organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 July 2012; accepted 24 July 2012; online 28 July 2012)

In the title compound, C12H9ClN2O4S, the dihedral angle between the aromatic rings is 70.27 (8)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O(S) hydrogen bonds, forming inversion dimers.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011[Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769-777.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-aroylsulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68. Submitted (ZJ2090).]), of N-aryl­sulfonamides, see: Gowda et al. (2002[Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967-973.]) and of N-chloro­aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9ClN2O4S

  • Mr = 312.72

  • Monoclinic, P 21 /c

  • a = 8.3295 (4) Å

  • b = 11.0866 (7) Å

  • c = 14.5576 (8) Å

  • β = 92.481 (5)°

  • V = 1343.07 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.825, Tmax = 0.915

  • 5440 measured reflections

  • 2731 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.04

  • 2731 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (1) 2.27 (1) 3.084 (2) 161 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-aroylsulfonamides (Chaithanya et al., 2012); N-arylsulfonamides (Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-2-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-nitro group in the sulfonyl benzene ring, similar to that observed in N-(phenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 79.17 (18)°, compared to the value of -72.83 (15)° in (I).

The dihedral angle between the sulfonyl and the anilino rings is 70.27 (8)°, compared to the value of 59.55 (7)° in (I).

In the crystal, the pairs of intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into inversion dimers. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-aroylsulfonamides, see: Chaithanya et al. (2012), of N-arylsulfonamides, see: Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 4-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(4-chlorophenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like yellow single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The coordinates of the amino H atom were refined with the N—H distance restrained to 0.86 (1) Å. All H atoms were refined with isotropic displacement parameters set to 1.2 Ueq of the parent atom. The (0 1 2 and 0 3 3) reflections were probably affected by the beamstop and were omitted from the refinement.

Structure description top

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-aroylsulfonamides (Chaithanya et al., 2012); N-arylsulfonamides (Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(4-chlorophenyl)-2-nitrobenzenesulfonamide has been determined (Fig. 1).

The conformation of the N—H bond in the —SO2—NH— segment is syn to the ortho-nitro group in the sulfonyl benzene ring, similar to that observed in N-(phenyl)-2-nitrobenzenesulfonamide (I) (Chaithanya et al., 2012). The molecule is twisted at the S—N bond with the torsional angle of 79.17 (18)°, compared to the value of -72.83 (15)° in (I).

The dihedral angle between the sulfonyl and the anilino rings is 70.27 (8)°, compared to the value of 59.55 (7)° in (I).

In the crystal, the pairs of intermolecular N–H···O (S) hydrogen bonds (Table 1) link the molecules into inversion dimers. Part of the crystal structure is shown in Fig. 2.

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-aroylsulfonamides, see: Chaithanya et al. (2012), of N-arylsulfonamides, see: Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Chlorophenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C12H9ClN2O4SF(000) = 640
Mr = 312.72Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2996 reflections
a = 8.3295 (4) Åθ = 2.9–27.8°
b = 11.0866 (7) ŵ = 0.45 mm1
c = 14.5576 (8) ÅT = 293 K
β = 92.481 (5)°Prism, yellow
V = 1343.07 (13) Å30.44 × 0.40 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2731 independent reflections
Radiation source: fine-focus sealed tube2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 710
Tmin = 0.825, Tmax = 0.915k = 513
5440 measured reflectionsl = 1813
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.048P)2 + 0.5971P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2731 reflectionsΔρmax = 0.30 e Å3
185 parametersΔρmin = 0.33 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.073 (3)
Crystal data top
C12H9ClN2O4SV = 1343.07 (13) Å3
Mr = 312.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3295 (4) ŵ = 0.45 mm1
b = 11.0866 (7) ÅT = 293 K
c = 14.5576 (8) Å0.44 × 0.40 × 0.20 mm
β = 92.481 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2731 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2314 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.915Rint = 0.014
5440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2731 reflectionsΔρmin = 0.33 e Å3
185 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1798 (2)0.15532 (16)0.68296 (11)0.0370 (4)
C20.3256 (2)0.10822 (17)0.64898 (12)0.0402 (4)
C30.4701 (2)0.1467 (2)0.68128 (16)0.0573 (5)
H30.56630.11280.65900.069*
C40.4699 (3)0.2359 (3)0.74690 (18)0.0693 (7)
H40.56680.26300.76880.083*
C50.3281 (3)0.2855 (2)0.78045 (16)0.0637 (6)
H50.32950.34680.82410.076*
C60.1826 (2)0.24446 (19)0.74942 (13)0.0487 (5)
H60.08680.27700.77340.058*
C70.1198 (2)0.28269 (16)0.54582 (12)0.0376 (4)
C80.1634 (3)0.3588 (2)0.61813 (15)0.0620 (6)
H80.14830.33480.67840.074*
C90.2294 (3)0.4702 (2)0.60068 (16)0.0642 (6)
H90.25770.52160.64920.077*
C100.2532 (3)0.50542 (18)0.51187 (15)0.0511 (5)
C110.2103 (3)0.4313 (2)0.44058 (15)0.0668 (7)
H110.22480.45600.38040.080*
C120.1453 (3)0.3197 (2)0.45749 (14)0.0570 (5)
H120.11820.26860.40850.068*
N10.0544 (2)0.16573 (15)0.55669 (10)0.0424 (4)
H1N0.019 (3)0.1292 (18)0.5090 (10)0.051*
N20.33334 (18)0.01897 (15)0.57452 (12)0.0462 (4)
O10.12301 (16)0.13015 (13)0.72132 (9)0.0496 (4)
O20.01505 (15)0.02583 (11)0.62602 (9)0.0449 (3)
O30.27587 (19)0.04674 (15)0.50164 (10)0.0596 (4)
O40.4002 (2)0.07600 (16)0.58813 (15)0.0779 (5)
Cl10.33847 (10)0.64535 (6)0.49159 (5)0.0812 (3)
S10.00868 (5)0.09845 (4)0.64966 (3)0.03638 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (9)0.0376 (9)0.0342 (8)0.0032 (7)0.0038 (7)0.0049 (7)
C20.0402 (9)0.0407 (9)0.0400 (9)0.0001 (7)0.0041 (7)0.0040 (8)
C30.0405 (10)0.0664 (14)0.0658 (13)0.0030 (10)0.0088 (9)0.0012 (11)
C40.0541 (13)0.0838 (18)0.0713 (15)0.0174 (12)0.0189 (11)0.0103 (13)
C50.0712 (14)0.0654 (15)0.0555 (13)0.0134 (12)0.0126 (11)0.0142 (11)
C60.0534 (11)0.0507 (12)0.0418 (10)0.0028 (9)0.0011 (8)0.0050 (9)
C70.0377 (8)0.0363 (9)0.0391 (9)0.0011 (7)0.0032 (7)0.0007 (7)
C80.0986 (17)0.0488 (12)0.0398 (10)0.0157 (12)0.0155 (11)0.0041 (9)
C90.0994 (18)0.0435 (12)0.0503 (12)0.0164 (12)0.0088 (12)0.0097 (10)
C100.0600 (12)0.0373 (10)0.0556 (12)0.0039 (9)0.0025 (9)0.0079 (9)
