |
C4—C3—C2 | 119.7 (2) | C10—C11—C12 | 121.4 (2) |
C4—C3—H3 | 120.2 | C10—C11—H11 | 119.3 |
C2—C3—H3 | 120.2 | C12—C11—H11 | 119.3 |
C5—C4—C3 | 120.3 (2) | C7—C12—C11 | 118.5 (2) |
C5—C4—H4 | 119.8 | C7—C12—H12 | 120.7 |
C3—C4—H4 | 119.8 | C11—C12—H12 | 120.7 |
C4—C5—C6 | 119.8 (2) | C7—N1—S1 | 122.41 (14) |
C4—C5—H5 | 120.1 | C7—N1—H1N | 112.1 (16) |
C6—C5—H5 | 120.1 | S1—N1—H1N | 110.8 (16) |
C1—C6—C5 | 121.1 (2) | O3—N2—O4 | 123.9 (2) |
C1—C6—H6 | 119.5 | O3—N2—C2 | 118.63 (17) |
C5—C6—H6 | 119.5 | O4—N2—C2 | 117.5 (2) |
C8—C7—C12 | 121.12 (19) | O1—S1—O2 | 118.79 (10) |
C8—C7—N1 | 117.65 (18) | O1—S1—N1 | 106.94 (10) |
C12—C7—N1 | 121.2 (2) | O2—S1—N1 | 107.70 (9) |
C9—C8—C7 | 118.5 (2) | O1—S1—C1 | 109.15 (9) |
C9—C8—H8 | 120.8 | O2—S1—C1 | 105.64 (10) |
C7—C8—H8 | 120.8 | N1—S1—C1 | 108.25 (9) |
C6—C1—C2—C3 | −0.7 (3) | C8—C7—C12—C11 | −0.3 (3) |
S1—C1—C2—C3 | 173.26 (16) | N1—C7—C12—C11 | 177.0 (2) |
C6—C1—C2—N2 | 177.83 (18) | C10—C11—C12—C7 | −0.5 (4) |
S1—C1—C2—N2 | −8.2 (3) | C8—C7—N1—S1 | −129.76 (17) |
C1—C2—C3—C4 | 1.4 (3) | C12—C7—N1—S1 | 52.8 (2) |
N2—C2—C3—C4 | −177.20 (19) | C3—C2—N2—O3 | 142.9 (2) |
C2—C3—C4—C5 | −0.6 (3) | C1—C2—N2—O3 | −35.7 (3) |
C3—C4—C5—C6 | −0.9 (4) | C3—C2—N2—O4 | −35.2 (3) |
C2—C1—C6—C5 | −0.8 (3) | C1—C2—N2—O4 | 146.2 (2) |
S1—C1—C6—C5 | −175.25 (17) | C7—N1—S1—O1 | 165.95 (15) |
C4—C5—C6—C1 | 1.6 (3) | C7—N1—S1—O2 | −65.32 (17) |
C12—C7—C8—C9 | 1.1 (3) | C7—N1—S1—C1 | 48.46 (18) |
N1—C7—C8—C9 | −176.38 (18) | C6—C1—S1—O1 | 135.23 (16) |
C7—C8—C9—C10 | −1.0 (3) | C2—C1—S1—O1 | −38.75 (19) |
C7—C8—C9—Cl1 | 179.54 (15) | C6—C1—S1—O2 | 6.42 (18) |
C8—C9—C10—C11 | 0.1 (4) | C2—C1—S1—O2 | −167.56 (16) |
Cl1—C9—C10—C11 | 179.6 (2) | C6—C1—S1—N1 | −108.71 (17) |
C9—C10—C11—C12 | 0.6 (4) | C2—C1—S1—N1 | 77.30 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.82 (2) | 2.33 (2) | 2.864 (2) | 123 (2) |
N1—H1N···O2i | 0.82 (2) | 2.33 (2) | 3.061 (2) | 148 (2) |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H9ClN2O4S |
Mr | 312.72 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.9856 (7), 9.5794 (8), 15.796 (1) |
β (°) | 103.120 (8) |
V (Å3) | 1324.17 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.48 × 0.48 × 0.24 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.809, 0.898 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5230, 2702, 2201 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.100, 1.03 |
No. of reflections | 2702 |
No. of parameters | 184 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.51 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.823 (16) | 2.33 (2) | 2.864 (2) | 122.9 (19) |
N1—H1N···O2i | 0.823 (16) | 2.332 (18) | 3.061 (2) | 148 (2) |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Acknowledgements
BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.
References
Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. Web of Science CrossRef PubMed CAS Google Scholar
Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777. CAS Google Scholar
Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp 1043–1044. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973. CAS Google Scholar
Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864. Web of Science CrossRef CAS Google Scholar
Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suchetan, P. A., Foro, S., Gowda, B. T. & Prakash, M. S. (2012). Acta Cryst. E68, o786. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-aroylsulfonamides (Suchetan et al., 2012); N-arylsulfonamides (Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3-Chlorophenyl)-2-nitrobenzenesulfonamide has been determined (Fig. 1).
The conformation of the N—C bond in the —SO2—NH—C segment has gauche torsion with respect to the S═O bonds (Fig.1), similar to that observed in N-(3-chlorobenzoyl)-2-nitrobenzenesulfonamide (I) (Suchetan et al., 2012). Further, the conformation of the N—H bond in the —SO2—NH— segment is syn to both the ortho-nitro group in the sulfonyl benzene ring and meta-Cl atom in the anilino ring. The molecule is twisted at the S—N bond with the torsional angle of 48.46 (18)°, compared to the value of 65.41 (38)° in (I).
The dihedral angle between the sulfonyl and the anilino rings is 73.65 (7)°, compared to the value of 89.1 (1)° in (I).
The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating S(7) and C(4) motifs (Adsmond et al., 2001; Allen et al., 1998; Bernstein et al., 1995; Etter, 1990).
In the crystal, the intermolecular N–H···O (S) hydrogen bonds(Table 1) link the molecules into chains. Part of the crystal structure is shown in Fig. 2.