organic compounds
tert-Butyl N-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino]propyl}carbamate
aDepartmento de Química Inorgânica, Universiade Federal Fluminense, Niterói, CEP 24-020-140, Rio de Janeiro, Brazil
*Correspondence e-mail: jresende@id.uff.br
In the title compound, C18H21ClN2O4, the molecular sytructure is stabilized by two intramolecular N—H⋯O hydrogen bonds. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with graph-set motif R22(10). N—H⋯O hydrogen bonds further link the dimers into C(10) chains along [010].
Related literature
For biological applications of 2-amino-1,4-naphthoquinones, see: Kapadia et al. (2001); Brun et al. (2005); Hallak et al. (2009); Bolognesi et al. (2008). For a similar hydrogen-bonding pattern in a related compound, see: Lynch & McClenaghan (2003). For graph-set notation see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812029674/bx2415sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029674/bx2415Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812029674/bx2415Isup3.cml
2,3-dichloro-[1,4]-naphthoquinone (2.35 g, 10.34 mmol) was dissolved in acetonitrile (20 ml). Then it was added potassium carbonate (1.43 g, 10.34 mmol) followed by tert-butyl-3-aminopropylcarbamate (1.50 g, 8.62 mmol) dissolved in acetonitrile (10 ml). The reaction mixture was refluxed for 5 h and concentrated under reduced pressure. The solution was diluted with ethyl acetate, and washed with saturated sodium carbonate. The organic layer was dried (Na2SO4) and the solvent was evaporated in vacuum. The residue was purified by δ 1.45 (s, 9H, H14), 1.85 (q, J = 6.5 Hz, 2H, H12), 3.25 (q, J = 6.5, 2H, H13), 3.89 (q, J = 6.5 Hz, 2H, H11), 7.61 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 7.71 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 8.03 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8), 8.13 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8).
(silica gel, Hexane/EtOAc, 20:1) to yield tert-butyl 3-(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-ylamino)propylcarbamate 2.81 g, 89%), mp. 123 – 125 °C. The red crystal compound title were obtained from a solvent mixture (Hexane/EtOAc) via slow evaporation. 1H NMR in CDCl3:All C-bound H atoms were placed into the calculated idealized positions. The N-bound H atoms were placed at Fourier Maps. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq and Uiso(H) = 1.5Ueq(methyl)] using a riding model.
Compounds with the fragment 2-amino-1,4-naphtoquinones shows a variety of uses including antimalarial activity (Kapadia et al., 2001), CDC25 phosphatase inhibitory activity (Brun et al., 2005), antileukemic activity (Hallak et al., 2009), and anticancer potential (Bolognesi et al., 2008). The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with tert-butyl-3-aminopropylcarbamate. The molecular sytructure is stablibized by a bifurcated hydrogen bond between N atom of one amine group and two O atoms of carbonyl groups N1—H1···O4, N1—H1···O1, like as observed in 2-Chloro-3-(3-dimethylaminopropylamino)-1,4-naphthoquinone (Lynch & McClenaghan, 2003). In the
the molecules are linked by C—H···O and N—H···O hydrogen bond interactions forming centrosymmetric dimer and chains (along [010]) with graph-set notation R22(10) and C(10) respectively (Bernstein, et al., 1995) Table 1, Fig.2For biological applications of 2-amino-1,4-naphthoquinones, see: Kapadia et al. (2001); Brun et al. (2005); Hallak et al. (2009); Bolognesi et al. (2008). For a similar hydrogen-bonding pattern in a related compound, see: Lynch et al. (2003). For graph-set notation see: Bernstein et al. (1995).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C18H21ClN2O4 | F(000) = 768 |
Mr = 364.82 | Dx = 1.35 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2yn | Cell parameters from 3882 reflections |
a = 5.5172 (2) Å | θ = 3.5–66.1° |
b = 16.6134 (6) Å | µ = 2.10 mm−1 |
c = 19.6758 (6) Å | T = 150 K |
β = 95.709 (3)° | Plate, red |
V = 1794.53 (11) Å3 | 0.2 × 0.15 × 0.02 mm |
Z = 4 |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3149 independent reflections |
Graphite monochromator | 2620 reflections with I > 2σ(I) |
Detector resolution: 10.4186 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 66.3°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −6→6 |
Tmin = 0.551, Tmax = 1 | k = −19→13 |
9109 measured reflections | l = −23→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2773P] where P = (Fo2 + 2Fc2)/3 |
3149 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C18H21ClN2O4 | V = 1794.53 (11) Å3 |
Mr = 364.82 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 5.5172 (2) Å | µ = 2.10 mm−1 |
b = 16.6134 (6) Å | T = 150 K |
c = 19.6758 (6) Å | 0.2 × 0.15 × 0.02 mm |
β = 95.709 (3)° |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 3149 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2620 reflections with I > 2σ(I) |
Tmin = 0.551, Tmax = 1 | Rint = 0.040 |
9109 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.21 e Å−3 |
3149 reflections | Δρmin = −0.27 e Å−3 |
229 parameters |
Experimental. CrysAlisPro (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.06795 (8) | 0.53090 (3) | 0.20487 (2) | 0.02752 (14) | |
O2 | 0.2272 (2) | 0.68717 (8) | 0.16913 (7) | 0.0334 (3) | |
O1 | 0.7377 (2) | 0.46056 (8) | 0.05404 (7) | 0.0309 (3) | |
C3 | 0.2965 (3) | 0.54959 (11) | 0.15192 (8) | 0.0213 (4) | |
C2 | 0.4262 (3) | 0.48957 (10) | 0.12418 (8) | 0.0195 (4) | |
C9 | 0.6701 (3) | 0.59958 (11) | 0.06765 (8) | 0.0215 (4) | |
C10 | 0.5346 (3) | 0.65804 (11) | 0.09762 (8) | 0.0225 (4) | |
C5 | 0.5789 (3) | 0.73898 (12) | 0.08553 (9) | 0.0289 (4) | |
H5 | 0.4862 | 0.7793 | 0.1053 | 0.035* | |
C8 | 0.8508 (3) | 0.62166 (12) | 0.02638 (9) | 0.0254 (4) | |
H8 | 0.9433 | 0.5815 | 0.0062 | 0.03* | |
C11 | 0.2428 (3) | 0.35866 (11) | 0.16149 (9) | 0.0249 (4) | |
H11A | 0.2312 | 0.3057 | 0.1384 | 0.03* | |
H11B | 0.079 | 0.3836 | 0.156 | 0.03* | |
C4 | 0.3413 (3) | 0.63466 (11) | 0.14204 (9) | 0.0234 (4) | |
C13 | 0.5714 (4) | 0.30943 (12) | 0.25169 (10) | 0.0295 (4) | |
H13A | 0.689 | 0.3429 | 0.2293 | 0.035* | |
H13B | 0.6191 | 0.3112 | 0.3015 | 0.035* | |
C1 | 0.6246 (3) | 0.51367 (11) | 0.07960 (9) | 0.0220 (4) | |
C7 | 0.8947 (3) | 0.70260 (12) | 0.01492 (9) | 0.0292 (4) | |
H7 | 1.0174 | 0.7181 | −0.0131 | 0.035* | |
C12 | 0.3190 (3) | 0.34600 (12) | 0.23726 (9) | 0.0283 (4) | |
H12A | 0.3156 | 0.3985 | 0.261 | 0.034* | |
H12B | 0.1991 | 0.3103 | 0.2563 | 0.034* | |
C6 | 0.7587 (4) | 0.76064 (12) | 0.04458 (10) | 0.0321 (5) | |
H6 | 0.7891 | 0.816 | 0.0367 | 0.039* | |
O4 | 0.7482 (2) | 0.25328 (8) | 0.12831 (7) | 0.0324 (3) | |
N2 | 0.5892 (3) | 0.22688 (9) | 0.22833 (8) | 0.0296 (4) | |
H2 | 0.541 | 0.189 | 0.2536 | 0.036* | |
C15 | 0.6766 (3) | 0.20650 (11) | 0.16955 (10) | 0.0251 (4) | |
O3 | 0.6717 (2) | 0.12504 (8) | 0.16315 (7) | 0.0310 (3) | |
C16 | 0.8079 (3) | 0.08385 (12) | 0.11316 (10) | 0.0299 (4) | |
C17 | 0.6995 (4) | 0.10180 (14) | 0.04103 (11) | 0.0413 (5) | |
H17A | 0.5265 | 0.0873 | 0.0362 | 0.062* | |
H17B | 0.7852 | 0.0704 | 0.0087 | 0.062* | |
H17C | 0.7167 | 0.1593 | 0.0316 | 0.062* | |
C18 | 1.0756 (4) | 0.10683 (15) | 0.12453 (13) | 0.0450 (6) | |
H18A | 1.0957 | 0.1629 | 0.1108 | 0.067* | |
H18B | 1.1704 | 0.0717 | 0.0971 | 0.067* | |
H18C | 1.1332 | 0.1006 | 0.173 | 0.067* | |
C19 | 0.7714 (5) | −0.00400 (13) | 0.13100 (13) | 0.0472 (6) | |
H19A | 0.8367 | −0.0137 | 0.1785 | 0.071* | |
H19B | 0.857 | −0.0382 | 0.1006 | 0.071* | |
H19C | 0.5972 | −0.0168 | 0.1255 | 0.071* | |
N1 | 0.4113 (3) | 0.40938 (9) | 0.12852 (7) | 0.0242 (3) | |
H1 | 0.524 | 0.3858 | 0.1098 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0286 (2) | 0.0288 (3) | 0.0266 (2) | 0.00320 (18) | 0.01000 (17) | 0.00058 (18) |
O2 | 0.0422 (8) | 0.0250 (7) | 0.0349 (7) | 0.0059 (6) | 0.0136 (6) | −0.0064 (6) |
O1 | 0.0360 (7) | 0.0243 (7) | 0.0349 (7) | 0.0038 (6) | 0.0156 (6) | −0.0027 (6) |
C3 | 0.0228 (8) | 0.0245 (9) | 0.0168 (8) | 0.0012 (7) | 0.0032 (7) | −0.0004 (7) |
C2 | 0.0218 (8) | 0.0215 (9) | 0.0147 (8) | −0.0003 (7) | −0.0014 (7) | −0.0004 (7) |
C9 | 0.0232 (8) | 0.0233 (9) | 0.0173 (8) | 0.0001 (7) | −0.0018 (7) | 0.0001 (7) |
C10 | 0.0262 (9) | 0.0238 (9) | 0.0166 (8) | 0.0007 (8) | −0.0024 (7) | −0.0016 (7) |
C5 | 0.0349 (10) | 0.0229 (10) | 0.0280 (10) | 0.0024 (8) | −0.0004 (8) | −0.0005 (8) |
C8 | 0.0266 (9) | 0.0287 (10) | 0.0208 (9) | −0.0012 (8) | 0.0023 (7) | 0.0002 (8) |
C11 | 0.0250 (9) | 0.0222 (9) | 0.0272 (10) | −0.0039 (7) | 0.0017 (8) | 0.0005 (8) |
C4 | 0.0270 (9) | 0.0248 (9) | 0.0179 (9) | 0.0015 (8) | 0.0005 (7) | −0.0022 (7) |
C13 | 0.0364 (10) | 0.0259 (10) | 0.0256 (10) | −0.0009 (8) | 0.0006 (8) | 0.0013 (8) |
C1 | 0.0242 (8) | 0.0227 (9) | 0.0186 (8) | 0.0017 (7) | −0.0002 (7) | −0.0009 (7) |
C7 | 0.0313 (9) | 0.0337 (11) | 0.0224 (9) | −0.0064 (8) | 0.0010 (8) | 0.0049 (8) |
C12 | 0.0340 (10) | 0.0252 (10) | 0.0264 (10) | −0.0005 (8) | 0.0068 (8) | 0.0020 (8) |
C6 | 0.0416 (11) | 0.0235 (10) | 0.0305 (10) | −0.0047 (9) | −0.0006 (9) | 0.0044 (8) |
O4 | 0.0372 (7) | 0.0274 (7) | 0.0341 (7) | −0.0043 (6) | 0.0112 (6) | 0.0053 (6) |
N2 | 0.0356 (8) | 0.0220 (8) | 0.0328 (9) | 0.0004 (7) | 0.0110 (7) | 0.0067 (7) |
C15 | 0.0204 (8) | 0.0221 (9) | 0.0327 (10) | −0.0019 (7) | 0.0025 (8) | 0.0039 (8) |
O3 | 0.0333 (7) | 0.0228 (7) | 0.0387 (8) | −0.0013 (6) | 0.0131 (6) | 0.0023 (6) |
C16 | 0.0260 (9) | 0.0262 (10) | 0.0380 (11) | 0.0019 (8) | 0.0061 (8) | 0.0010 (9) |
C17 | 0.0432 (12) | 0.0420 (13) | 0.0382 (12) | −0.0032 (10) | 0.0027 (10) | −0.0047 (10) |
C18 | 0.0251 (10) | 0.0480 (14) | 0.0619 (15) | 0.0053 (10) | 0.0045 (10) | 0.0020 (12) |
C19 | 0.0519 (13) | 0.0284 (12) | 0.0632 (16) | 0.0071 (10) | 0.0158 (12) | 0.0029 (11) |
N1 | 0.0282 (8) | 0.0212 (8) | 0.0238 (8) | 0.0012 (6) | 0.0061 (6) | −0.0006 (6) |
Cl—C3 | 1.7418 (18) | C7—C6 | 1.386 (3) |
O2—C4 | 1.228 (2) | C7—H7 | 0.95 |
O1—C1 | 1.218 (2) | C12—H12A | 0.99 |
C3—C2 | 1.372 (2) | C12—H12B | 0.99 |
C3—C4 | 1.451 (3) | C6—H6 | 0.95 |
C2—N1 | 1.338 (2) | O4—C15 | 1.218 (2) |
C2—C1 | 1.523 (2) | N2—C15 | 1.340 (2) |
C9—C10 | 1.392 (2) | N2—H2 | 0.86 |
C9—C8 | 1.396 (3) | C15—O3 | 1.359 (2) |
C9—C1 | 1.472 (3) | O3—C16 | 1.465 (2) |
C10—C5 | 1.391 (3) | C16—C17 | 1.514 (3) |
C10—C4 | 1.496 (3) | C16—C19 | 1.519 (3) |
C5—C6 | 1.386 (3) | C16—C18 | 1.520 (3) |
C5—H5 | 0.95 | C17—H17A | 0.98 |
C8—C7 | 1.389 (3) | C17—H17B | 0.98 |
C8—H8 | 0.95 | C17—H17C | 0.98 |
C11—N1 | 1.454 (2) | C18—H18A | 0.98 |
C11—C12 | 1.523 (3) | C18—H18B | 0.98 |
C11—H11A | 0.99 | C18—H18C | 0.98 |
C11—H11B | 0.99 | C19—H19A | 0.98 |
C13—N2 | 1.453 (2) | C19—H19B | 0.98 |
C13—C12 | 1.520 (3) | C19—H19C | 0.98 |
C13—H13A | 0.99 | N1—H1 | 0.8486 |
C13—H13B | 0.99 | ||
C2—C3—C4 | 123.52 (16) | C11—C12—H12A | 108.9 |
C2—C3—Cl | 123.08 (14) | C13—C12—H12B | 108.9 |
C4—C3—Cl | 113.37 (13) | C11—C12—H12B | 108.9 |
N1—C2—C3 | 131.33 (17) | H12A—C12—H12B | 107.7 |
N1—C2—C1 | 110.55 (15) | C7—C6—C5 | 120.86 (18) |
C3—C2—C1 | 118.12 (15) | C7—C6—H6 | 119.6 |
C10—C9—C8 | 120.52 (17) | C5—C6—H6 | 119.6 |
C10—C9—C1 | 120.11 (16) | C15—N2—C13 | 123.56 (16) |
C8—C9—C1 | 119.37 (17) | C15—N2—H2 | 118.2 |
C5—C10—C9 | 119.41 (17) | C13—N2—H2 | 118.2 |
C5—C10—C4 | 119.90 (17) | O4—C15—N2 | 125.63 (17) |
C9—C10—C4 | 120.70 (16) | O4—C15—O3 | 125.34 (18) |
C6—C5—C10 | 119.88 (19) | N2—C15—O3 | 109.03 (16) |
C6—C5—H5 | 120.1 | C15—O3—C16 | 121.37 (15) |
C10—C5—H5 | 120.1 | O3—C16—C17 | 110.87 (16) |
C7—C8—C9 | 119.66 (18) | O3—C16—C19 | 101.83 (16) |
C7—C8—H8 | 120.2 | C17—C16—C19 | 110.91 (18) |
C9—C8—H8 | 120.2 | O3—C16—C18 | 109.84 (16) |
N1—C11—C12 | 112.97 (14) | C17—C16—C18 | 112.07 (18) |
N1—C11—H11A | 109 | C19—C16—C18 | 110.86 (18) |
C12—C11—H11A | 109 | C16—C17—H17A | 109.5 |
N1—C11—H11B | 109 | C16—C17—H17B | 109.5 |
C12—C11—H11B | 109 | H17A—C17—H17B | 109.5 |
H11A—C11—H11B | 107.8 | C16—C17—H17C | 109.5 |
O2—C4—C3 | 122.17 (16) | H17A—C17—H17C | 109.5 |
O2—C4—C10 | 119.68 (16) | H17B—C17—H17C | 109.5 |
C3—C4—C10 | 118.15 (16) | C16—C18—H18A | 109.5 |
N2—C13—C12 | 114.05 (16) | C16—C18—H18B | 109.5 |
N2—C13—H13A | 108.7 | H18A—C18—H18B | 109.5 |
C12—C13—H13A | 108.7 | C16—C18—H18C | 109.5 |
N2—C13—H13B | 108.7 | H18A—C18—H18C | 109.5 |
C12—C13—H13B | 108.7 | H18B—C18—H18C | 109.5 |
H13A—C13—H13B | 107.6 | C16—C19—H19A | 109.5 |
O1—C1—C9 | 122.29 (16) | C16—C19—H19B | 109.5 |
O1—C1—C2 | 118.31 (16) | H19A—C19—H19B | 109.5 |
C9—C1—C2 | 119.38 (15) | C16—C19—H19C | 109.5 |
C6—C7—C8 | 119.67 (18) | H19A—C19—H19C | 109.5 |
C6—C7—H7 | 120.2 | H19B—C19—H19C | 109.5 |
C8—C7—H7 | 120.2 | C2—N1—C11 | 130.65 (16) |
C13—C12—C11 | 113.37 (16) | C2—N1—H1 | 112.3 |
C13—C12—H12A | 108.9 | C11—N1—H1 | 117 |
C4—C3—C2—N1 | 179.24 (17) | C10—C9—C1—C2 | 0.8 (2) |
Cl—C3—C2—N1 | 1.4 (3) | C8—C9—C1—C2 | −179.55 (15) |
C4—C3—C2—C1 | −1.2 (2) | N1—C2—C1—O1 | 0.8 (2) |
Cl—C3—C2—C1 | −178.99 (12) | C3—C2—C1—O1 | −178.91 (15) |
C8—C9—C10—C5 | 0.7 (2) | N1—C2—C1—C9 | 179.53 (14) |
C1—C9—C10—C5 | −179.67 (15) | C3—C2—C1—C9 | −0.2 (2) |
C8—C9—C10—C4 | −179.81 (15) | C9—C8—C7—C6 | 0.0 (3) |
C1—C9—C10—C4 | −0.2 (2) | N2—C13—C12—C11 | −67.5 (2) |
C9—C10—C5—C6 | −0.7 (3) | N1—C11—C12—C13 | −57.5 (2) |
C4—C10—C5—C6 | 179.74 (16) | C8—C7—C6—C5 | −0.1 (3) |
C10—C9—C8—C7 | −0.3 (2) | C10—C5—C6—C7 | 0.4 (3) |
C1—C9—C8—C7 | −179.97 (15) | C12—C13—N2—C15 | 98.8 (2) |
C2—C3—C4—O2 | −177.80 (16) | C13—N2—C15—O4 | −1.0 (3) |
Cl—C3—C4—O2 | 0.2 (2) | C13—N2—C15—O3 | 179.19 (15) |
C2—C3—C4—C10 | 1.8 (2) | O4—C15—O3—C16 | 15.1 (3) |
Cl—C3—C4—C10 | 179.81 (12) | N2—C15—O3—C16 | −165.12 (15) |
C5—C10—C4—O2 | −2.0 (2) | C15—O3—C16—C17 | −68.5 (2) |
C9—C10—C4—O2 | 178.51 (15) | C15—O3—C16—C19 | 173.46 (16) |
C5—C10—C4—C3 | 178.43 (15) | C15—O3—C16—C18 | 55.9 (2) |
C9—C10—C4—C3 | −1.1 (2) | C3—C2—N1—C11 | 3.6 (3) |
C10—C9—C1—O1 | 179.49 (16) | C1—C2—N1—C11 | −175.99 (15) |
C8—C9—C1—O1 | −0.9 (2) | C12—C11—N1—C2 | −84.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.85 | 2.53 | 3.191 (2) | 135 |
N1—H1···O1 | 0.85 | 2.1 | 2.576 (2) | 115 |
N2—H2···O2i | 0.86 | 2.22 | 2.873 (2) | 132 |
C8—H8···O1ii | 0.95 | 2.33 | 3.200 (2) | 153 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C18H21ClN2O4 |
Mr | 364.82 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 5.5172 (2), 16.6134 (6), 19.6758 (6) |
β (°) | 95.709 (3) |
V (Å3) | 1794.53 (11) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.2 × 0.15 × 0.02 |
Data collection | |
Diffractometer | Agilent Xcalibur Atlas Gemini ultra |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.551, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9109, 3149, 2620 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.096, 1.07 |
No. of reflections | 3149 |
No. of parameters | 229 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.27 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.85 | 2.53 | 3.191 (2) | 135 |
N1—H1···O1 | 0.85 | 2.1 | 2.576 (2) | 115.4 |
N2—H2···O2i | 0.86 | 2.22 | 2.873 (2) | 132.1 |
C8—H8···O1ii | 0.95 | 2.33 | 3.200 (2) | 153 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z. |
Acknowledgements
This work was supported by the Brazilian agencies Proppi-UFF, FAPERJ and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection and the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bolognesi, M. L., Calonghi, N., Mangano, C., Masotti, L. & Melchiorre, C. (2008). J. Med. Chem. 51, 5463–6467. Web of Science CrossRef PubMed CAS Google Scholar
Brun, M. P., Braud, E., Angotti, D., Mondésert, O., Quaranta, M., Montes, M., Miteva, M., Gresh, N., Ducommunb, B. & Garbay, C. (2005). Bioorg. Med. Chem. 13, 4871–4879. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hallak, M., Win, T., Shpilberg, O., Bittner, S., Granot, Y., Levy, I. & Nathan, I. (2009). Br. J. Haematol. 147, 459–470. Web of Science CrossRef PubMed CAS Google Scholar
Kapadia, G. J., Azuine, M., Balasubramanian, V. & Sridhar, R. (2001). Pharmacol. Res. 43, 363–367. Web of Science CrossRef PubMed CAS Google Scholar
Lynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427–o1428. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds with the fragment 2-amino-1,4-naphtoquinones shows a variety of uses including antimalarial activity (Kapadia et al., 2001), CDC25 phosphatase inhibitory activity (Brun et al., 2005), antileukemic activity (Hallak et al., 2009), and anticancer potential (Bolognesi et al., 2008). The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with tert-butyl-3-aminopropylcarbamate. The molecular sytructure is stablibized by a bifurcated hydrogen bond between N atom of one amine group and two O atoms of carbonyl groups N1—H1···O4, N1—H1···O1, like as observed in 2-Chloro-3-(3-dimethylaminopropylamino)-1,4-naphthoquinone (Lynch & McClenaghan, 2003). In the crystal structure the molecules are linked by C—H···O and N—H···O hydrogen bond interactions forming centrosymmetric dimer and chains (along [010]) with graph-set notation R22(10) and C(10) respectively (Bernstein, et al., 1995) Table 1, Fig.2