C110.0955 (18)0.0649 (15)0.0395 (11)0.0244 (13)0.0053 (11)0.0119 (10)
C120.0789 (14)0.0545 (12)0.0369 (10)0.0184 (11)0.0052 (9)0.0008 (9)
N10.0528 (9)0.0405 (9)0.0342 (8)0.0085 (7)0.0060 (7)0.0035 (7)
N20.0363 (8)0.0445 (9)0.0574 (10)0.0011 (7)0.0027 (7)0.0034 (8)
O10.0440 (7)0.0604 (9)0.0438 (7)0.0017 (6)0.0070 (6)0.0037 (6)
O20.0472 (7)0.0353 (7)0.0524 (8)0.0035 (5)0.0041 (6)0.0027 (6)
O30.0684 (9)0.0651 (10)0.0452 (8)0.0018 (8)0.0016 (7)0.0075 (7)
O40.0727 (11)0.0533 (10)0.1085 (15)0.0248 (9)0.0137 (10)0.0102 (10)
Cl10.1132 (6)0.0494 (4)0.0801 (4)0.0267 (3)0.0066 (4)0.0173 (3)
S10.0362 (2)0.0365 (3)0.0364 (2)0.00091 (17)0.00049 (16)0.00247 (17)
Geometric parameters (Å, º) top
C1—C61.384 (3)C8—C91.380 (3)
C1—C21.393 (3)C8—H80.9300
C1—S11.7782 (17)C9—C101.373 (3)
C2—C31.379 (3)C9—H90.9300
C2—N21.467 (2)C10—C111.359 (3)
C3—C41.375 (3)C10—Cl11.737 (2)
C3—H30.9300C11—C121.378 (3)
C4—C51.374 (4)C11—H110.9300
C4—H40.9300C12—H120.9300
C5—C61.388 (3)N1—S11.6056 (15)
C5—H50.9300N1—H1N0.845 (10)
C6—H60.9300N2—O41.212 (2)
C7—C121.375 (3)N2—O31.222 (2)
C7—C81.385 (3)O1—S11.4258 (14)
C7—N11.418 (2)O2—S11.4318 (14)
C6—C1—C2118.34 (17)C10—C9—C8120.2 (2)
C6—C1—S1119.07 (14)C10—C9—H9119.9
C2—C1—S1122.46 (14)C8—C9—H9119.9
C3—C2—C1121.58 (19)C11—C10—C9120.2 (2)
C3—C2—N2116.70 (17)C11—C10—Cl1120.40 (17)
C1—C2—N2121.67 (16)C9—C10—Cl1119.40 (17)
C4—C3—C2119.0 (2)C10—C11—C12119.9 (2)
C4—C3—H3120.5C10—C11—H11120.0
C2—C3—H3120.5C12—C11—H11120.0
C5—C4—C3120.7 (2)C7—C12—C11120.8 (2)
C5—C4—H4119.7C7—C12—H12119.6
C3—C4—H4119.7C11—C12—H12119.6
C4—C5—C6120.2 (2)C7—N1—S1128.70 (13)
C4—C5—H5119.9C7—N1—H1N117.9 (16)
C6—C5—H5119.9S1—N1—H1N112.6 (16)
C1—C6—C5120.2 (2)O4—N2—O3124.13 (19)
C1—C6—H6119.9O4—N2—C2118.12 (18)
C5—C6—H6119.9O3—N2—C2117.71 (16)
C12—C7—C8118.91 (18)O1—S1—O2119.60 (8)
C12—C7—N1116.91 (17)O1—S1—N1109.08 (8)
C8—C7—N1124.15 (17)O2—S1—N1106.25 (8)
C9—C8—C7119.90 (19)O1—S1—C1106.42 (8)
C9—C8—H8120.0O2—S1—C1107.00 (8)
C7—C8—H8120.0N1—S1—C1108.04 (8)
C6—C1—C2—C31.3 (3)C8—C7—C12—C111.2 (4)
S1—C1—C2—C3174.54 (16)N1—C7—C12—C11179.2 (2)
C6—C1—C2—N2176.19 (17)C10—C11—C12—C71.3 (4)
S1—C1—C2—N28.0 (2)C12—C7—N1—S1178.85 (16)
C1—C2—C3—C41.7 (3)C8—C7—N1—S13.3 (3)
N2—C2—C3—C4175.9 (2)C3—C2—N2—O458.4 (3)
C2—C3—C4—C50.5 (4)C1—C2—N2—O4124.1 (2)
C3—C4—C5—C61.1 (4)C3—C2—N2—O3119.5 (2)
C2—C1—C6—C50.3 (3)C1—C2—N2—O358.1 (2)
S1—C1—C6—C5176.30 (17)C7—N1—S1—O136.12 (19)
C4—C5—C6—C11.5 (4)C7—N1—S1—O2166.30 (16)
C12—C7—C8—C90.8 (4)C7—N1—S1—C179.17 (18)
N1—C7—C8—C9178.6 (2)C6—C1—S1—O118.79 (17)
C7—C8—C9—C100.6 (4)C2—C1—S1—O1157.00 (15)
C8—C9—C10—C110.7 (4)C6—C1—S1—O2147.73 (15)
C8—C9—C10—Cl1179.3 (2)C2—C1—S1—O228.05 (17)
C9—C10—C11—C121.1 (4)C6—C1—S1—N198.23 (16)
Cl1—C10—C11—C12178.9 (2)C2—C1—S1—N185.98 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)2.27 (1)3.084 (2)161 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H9ClN2O4S
Mr312.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3295 (4), 11.0866 (7), 14.5576 (8)
β (°) 92.481 (5)
V3)1343.07 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.44 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.825, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
5440, 2731, 2314
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections2731
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.845 (10)2.274 (12)3.084 (2)161 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationAlkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68. Submitted (ZJ2090).  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds