organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Chloro-N-[(2-eth­­oxy­naphthalen-1-yl)methyl­­idene]aniline

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and cDepartment of Physics, Giresun University, Arts and Science Faculty, Giresun, Turkey
*Correspondence e-mail: hilal.vesek@oposta.omu.edu.tr

(Received 4 July 2012; accepted 14 July 2012; online 21 July 2012)

In the title compound, C19H16ClNO, the dihedral angle between the naphthalene ring system and the chloro­benzene ring is 61.90 (10)° and the C—N—C—C torsion angle is 174.6 (2)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯N hydrogen bond. The crystal structure features ππ stacking inter­actions [centroid–centroid distances = 3.7325 (17) and 3.8150 (17) Å].

Related literature

For applications of Schiff bases in the pharmaceutical industry, medicine, industry and technology, see: Güler (1998[Güler, E. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 295-301.]). For their biological properties, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Williams (1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o667.]); Pavlović et al. (2002[Pavlović, G., Sosa, J. M., Vikić-Topić, D. & Leban, I. (2002). Acta Cryst. E58, o317-o320.]); Özdemir et al. (2003[Özdemir, N., Dinçer, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2003). Acta Cryst. E59, o1223-o1225.]); Inaç et al. (2012[Inaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.]); Ağar et al. (2010[Ağar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759-1772.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16ClNO

  • Mr = 309.78

  • Triclinic, [P \overline 1]

  • a = 8.0084 (14) Å

  • b = 8.7315 (19) Å

  • c = 11.7043 (8) Å

  • α = 76.253 (13)°

  • β = 79.794 (10)°

  • γ = 84.337 (17)°

  • V = 781.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.3 × 0.25 × 0.15 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA and X-RED32; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.793, Tmax = 1.000

  • 5144 measured reflections

  • 3057 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.180

  • S = 1.05

  • 3057 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1 0.96 (3) 2.24 (3) 2.915 (3) 127 (2)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Studies with the Schiff bases, started in 1869 to the present and continued intensively. This chemistry is a multi-site and at the same time, lubricants in the pharmaceutical industry, medicine, industry and technology, a wide finds areas (Güler, 1998). Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activites (Calligaris et al., 1972; Lozier et al., 1975). Most Schiff bases have antibacterial, anticancer, antinflammatory and antioxic properties (Williams, 1972).As an extension of the study on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here. The molecular structure of the title compound are shown in Fig. 1. Bond lengths and angles are normal and comparable with other related compounds (Özdemir et al.,2003; (Zhang, 2009; Inaç et al., 2012; Ağar et al., 2010 & Zhang, 2009). The dihedral angle between the naphthalene ring and the chlorobenzene ring is 61.90 (10)°. The molecular structure is stabilized by one intramolecular C—H···N hydrogen bond interaction with S(6) is motif (Bernstein et al., 1995), Table 1. The crystal structure is stabilized by π-π stacking interactions (Cg1–Cg1i = 3.7325 (17) and Cg2–Cg2ii = 3.8150 (17)Å, Cg1 = C5/C6/C7/C8/C9/C10; Cg2 = C12/C13/C14/C15/C16/C17; symmetry codes: (i) -x,-y,-z; (ii) 1-x,-y, 1-z ).

Related literature top

For applications of Schiff bases in the pharmaceutical industry, medicine, industry and technology, see: Güler (1998). For their biological properties, see: Lozier et al. (1975); Calligaris et al. (1972); Williams 1972. For hydrogen-bonding motifs, see: Bernstein et al. (1995). For related structures, see: Zhang (2009); Pavlović et al. (2002); Özdemir et al. (2003); Inaç et al. (2012); Ağar et al. (2010).

Experimental top

(E)-3-chloro-N-((2-ethoxynaphthalen-1-yl)methylene)aniline was prepared by reflux of a mixture of a solution containing 2-ethoxy-1-naphthaldehyde (20,0 mg, 0,1 mmol) in ethanol (20 ml) and a solution containing 3-chloroaniline (12,8 mg, 0,1 mmol) in ethanol (20 ml).The reaction mixture was stirred for 5 h under reflux.Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 64%; m.p. 345 - 347 K).

Refinement top

All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H=0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Structure description top

Studies with the Schiff bases, started in 1869 to the present and continued intensively. This chemistry is a multi-site and at the same time, lubricants in the pharmaceutical industry, medicine, industry and technology, a wide finds areas (Güler, 1998). Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activites (Calligaris et al., 1972; Lozier et al., 1975). Most Schiff bases have antibacterial, anticancer, antinflammatory and antioxic properties (Williams, 1972).As an extension of the study on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here. The molecular structure of the title compound are shown in Fig. 1. Bond lengths and angles are normal and comparable with other related compounds (Özdemir et al.,2003; (Zhang, 2009; Inaç et al., 2012; Ağar et al., 2010 & Zhang, 2009). The dihedral angle between the naphthalene ring and the chlorobenzene ring is 61.90 (10)°. The molecular structure is stabilized by one intramolecular C—H···N hydrogen bond interaction with S(6) is motif (Bernstein et al., 1995), Table 1. The crystal structure is stabilized by π-π stacking interactions (Cg1–Cg1i = 3.7325 (17) and Cg2–Cg2ii = 3.8150 (17)Å, Cg1 = C5/C6/C7/C8/C9/C10; Cg2 = C12/C13/C14/C15/C16/C17; symmetry codes: (i) -x,-y,-z; (ii) 1-x,-y, 1-z ).

For applications of Schiff bases in the pharmaceutical industry, medicine, industry and technology, see: Güler (1998). For their biological properties, see: Lozier et al. (1975); Calligaris et al. (1972); Williams 1972. For hydrogen-bonding motifs, see: Bernstein et al. (1995). For related structures, see: Zhang (2009); Pavlović et al. (2002); Özdemir et al. (2003); Inaç et al. (2012); Ağar et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. C—H···N hydrogen bond interaction is shown as dashed lines.
(E)-3-Chloro-N-[(2-ethoxynaphthalen-1-yl)methylidene]aniline top
Crystal data top
C19H16ClNOZ = 2
Mr = 309.78F(000) = 324
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0084 (14) ÅCell parameters from 1666 reflections
b = 8.7315 (19) Åθ = 3.3–28.7°
c = 11.7043 (8) ŵ = 0.25 mm1
α = 76.253 (13)°T = 296 K
β = 79.794 (10)°Prism, yellow
γ = 84.337 (17)°0.3 × 0.25 × 0.15 mm
V = 781.0 (2) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
3057 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2098 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 16.0454 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
k = 106
Tmin = 0.793, Tmax = 1.000l = 1414
5144 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.0386P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H16ClNOγ = 84.337 (17)°
Mr = 309.78V = 781.0 (2) Å3
Triclinic, P1Z = 2
a = 8.0084 (14) ÅMo Kα radiation
b = 8.7315 (19) ŵ = 0.25 mm1
c = 11.7043 (8) ÅT = 296 K
α = 76.253 (13)°0.3 × 0.25 × 0.15 mm
β = 79.794 (10)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3057 independent reflections
Absorption correction: multi-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
2098 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.000Rint = 0.038
5144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
3057 reflectionsΔρmin = 0.32 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1125 (3)0.4097 (4)0.1075 (3)0.0711 (9)
C20.1030 (4)0.4953 (4)0.2214 (3)0.0742 (9)
C30.1347 (4)0.4241 (4)0.3093 (3)0.0672 (8)
C40.1766 (3)0.2695 (3)0.2822 (2)0.0556 (6)
C50.1905 (3)0.1770 (3)0.1640 (2)0.0479 (6)
C60.1568 (3)0.2514 (3)0.0751 (2)0.0568 (7)
C70.1717 (3)0.1636 (4)0.0440 (2)0.0647 (8)
C80.2206 (3)0.0141 (4)0.0766 (2)0.0622 (7)
C90.2572 (3)0.0618 (3)0.01000 (19)0.0516 (6)
C100.2407 (3)0.0173 (3)0.12978 (18)0.0463 (6)
C110.2871 (3)0.0684 (3)0.21183 (19)0.0463 (5)
C120.3167 (3)0.1180 (3)0.39163 (17)0.0443 (5)
C130.2129 (3)0.1546 (3)0.49135 (19)0.0519 (6)
H130.10210.12260.51210.062*
C140.2746 (3)0.2383 (3)0.5593 (2)0.0587 (7)
H140.20370.26500.62460.070*
C150.4401 (3)0.2833 (3)0.5319 (2)0.0570 (6)
H150.48140.33950.57810.068*
C160.5424 (3)0.2431 (3)0.43502 (19)0.0514 (6)
C170.4833 (3)0.1615 (3)0.36474 (18)0.0478 (6)
H170.55490.13550.29950.057*
C180.3509 (3)0.2904 (3)0.13867 (19)0.0616 (7)
H18A0.25300.31090.17960.074*
H18B0.43490.22460.17850.074*
C190.4234 (4)0.4418 (4)0.1407 (2)0.0731 (8)
H19A0.45750.49640.22180.110*
H19B0.52030.42020.10020.110*
H19C0.33910.50620.10150.110*
Cl10.75193 (9)0.29581 (10)0.40024 (6)0.0792 (3)
O10.3019 (2)0.2125 (2)0.01705 (13)0.0651 (5)
N10.2496 (3)0.0308 (2)0.32487 (15)0.0513 (5)
H10.100 (4)0.449 (4)0.045 (3)0.100 (11)*
H20.076 (4)0.609 (5)0.246 (3)0.106 (11)*
H30.125 (5)0.485 (5)0.387 (3)0.128 (14)*
H40.197 (3)0.222 (3)0.344 (2)0.072 (8)*
H70.154 (4)0.209 (4)0.107 (2)0.085 (9)*
H80.232 (3)0.048 (3)0.159 (2)0.054 (6)*
H110.352 (3)0.164 (3)0.1718 (19)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0488 (15)0.087 (2)0.092 (2)0.0112 (14)0.0097 (14)0.048 (2)
C20.0591 (17)0.066 (2)0.101 (3)0.0156 (14)0.0025 (15)0.0316 (19)
C30.0612 (17)0.0616 (19)0.0737 (19)0.0087 (13)0.0030 (13)0.0132 (16)
C40.0558 (15)0.0559 (17)0.0557 (15)0.0067 (11)0.0038 (11)0.0158 (13)
C50.0385 (12)0.0591 (16)0.0510 (13)0.0016 (10)0.0099 (9)0.0217 (12)
C60.0416 (13)0.0746 (19)0.0641 (16)0.0000 (11)0.0107 (10)0.0346 (14)
C70.0607 (16)0.088 (2)0.0599 (16)0.0032 (14)0.0191 (12)0.0404 (16)
C80.0665 (16)0.086 (2)0.0394 (14)0.0064 (14)0.0172 (11)0.0224 (14)
C90.0552 (14)0.0638 (17)0.0378 (12)0.0032 (11)0.0113 (9)0.0151 (11)
C100.0454 (12)0.0582 (15)0.0385 (12)0.0012 (10)0.0105 (9)0.0164 (10)
C110.0505 (13)0.0500 (14)0.0408 (12)0.0008 (10)0.0113 (9)0.0126 (11)
C120.0597 (14)0.0403 (13)0.0329 (11)0.0023 (10)0.0128 (9)0.0046 (9)
C130.0580 (15)0.0598 (16)0.0400 (12)0.0040 (11)0.0113 (10)0.0123 (11)
C140.0674 (17)0.0709 (18)0.0413 (13)0.0027 (13)0.0109 (11)0.0205 (12)
C150.0750 (17)0.0586 (16)0.0436 (13)0.0063 (12)0.0201 (11)0.0151 (12)
C160.0622 (15)0.0508 (15)0.0407 (12)0.0116 (11)0.0159 (10)0.0005 (11)
C170.0593 (14)0.0496 (14)0.0325 (11)0.0040 (10)0.0071 (9)0.0050 (10)
C180.0633 (16)0.080 (2)0.0346 (12)0.0044 (13)0.0065 (10)0.0043 (12)
C190.0744 (19)0.077 (2)0.0536 (16)0.0060 (15)0.0002 (13)0.0011 (14)
Cl10.0712 (5)0.1066 (7)0.0619 (5)0.0328 (4)0.0157 (3)0.0082 (4)
O10.0954 (14)0.0659 (13)0.0335 (9)0.0121 (10)0.0121 (8)0.0060 (8)
N10.0615 (12)0.0582 (13)0.0373 (10)0.0089 (9)0.0095 (8)0.0136 (9)
Geometric parameters (Å, º) top
C1—C21.358 (5)C11—H111.00 (2)
C1—C61.407 (4)C12—C171.385 (3)
C1—H10.90 (3)C12—C131.391 (3)
C2—C31.392 (4)C12—N11.411 (3)
C2—H21.00 (4)C13—C141.377 (3)
C3—C41.372 (4)C13—H130.9300
C3—H30.93 (4)C14—C151.381 (4)
C4—C51.418 (3)C14—H140.9300
C4—H40.96 (3)C15—C161.372 (3)
C5—C61.425 (3)C15—H150.9300
C5—C101.434 (3)C16—C171.375 (3)
C6—C71.413 (4)C16—Cl11.737 (2)
C7—C81.347 (4)C17—H170.9300
C7—H70.95 (3)C18—O11.427 (3)
C8—C91.420 (3)C18—C191.488 (4)
C8—H80.98 (2)C18—H18A0.9700
C9—O11.347 (3)C18—H18B0.9700
C9—C101.397 (3)C19—H19A0.9600
C10—C111.464 (3)C19—H19B0.9600
C11—N11.273 (3)C19—H19C0.9600
C2—C1—C6121.8 (3)C17—C12—C13119.2 (2)
C2—C1—H1124 (2)C17—C12—N1122.46 (19)
C6—C1—H1114 (2)C13—C12—N1118.3 (2)
C1—C2—C3119.3 (3)C14—C13—C12119.9 (2)
C1—C2—H2123.2 (19)C14—C13—H13120.0
C3—C2—H2117.6 (19)C12—C13—H13120.0
C4—C3—C2121.0 (3)C13—C14—C15120.9 (2)
C4—C3—H3122 (2)C13—C14—H14119.5
C2—C3—H3118 (2)C15—C14—H14119.5
C3—C4—C5121.4 (3)C16—C15—C14118.6 (2)
C3—C4—H4120.0 (16)C16—C15—H15120.7
C5—C4—H4118.6 (16)C14—C15—H15120.7
C4—C5—C6116.9 (2)C15—C16—C17121.7 (2)
C4—C5—C10123.8 (2)C15—C16—Cl1119.33 (18)
C6—C5—C10119.2 (2)C17—C16—Cl1119.01 (18)
C1—C6—C7121.9 (2)C16—C17—C12119.7 (2)
C1—C6—C5119.5 (3)C16—C17—H17120.2
C7—C6—C5118.5 (3)C12—C17—H17120.2
C8—C7—C6122.3 (2)O1—C18—C19107.9 (2)
C8—C7—H7116.0 (18)O1—C18—H18A110.1
C6—C7—H7121.6 (18)C19—C18—H18A110.1
C7—C8—C9120.2 (3)O1—C18—H18B110.1
C7—C8—H8123.2 (14)C19—C18—H18B110.1
C9—C8—H8116.6 (14)H18A—C18—H18B108.4
O1—C9—C10117.03 (19)C18—C19—H19A109.5
O1—C9—C8122.7 (2)C18—C19—H19B109.5
C10—C9—C8120.2 (3)H19A—C19—H19B109.5
C9—C10—C5119.4 (2)C18—C19—H19C109.5
C9—C10—C11116.3 (2)H19A—C19—H19C109.5
C5—C10—C11124.1 (2)H19B—C19—H19C109.5
N1—C11—C10125.3 (2)C9—O1—C18119.71 (19)
N1—C11—H11120.4 (12)C11—N1—C12118.1 (2)
C10—C11—H11114.3 (12)
C6—C1—C2—C31.2 (4)C6—C5—C10—C90.6 (3)
C1—C2—C3—C40.5 (4)C4—C5—C10—C111.4 (3)
C2—C3—C4—C50.6 (4)C6—C5—C10—C11176.68 (19)
C3—C4—C5—C60.8 (3)C9—C10—C11—N1165.2 (2)
C3—C4—C5—C10177.3 (2)C5—C10—C11—N118.7 (4)
C2—C1—C6—C7178.1 (2)C17—C12—C13—C142.4 (3)
C2—C1—C6—C50.9 (4)N1—C12—C13—C14179.4 (2)
C4—C5—C6—C10.1 (3)C12—C13—C14—C151.8 (4)
C10—C5—C6—C1178.1 (2)C13—C14—C15—C160.2 (4)
C4—C5—C6—C7179.1 (2)C14—C15—C16—C170.7 (4)
C10—C5—C6—C70.9 (3)C14—C15—C16—Cl1179.04 (19)
C1—C6—C7—C8177.3 (2)C15—C16—C17—C120.0 (4)
C5—C6—C7—C81.7 (4)Cl1—C16—C17—C12179.73 (17)
C6—C7—C8—C90.9 (4)C13—C12—C17—C161.5 (3)
C7—C8—C9—O1178.1 (2)N1—C12—C17—C16178.4 (2)
C7—C8—C9—C100.8 (4)C10—C9—O1—C18168.6 (2)
O1—C9—C10—C5178.94 (19)C8—C9—O1—C1814.0 (3)
C8—C9—C10—C51.5 (3)C19—C18—O1—C9169.7 (2)
O1—C9—C10—C114.7 (3)C10—C11—N1—C12174.6 (2)
C8—C9—C10—C11177.9 (2)C17—C12—N1—C1142.5 (3)
C4—C5—C10—C9177.4 (2)C13—C12—N1—C11140.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N10.96 (3)2.24 (3)2.915 (3)127 (2)

Experimental details

Crystal data
Chemical formulaC19H16ClNO
Mr309.78
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0084 (14), 8.7315 (19), 11.7043 (8)
α, β, γ (°)76.253 (13), 79.794 (10), 84.337 (17)
V3)781.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.3 × 0.25 × 0.15
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA and X-RED32; Stoe & Cie, 2001)
Tmin, Tmax0.793, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5144, 3057, 2098
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.180, 1.05
No. of reflections3057
No. of parameters227
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.32

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N10.96 (3)2.24 (3)2.915 (3)127 (2)
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer.

References

First citationAğar, A., Tanak, H. & Yavuz, M. (2010). Mol. Phys. 108, 1759–1772.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGüler, E. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 295-301.  Google Scholar
First citationInaç, H., Dege, N., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o361.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationÖzdemir, N., Dinçer, M., Kahveci, B., Ağar, E. & Şaşmaz, S. (2003). Acta Cryst. E59, o1223–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavlović, G., Sosa, J. M., Vikić-Topić, D. & Leban, I. (2002). Acta Cryst. E58, o317–o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds