organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-{3-[(3-chloro-1,4-dioxo-1,4-di­hydro­naphthalen-2-yl)amino]­prop­yl}carbamate

aDepartmento de Química Inorgânica, Universiade Federal Fluminense, Niterói, CEP 24-020-140, Rio de Janeiro, Brazil
*Correspondence e-mail: jresende@id.uff.br

(Received 29 May 2012; accepted 29 June 2012; online 7 July 2012)

In the title compound, C18H21ClN2O4, the mol­ecular sytructure is stabilized by two intra­molecular N—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with graph-set motif R22(10). N—H⋯O hydrogen bonds further link the dimers into C(10) chains along [010].

Related literature

For biological applications of 2-amino-1,4-naphtho­quinones, see: Kapadia et al. (2001[Kapadia, G. J., Azuine, M., Balasubramanian, V. & Sridhar, R. (2001). Pharmacol. Res. 43, 363-367.]); Brun et al. (2005[Brun, M. P., Braud, E., Angotti, D., Mondésert, O., Quaranta, M., Montes, M., Miteva, M., Gresh, N., Ducommunb, B. & Garbay, C. (2005). Bioorg. Med. Chem. 13, 4871-4879.]); Hallak et al. (2009[Hallak, M., Win, T., Shpilberg, O., Bittner, S., Granot, Y., Levy, I. & Nathan, I. (2009). Br. J. Haematol. 147, 459-470.]); Bolognesi et al. (2008[Bolognesi, M. L., Calonghi, N., Mangano, C., Masotti, L. & Melchiorre, C. (2008). J. Med. Chem. 51, 5463-6467.]). For a similar hydrogen-bonding pattern in a related compound, see: Lynch & McClenaghan (2003[Lynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427-o1428.]). For graph-set notation see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21ClN2O4

  • Mr = 364.82

  • Monoclinic, P 21 /n

  • a = 5.5172 (2) Å

  • b = 16.6134 (6) Å

  • c = 19.6758 (6) Å

  • β = 95.709 (3)°

  • V = 1794.53 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.10 mm−1

  • T = 150 K

  • 0.2 × 0.15 × 0.02 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.551, Tmax = 1

  • 9109 measured reflections

  • 3149 independent reflections

  • 2620 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.07

  • 3149 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.85 2.53 3.191 (2) 135
N1—H1⋯O1 0.85 2.1 2.576 (2) 115
N2—H2⋯O2i 0.86 2.22 2.873 (2) 132
C8—H8⋯O1ii 0.95 2.33 3.200 (2) 153
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds with the fragment 2-amino-1,4-naphtoquinones shows a variety of uses including antimalarial activity (Kapadia et al., 2001), CDC25 phosphatase inhibitory activity (Brun et al., 2005), antileukemic activity (Hallak et al., 2009), and anticancer potential (Bolognesi et al., 2008). The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with tert-butyl-3-aminopropylcarbamate. The molecular sytructure is stablibized by a bifurcated hydrogen bond between N atom of one amine group and two O atoms of carbonyl groups N1—H1···O4, N1—H1···O1, like as observed in 2-Chloro-3-(3-dimethylaminopropylamino)-1,4-naphthoquinone (Lynch & McClenaghan, 2003). In the crystal structure the molecules are linked by C—H···O and N—H···O hydrogen bond interactions forming centrosymmetric dimer and chains (along [010]) with graph-set notation R22(10) and C(10) respectively (Bernstein, et al., 1995) Table 1, Fig.2

Related literature top

For biological applications of 2-amino-1,4-naphthoquinones, see: Kapadia et al. (2001); Brun et al. (2005); Hallak et al. (2009); Bolognesi et al. (2008). For a similar hydrogen-bonding pattern in a related compound, see: Lynch et al. (2003). For graph-set notation see: Bernstein et al. (1995).

Experimental top

2,3-dichloro-[1,4]-naphthoquinone (2.35 g, 10.34 mmol) was dissolved in acetonitrile (20 ml). Then it was added potassium carbonate (1.43 g, 10.34 mmol) followed by tert-butyl-3-aminopropylcarbamate (1.50 g, 8.62 mmol) dissolved in acetonitrile (10 ml). The reaction mixture was refluxed for 5 h and concentrated under reduced pressure. The solution was diluted with ethyl acetate, and washed with saturated sodium carbonate. The organic layer was dried (Na2SO4) and the solvent was evaporated in vacuum. The residue was purified by column chromatography (silica gel, Hexane/EtOAc, 20:1) to yield tert-butyl 3-(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-ylamino)propylcarbamate 2.81 g, 89%), mp. 123 – 125 °C. The red crystal compound title were obtained from a solvent mixture (Hexane/EtOAc) via slow evaporation. 1H NMR in CDCl3: δ 1.45 (s, 9H, H14), 1.85 (q, J = 6.5 Hz, 2H, H12), 3.25 (q, J = 6.5, 2H, H13), 3.89 (q, J = 6.5 Hz, 2H, H11), 7.61 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 7.71 (td, J = 1.2, 7.6 Hz, 1H, H6/H7), 8.03 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8), 8.13 (dd, J = 0.9, 7.6 Hz, 1H, H5/H8).

Refinement top

All C-bound H atoms were placed into the calculated idealized positions. The N-bound H atoms were placed at Fourier Maps. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq and Uiso(H) = 1.5Ueq(methyl)] using a riding model.

Structure description top

Compounds with the fragment 2-amino-1,4-naphtoquinones shows a variety of uses including antimalarial activity (Kapadia et al., 2001), CDC25 phosphatase inhibitory activity (Brun et al., 2005), antileukemic activity (Hallak et al., 2009), and anticancer potential (Bolognesi et al., 2008). The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with tert-butyl-3-aminopropylcarbamate. The molecular sytructure is stablibized by a bifurcated hydrogen bond between N atom of one amine group and two O atoms of carbonyl groups N1—H1···O4, N1—H1···O1, like as observed in 2-Chloro-3-(3-dimethylaminopropylamino)-1,4-naphthoquinone (Lynch & McClenaghan, 2003). In the crystal structure the molecules are linked by C—H···O and N—H···O hydrogen bond interactions forming centrosymmetric dimer and chains (along [010]) with graph-set notation R22(10) and C(10) respectively (Bernstein, et al., 1995) Table 1, Fig.2

For biological applications of 2-amino-1,4-naphthoquinones, see: Kapadia et al. (2001); Brun et al. (2005); Hallak et al. (2009); Bolognesi et al. (2008). For a similar hydrogen-bonding pattern in a related compound, see: Lynch et al. (2003). For graph-set notation see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP representation (Farrugia, 1997) of the molecular structure of compound I with the numbering and displacement ellipsoids at 30% probability level. Hydrogen-bonds are shown by dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I), showing the formation of dimer and chains along [010]. Hydrogen-bonds are shown by dashed lines. "
tert-Butyl N-{3-[(3-chloro-1,4-dioxo-1,4- dihydronaphthalen-2-yl)amino]propyl}carbamate top
Crystal data top
C18H21ClN2O4F(000) = 768
Mr = 364.82Dx = 1.35 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 3882 reflections
a = 5.5172 (2) Åθ = 3.5–66.1°
b = 16.6134 (6) ŵ = 2.10 mm1
c = 19.6758 (6) ÅT = 150 K
β = 95.709 (3)°Plate, red
V = 1794.53 (11) Å30.2 × 0.15 × 0.02 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3149 independent reflections
Graphite monochromator2620 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.040
ω scansθmax = 66.3°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 66
Tmin = 0.551, Tmax = 1k = 1913
9109 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2773P]
where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H21ClN2O4V = 1794.53 (11) Å3
Mr = 364.82Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.5172 (2) ŵ = 2.10 mm1
b = 16.6134 (6) ÅT = 150 K
c = 19.6758 (6) Å0.2 × 0.15 × 0.02 mm
β = 95.709 (3)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2620 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 1Rint = 0.040
9109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3149 reflectionsΔρmin = 0.27 e Å3
229 parameters
Special details top

Experimental. CrysAlisPro (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.06795 (8)0.53090 (3)0.20487 (2)0.02752 (14)
O20.2272 (2)0.68717 (8)0.16913 (7)0.0334 (3)
O10.7377 (2)0.46056 (8)0.05404 (7)0.0309 (3)
C30.2965 (3)0.54959 (11)0.15192 (8)0.0213 (4)
C20.4262 (3)0.48957 (10)0.12418 (8)0.0195 (4)
C90.6701 (3)0.59958 (11)0.06765 (8)0.0215 (4)
C100.5346 (3)0.65804 (11)0.09762 (8)0.0225 (4)
C50.5789 (3)0.73898 (12)0.08553 (9)0.0289 (4)
H50.48620.77930.10530.035*
C80.8508 (3)0.62166 (12)0.02638 (9)0.0254 (4)
H80.94330.58150.00620.03*
C110.2428 (3)0.35866 (11)0.16149 (9)0.0249 (4)
H11A0.23120.30570.13840.03*
H11B0.0790.38360.1560.03*
C40.3413 (3)0.63466 (11)0.14204 (9)0.0234 (4)
C130.5714 (4)0.30943 (12)0.25169 (10)0.0295 (4)
H13A0.6890.34290.22930.035*
H13B0.61910.31120.30150.035*
C10.6246 (3)0.51367 (11)0.07960 (9)0.0220 (4)
C70.8947 (3)0.70260 (12)0.01492 (9)0.0292 (4)
H71.01740.71810.01310.035*
C120.3190 (3)0.34600 (12)0.23726 (9)0.0283 (4)
H12A0.31560.39850.2610.034*
H12B0.19910.31030.25630.034*
C60.7587 (4)0.76064 (12)0.04458 (10)0.0321 (5)
H60.78910.8160.03670.039*
O40.7482 (2)0.25328 (8)0.12831 (7)0.0324 (3)
N20.5892 (3)0.22688 (9)0.22833 (8)0.0296 (4)
H20.5410.1890.25360.036*
C150.6766 (3)0.20650 (11)0.16955 (10)0.0251 (4)
O30.6717 (2)0.12504 (8)0.16315 (7)0.0310 (3)
C160.8079 (3)0.08385 (12)0.11316 (10)0.0299 (4)
C170.6995 (4)0.10180 (14)0.04103 (11)0.0413 (5)
H17A0.52650.08730.03620.062*
H17B0.78520.07040.00870.062*
H17C0.71670.15930.03160.062*
C181.0756 (4)0.10683 (15)0.12453 (13)0.0450 (6)
H18A1.09570.16290.11080.067*
H18B1.17040.07170.09710.067*
H18C1.13320.10060.1730.067*
C190.7714 (5)0.00400 (13)0.13100 (13)0.0472 (6)
H19A0.83670.01370.17850.071*
H19B0.8570.03820.10060.071*
H19C0.59720.01680.12550.071*
N10.4113 (3)0.40938 (9)0.12852 (7)0.0242 (3)
H10.5240.38580.10980.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0286 (2)0.0288 (3)0.0266 (2)0.00320 (18)0.01000 (17)0.00058 (18)
O20.0422 (8)0.0250 (7)0.0349 (7)0.0059 (6)0.0136 (6)0.0064 (6)
O10.0360 (7)0.0243 (7)0.0349 (7)0.0038 (6)0.0156 (6)0.0027 (6)
C30.0228 (8)0.0245 (9)0.0168 (8)0.0012 (7)0.0032 (7)0.0004 (7)
C20.0218 (8)0.0215 (9)0.0147 (8)0.0003 (7)0.0014 (7)0.0004 (7)
C90.0232 (8)0.0233 (9)0.0173 (8)0.0001 (7)0.0018 (7)0.0001 (7)
C100.0262 (9)0.0238 (9)0.0166 (8)0.0007 (8)0.0024 (7)0.0016 (7)
C50.0349 (10)0.0229 (10)0.0280 (10)0.0024 (8)0.0004 (8)0.0005 (8)
C80.0266 (9)0.0287 (10)0.0208 (9)0.0012 (8)0.0023 (7)0.0002 (8)
C110.0250 (9)0.0222 (9)0.0272 (10)0.0039 (7)0.0017 (8)0.0005 (8)
C40.0270 (9)0.0248 (9)0.0179 (9)0.0015 (8)0.0005 (7)0.0022 (7)
C130.0364 (10)0.0259 (10)0.0256 (10)0.0009 (8)0.0006 (8)0.0013 (8)
C10.0242 (8)0.0227 (9)0.0186 (8)0.0017 (7)0.0002 (7)0.0009 (7)
C70.0313 (9)0.0337 (11)0.0224 (9)0.0064 (8)0.0010 (8)0.0049 (8)
C120.0340 (10)0.0252 (10)0.0264 (10)0.0005 (8)0.0068 (8)0.0020 (8)
C60.0416 (11)0.0235 (10)0.0305 (10)0.0047 (9)0.0006 (9)0.0044 (8)
O40.0372 (7)0.0274 (7)0.0341 (7)0.0043 (6)0.0112 (6)0.0053 (6)
N20.0356 (8)0.0220 (8)0.0328 (9)0.0004 (7)0.0110 (7)0.0067 (7)
C150.0204 (8)0.0221 (9)0.0327 (10)0.0019 (7)0.0025 (8)0.0039 (8)
O30.0333 (7)0.0228 (7)0.0387 (8)0.0013 (6)0.0131 (6)0.0023 (6)
C160.0260 (9)0.0262 (10)0.0380 (11)0.0019 (8)0.0061 (8)0.0010 (9)
C170.0432 (12)0.0420 (13)0.0382 (12)0.0032 (10)0.0027 (10)0.0047 (10)
C180.0251 (10)0.0480 (14)0.0619 (15)0.0053 (10)0.0045 (10)0.0020 (12)
C190.0519 (13)0.0284 (12)0.0632 (16)0.0071 (10)0.0158 (12)0.0029 (11)
N10.0282 (8)0.0212 (8)0.0238 (8)0.0012 (6)0.0061 (6)0.0006 (6)
Geometric parameters (Å, º) top
Cl—C31.7418 (18)C7—C61.386 (3)
O2—C41.228 (2)C7—H70.95
O1—C11.218 (2)C12—H12A0.99
C3—C21.372 (2)C12—H12B0.99
C3—C41.451 (3)C6—H60.95
C2—N11.338 (2)O4—C151.218 (2)
C2—C11.523 (2)N2—C151.340 (2)
C9—C101.392 (2)N2—H20.86
C9—C81.396 (3)C15—O31.359 (2)
C9—C11.472 (3)O3—C161.465 (2)
C10—C51.391 (3)C16—C171.514 (3)
C10—C41.496 (3)C16—C191.519 (3)
C5—C61.386 (3)C16—C181.520 (3)
C5—H50.95C17—H17A0.98
C8—C71.389 (3)C17—H17B0.98
C8—H80.95C17—H17C0.98
C11—N11.454 (2)C18—H18A0.98
C11—C121.523 (3)C18—H18B0.98
C11—H11A0.99C18—H18C0.98
C11—H11B0.99C19—H19A0.98
C13—N21.453 (2)C19—H19B0.98
C13—C121.520 (3)C19—H19C0.98
C13—H13A0.99N1—H10.8486
C13—H13B0.99
C2—C3—C4123.52 (16)C11—C12—H12A108.9
C2—C3—Cl123.08 (14)C13—C12—H12B108.9
C4—C3—Cl113.37 (13)C11—C12—H12B108.9
N1—C2—C3131.33 (17)H12A—C12—H12B107.7
N1—C2—C1110.55 (15)C7—C6—C5120.86 (18)
C3—C2—C1118.12 (15)C7—C6—H6119.6
C10—C9—C8120.52 (17)C5—C6—H6119.6
C10—C9—C1120.11 (16)C15—N2—C13123.56 (16)
C8—C9—C1119.37 (17)C15—N2—H2118.2
C5—C10—C9119.41 (17)C13—N2—H2118.2
C5—C10—C4119.90 (17)O4—C15—N2125.63 (17)
C9—C10—C4120.70 (16)O4—C15—O3125.34 (18)
C6—C5—C10119.88 (19)N2—C15—O3109.03 (16)
C6—C5—H5120.1C15—O3—C16121.37 (15)
C10—C5—H5120.1O3—C16—C17110.87 (16)
C7—C8—C9119.66 (18)O3—C16—C19101.83 (16)
C7—C8—H8120.2C17—C16—C19110.91 (18)
C9—C8—H8120.2O3—C16—C18109.84 (16)
N1—C11—C12112.97 (14)C17—C16—C18112.07 (18)
N1—C11—H11A109C19—C16—C18110.86 (18)
C12—C11—H11A109C16—C17—H17A109.5
N1—C11—H11B109C16—C17—H17B109.5
C12—C11—H11B109H17A—C17—H17B109.5
H11A—C11—H11B107.8C16—C17—H17C109.5
O2—C4—C3122.17 (16)H17A—C17—H17C109.5
O2—C4—C10119.68 (16)H17B—C17—H17C109.5
C3—C4—C10118.15 (16)C16—C18—H18A109.5
N2—C13—C12114.05 (16)C16—C18—H18B109.5
N2—C13—H13A108.7H18A—C18—H18B109.5
C12—C13—H13A108.7C16—C18—H18C109.5
N2—C13—H13B108.7H18A—C18—H18C109.5
C12—C13—H13B108.7H18B—C18—H18C109.5
H13A—C13—H13B107.6C16—C19—H19A109.5
O1—C1—C9122.29 (16)C16—C19—H19B109.5
O1—C1—C2118.31 (16)H19A—C19—H19B109.5
C9—C1—C2119.38 (15)C16—C19—H19C109.5
C6—C7—C8119.67 (18)H19A—C19—H19C109.5
C6—C7—H7120.2H19B—C19—H19C109.5
C8—C7—H7120.2C2—N1—C11130.65 (16)
C13—C12—C11113.37 (16)C2—N1—H1112.3
C13—C12—H12A108.9C11—N1—H1117
C4—C3—C2—N1179.24 (17)C10—C9—C1—C20.8 (2)
Cl—C3—C2—N11.4 (3)C8—C9—C1—C2179.55 (15)
C4—C3—C2—C11.2 (2)N1—C2—C1—O10.8 (2)
Cl—C3—C2—C1178.99 (12)C3—C2—C1—O1178.91 (15)
C8—C9—C10—C50.7 (2)N1—C2—C1—C9179.53 (14)
C1—C9—C10—C5179.67 (15)C3—C2—C1—C90.2 (2)
C8—C9—C10—C4179.81 (15)C9—C8—C7—C60.0 (3)
C1—C9—C10—C40.2 (2)N2—C13—C12—C1167.5 (2)
C9—C10—C5—C60.7 (3)N1—C11—C12—C1357.5 (2)
C4—C10—C5—C6179.74 (16)C8—C7—C6—C50.1 (3)
C10—C9—C8—C70.3 (2)C10—C5—C6—C70.4 (3)
C1—C9—C8—C7179.97 (15)C12—C13—N2—C1598.8 (2)
C2—C3—C4—O2177.80 (16)C13—N2—C15—O41.0 (3)
Cl—C3—C4—O20.2 (2)C13—N2—C15—O3179.19 (15)
C2—C3—C4—C101.8 (2)O4—C15—O3—C1615.1 (3)
Cl—C3—C4—C10179.81 (12)N2—C15—O3—C16165.12 (15)
C5—C10—C4—O22.0 (2)C15—O3—C16—C1768.5 (2)
C9—C10—C4—O2178.51 (15)C15—O3—C16—C19173.46 (16)
C5—C10—C4—C3178.43 (15)C15—O3—C16—C1855.9 (2)
C9—C10—C4—C31.1 (2)C3—C2—N1—C113.6 (3)
C10—C9—C1—O1179.49 (16)C1—C2—N1—C11175.99 (15)
C8—C9—C1—O10.9 (2)C12—C11—N1—C284.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.852.533.191 (2)135
N1—H1···O10.852.12.576 (2)115
N2—H2···O2i0.862.222.873 (2)132
C8—H8···O1ii0.952.333.200 (2)153
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H21ClN2O4
Mr364.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)5.5172 (2), 16.6134 (6), 19.6758 (6)
β (°) 95.709 (3)
V3)1794.53 (11)
Z4
Radiation typeCu Kα
µ (mm1)2.10
Crystal size (mm)0.2 × 0.15 × 0.02
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.551, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
9109, 3149, 2620
Rint0.040
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.07
No. of reflections3149
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.852.533.191 (2)135
N1—H1···O10.852.12.576 (2)115.4
N2—H2···O2i0.862.222.873 (2)132.1
C8—H8···O1ii0.952.333.200 (2)153
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

This work was supported by the Brazilian agencies Proppi-UFF, FAPERJ and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection and the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Crystallographic Database (CSD).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolognesi, M. L., Calonghi, N., Mangano, C., Masotti, L. & Melchiorre, C. (2008). J. Med. Chem. 51, 5463–6467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrun, M. P., Braud, E., Angotti, D., Mondésert, O., Quaranta, M., Montes, M., Miteva, M., Gresh, N., Ducommunb, B. & Garbay, C. (2005). Bioorg. Med. Chem. 13, 4871–4879.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHallak, M., Win, T., Shpilberg, O., Bittner, S., Granot, Y., Levy, I. & Nathan, I. (2009). Br. J. Haematol. 147, 459–470.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKapadia, G. J., Azuine, M., Balasubramanian, V. & Sridhar, R. (2001). Pharmacol. Res. 43, 363–367.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427–o1428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds