metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-2-carboxymethyl-2-hy­droxy­butane­dioato)bis­­[di­aqua­manganese(II)]–1,2-bis­­(pyridin-4-yl)ethane–water (1/1/2)

aDepartment of Fine Chemistry, Seoul National University of Science & Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr

(Received 17 July 2012; accepted 19 July 2012; online 25 July 2012)

The asymmetric unit of the title compound, [Mn2(C6H6O7)2(H2O)4]·C12H12N2·2H2O, comprises half of a centrosymmetric dimer, half of a 1,2-bis­(pyridin-4-yl)ethane and one water mol­ecule. Two citrate ligands bridge two MnII ions, the MnII ion being coordinated by four O atoms from the citrate(2−) ligands and two water O atoms, forming a distorted octa­hedral environment. In the crystal, O—H⋯O hydrogen bonds link the centrosymmetric dimers and lattice water mol­ecules into a three-dimensional structure which is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance = 3.792 (2) Å].

Related literature

For inter­actions of metal ions with biologically active mol­ecules, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]); Stoumpos et al. (2009[Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307-317.]). For related complexes, see: Lee et al. (2008[Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.]); Park et al. (2008[Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.]); Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Song et al. (2009[Song, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495-m1496.]); Yu et al. (2008[Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881-m882.], 2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.]); Kim et al. (2011[Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3-m4.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C6H6O7)2(H2O)4]·C12H12N2·2H2O

  • Mr = 782.43

  • Triclinic, [P \overline 1]

  • a = 9.3950 (19) Å

  • b = 9.5880 (19) Å

  • c = 10.252 (2) Å

  • α = 68.90 (3)°

  • β = 67.74 (3)°

  • γ = 78.16 (3)°

  • V = 794.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.719, Tmax = 0.843

  • 4449 measured reflections

  • 3048 independent reflections

  • 2780 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.05

  • 3048 reflections

  • 239 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.96 (1) 1.91 (1) 2.869 (3) 175 (3)
O1—H1O⋯O6 0.93 (1) 1.74 (1) 2.6020 (19) 153 (2)
O1W—H1WB⋯O7i 0.96 (1) 2.02 (2) 2.903 (3) 152 (3)
O5—H5⋯N11ii 0.82 1.84 2.649 (2) 171
O8—H8A⋯O5ii 0.86 (1) 1.84 (1) 2.694 (2) 170 (2)
O8—H8B⋯O7iii 0.86 (1) 2.06 (1) 2.872 (2) 158 (2)
O8—H8B⋯O7iv 0.86 (1) 2.56 (2) 3.075 (3) 119 (2)
O9—H9A⋯O1Wiii 0.86 (1) 1.88 (1) 2.722 (3) 168 (3)
O9—H9B⋯O2v 0.86 (1) 1.97 (1) 2.829 (2) 173 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As models to examine the interaction between transition metal ions with biologically active molecules (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004; Stoumpos, et al., 2009), we have intensively studied the interaction of the transition metal ions with the various acids such as benzoic acid, citric acid, and amino acids. Therefore, we have reported a variety of structures of copper(II), cadmium(II), nickel(II), cobalt(II), and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(pyridin-4-yl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Song, et al., 2009; Yu, et al., 2008, 2009; Kim, et al., 2011). However, manganese as a metal ion source was rarely used. In this work, we have employed manganese(II) nitrate as a building block and citric acid as a ligand. We report here on the structure of new tetraaquadicitratodimanganese(II)-1,2-bis(pyridin-4-yl)ethane-dihydrate, [Mn2(H2O)4(C6H8O7)2].(C12H12N2).2(H2O). The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C24H36Mn2N2O20 , comprises half of a centrosymmetric dimer , half of a 1,2-bis(pyridin-4-yl)ethane ligand and one water molecule. Two citrate ligands bridge two MnII ions, and each MnII is coordinated by four oxygen atoms from the citrates ligand and two water oxygen atoms, forming a distorted octahedral environment. In the crystal, O—H···O hydrogen bonds link the cetrosymmetric dimer and free H2O components into a three-dimensional structure. The crystal structure is further stabilized by intermolecular π-π interactions [centroid = C11–C15/N11; centroid–centroid distance = 3.792 (2) Å symmetry code: 1-x, -y, 2-z ].

Related literature top

For interactions of metal ions with biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004); Stoumpos et al. (2009). For related complexes, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Song et al. (2009); Yu et al. (2008, 2009); Kim et al. (2011).

Experimental top

Citric acid (19.4 mg,0.1 mmol) and Mn(NO3)2.H2O(18.3 mg, 0.1 mmol) were dissolved in 4 ml H2O and carefully layered by 4 ml acetonitrile solution of 1,2-bis(pyridin-4-yl)ethane (38.0 mg, 0.2 mmol). Suitable crystals of the title compound were obtained in a month.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 Å for aromatic C atoms and 0.97 Å for methylene C atoms. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C). H atom bonded to O atom was placed in the calculated position with O—H distance of 0.82 Å for carboxylate O atom, and it was included in the refinement in riding-motion approximation with Uiso(H) = 1.5Ueq(C). The position of O—H atom of the hydroxyl group was refined with O—H = 0.93 Å and Uiso(H) = 1.5Ueq(N). The positions of O—H atoms of the coordinated water ligands were refined with O—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). The positions of O—H atoms of the free water molecule were refined with O—H = 0.96 Å and Uiso(H) = 1.2Ueq(N).

Structure description top

As models to examine the interaction between transition metal ions with biologically active molecules (Daniele, et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004; Stoumpos, et al., 2009), we have intensively studied the interaction of the transition metal ions with the various acids such as benzoic acid, citric acid, and amino acids. Therefore, we have reported a variety of structures of copper(II), cadmium(II), nickel(II), cobalt(II), and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(pyridin-4-yl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al., 2009; Song, et al., 2009; Yu, et al., 2008, 2009; Kim, et al., 2011). However, manganese as a metal ion source was rarely used. In this work, we have employed manganese(II) nitrate as a building block and citric acid as a ligand. We report here on the structure of new tetraaquadicitratodimanganese(II)-1,2-bis(pyridin-4-yl)ethane-dihydrate, [Mn2(H2O)4(C6H8O7)2].(C12H12N2).2(H2O). The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound, C24H36Mn2N2O20 , comprises half of a centrosymmetric dimer , half of a 1,2-bis(pyridin-4-yl)ethane ligand and one water molecule. Two citrate ligands bridge two MnII ions, and each MnII is coordinated by four oxygen atoms from the citrates ligand and two water oxygen atoms, forming a distorted octahedral environment. In the crystal, O—H···O hydrogen bonds link the cetrosymmetric dimer and free H2O components into a three-dimensional structure. The crystal structure is further stabilized by intermolecular π-π interactions [centroid = C11–C15/N11; centroid–centroid distance = 3.792 (2) Å symmetry code: 1-x, -y, 2-z ].

For interactions of metal ions with biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004); Stoumpos et al. (2009). For related complexes, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Song et al. (2009); Yu et al. (2008, 2009); Kim et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The labelled atoms are related with unlabelled atoms by symmetry code: [1-x, 1-y, 1-z] for diaqua- bis(citrato)di-manganese(II) fragment and [-x, -y, 2-z ] for 1,2-bis(pyridin-4-yl)ethane solvate.
Bis(µ-2-carboxymethyl-2-hydroxybutanedioato)bis[diaquamanganese(II)]– 1,2-bis(pyridin-4-yl)ethane–water (1/1/2) top
Crystal data top
[Mn2(C6H6O7)2(H2O)4]·C12H12N2·2H2OZ = 1
Mr = 782.43F(000) = 404
Triclinic, P1Dx = 1.635 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3950 (19) ÅCell parameters from 11909 reflections
b = 9.5880 (19) Åθ = 2.7–27.6°
c = 10.252 (2) ŵ = 0.88 mm1
α = 68.90 (3)°T = 293 K
β = 67.74 (3)°Block, colourless
γ = 78.16 (3)°0.40 × 0.20 × 0.20 mm
V = 794.8 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1111
Tmin = 0.719, Tmax = 0.843k = 811
4449 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.2356P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.52 e Å3
7 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn2(C6H6O7)2(H2O)4]·C12H12N2·2H2Oγ = 78.16 (3)°
Mr = 782.43V = 794.8 (3) Å3
Triclinic, P1Z = 1
a = 9.3950 (19) ÅMo Kα radiation
b = 9.5880 (19) ŵ = 0.88 mm1
c = 10.252 (2) ÅT = 293 K
α = 68.90 (3)°0.40 × 0.20 × 0.20 mm
β = 67.74 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2780 reflections with I > 2σ(I)
Tmin = 0.719, Tmax = 0.843Rint = 0.014
4449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0337 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.52 e Å3
3048 reflectionsΔρmin = 0.42 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.59630 (3)0.69243 (3)0.60317 (3)0.02605 (12)
O10.42810 (14)0.50818 (14)0.71524 (14)0.0253 (3)
H1O0.422 (3)0.467 (2)0.648 (2)0.038*
O20.38654 (15)0.79182 (15)0.54871 (15)0.0344 (3)
O30.13155 (17)0.80099 (18)0.6601 (2)0.0491 (4)
O40.47047 (16)0.73580 (18)0.81310 (15)0.0377 (3)
O50.34758 (17)0.66928 (18)1.05400 (15)0.0400 (4)
H50.42130.70421.05220.060*
O60.31979 (15)0.40470 (17)0.57203 (15)0.0355 (3)
O70.06796 (18)0.4110 (3)0.6235 (2)0.0632 (6)
O80.76699 (16)0.56448 (18)0.70557 (16)0.0389 (3)
H8A0.738 (3)0.4919 (19)0.7866 (15)0.047*
H8B0.8528 (15)0.525 (3)0.659 (2)0.047*
O90.70528 (19)0.89824 (18)0.5069 (2)0.0498 (4)
H9A0.8044 (3)0.892 (3)0.476 (3)0.060*
H9B0.672 (3)0.9906 (10)0.498 (3)0.060*
C10.27525 (19)0.5802 (2)0.76103 (19)0.0243 (4)
C20.2623 (2)0.7377 (2)0.6467 (2)0.0289 (4)
C30.2476 (2)0.5940 (2)0.9129 (2)0.0294 (4)
H3A0.14750.64780.94300.035*
H3B0.24210.49390.98360.035*
C40.3654 (2)0.6717 (2)0.9252 (2)0.0277 (4)
C50.1528 (2)0.4839 (2)0.7782 (2)0.0285 (4)
H5A0.14680.39630.86480.034*
H5B0.05350.54130.79760.034*
C60.1791 (2)0.4310 (2)0.6473 (2)0.0295 (4)
N110.4324 (2)0.18749 (19)0.9584 (2)0.0367 (4)
C110.4410 (3)0.1513 (2)0.8411 (2)0.0392 (5)
H110.52450.17760.75400.047*
C120.3275 (3)0.0755 (2)0.8483 (3)0.0401 (5)
H120.33430.05050.76640.048*
C130.2026 (2)0.0363 (2)0.9784 (3)0.0397 (5)
C140.1958 (3)0.0774 (3)1.0979 (3)0.0433 (5)
H140.11260.05441.18570.052*
C150.3128 (3)0.1524 (3)1.0851 (3)0.0408 (5)
H150.30900.17901.16520.049*
C160.0763 (3)0.0475 (3)0.9912 (3)0.0521 (6)
H16A0.06430.13761.07610.062*
H16B0.10530.07770.90320.062*
O1W0.0166 (2)0.8352 (2)0.4269 (2)0.0644 (5)
H1WA0.061 (3)0.824 (4)0.501 (3)0.077*
H1WB0.023 (4)0.7418 (18)0.410 (4)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02480 (17)0.02764 (18)0.02587 (17)0.00515 (11)0.00565 (12)0.00986 (12)
O10.0215 (6)0.0254 (6)0.0297 (6)0.0000 (5)0.0076 (5)0.0114 (5)
O20.0298 (7)0.0293 (7)0.0357 (7)0.0044 (6)0.0089 (6)0.0016 (6)
O30.0295 (8)0.0379 (9)0.0649 (11)0.0061 (6)0.0130 (7)0.0066 (8)
O40.0375 (8)0.0463 (8)0.0320 (7)0.0179 (6)0.0006 (6)0.0189 (6)
O50.0428 (8)0.0539 (9)0.0291 (7)0.0222 (7)0.0092 (6)0.0126 (7)
O60.0265 (7)0.0492 (9)0.0378 (7)0.0015 (6)0.0071 (6)0.0263 (7)
O70.0296 (8)0.1139 (16)0.0738 (12)0.0066 (9)0.0134 (8)0.0644 (12)
O80.0288 (7)0.0465 (9)0.0312 (7)0.0008 (6)0.0072 (6)0.0048 (7)
O90.0355 (8)0.0282 (8)0.0753 (12)0.0089 (7)0.0104 (8)0.0094 (8)
C10.0204 (8)0.0253 (9)0.0265 (8)0.0026 (7)0.0042 (7)0.0108 (7)
C20.0267 (9)0.0263 (9)0.0346 (10)0.0004 (7)0.0106 (8)0.0110 (8)
C30.0294 (9)0.0308 (10)0.0273 (9)0.0082 (8)0.0032 (7)0.0119 (8)
C40.0281 (9)0.0262 (9)0.0297 (9)0.0019 (7)0.0078 (7)0.0121 (8)
C50.0223 (8)0.0310 (10)0.0317 (9)0.0056 (7)0.0032 (7)0.0133 (8)
C60.0261 (9)0.0318 (10)0.0328 (9)0.0038 (7)0.0083 (7)0.0135 (8)
N110.0367 (9)0.0311 (9)0.0455 (10)0.0044 (7)0.0202 (8)0.0078 (8)
C110.0400 (11)0.0335 (11)0.0415 (11)0.0017 (9)0.0152 (9)0.0077 (9)
C120.0450 (12)0.0367 (11)0.0487 (12)0.0040 (9)0.0244 (10)0.0193 (10)
C130.0350 (11)0.0345 (11)0.0600 (14)0.0020 (9)0.0235 (10)0.0209 (10)
C140.0341 (11)0.0492 (13)0.0496 (13)0.0077 (10)0.0124 (10)0.0180 (11)
C150.0446 (12)0.0429 (12)0.0438 (12)0.0066 (10)0.0208 (10)0.0154 (10)
C160.0394 (13)0.0454 (14)0.0871 (19)0.0007 (11)0.0266 (13)0.0350 (13)
O1W0.0568 (11)0.0585 (12)0.0768 (13)0.0075 (9)0.0278 (10)0.0126 (11)
Geometric parameters (Å, º) top
Mn1—O6i2.1319 (15)C3—C41.518 (3)
Mn1—O92.1395 (17)C3—H3A0.9700
Mn1—O42.1720 (15)C3—H3B0.9700
Mn1—O82.1725 (16)C5—C61.519 (3)
Mn1—O22.1871 (15)C5—H5A0.9700
Mn1—O12.2905 (16)C5—H5B0.9700
O1—C11.440 (2)N11—C111.337 (3)
O1—H1O0.930 (2)N11—C151.341 (3)
O2—C21.275 (2)C11—C121.375 (3)
O3—C21.234 (2)C11—H110.9300
O4—C41.246 (2)C12—C131.389 (3)
O5—C41.259 (2)C12—H120.9300
O5—H50.8200C13—C141.392 (3)
O6—C61.280 (2)C13—C161.506 (3)
O6—Mn1i2.1319 (15)C14—C151.375 (3)
O7—C61.223 (2)C14—H140.9300
O8—H8A0.860 (2)C15—H150.9300
O8—H8B0.859 (2)C16—C16ii1.518 (5)
O9—H9A0.860 (2)C16—H16A0.9700
O9—H9B0.860 (2)C16—H16B0.9700
C1—C31.529 (3)O1W—H1WA0.960 (2)
C1—C51.540 (2)O1W—H1WB0.959 (2)
C1—C21.558 (3)
O6i—Mn1—O9103.57 (7)C1—C3—H3A108.0
O6i—Mn1—O4163.30 (6)C4—C3—H3B108.0
O9—Mn1—O493.05 (7)C1—C3—H3B108.0
O6i—Mn1—O893.96 (6)H3A—C3—H3B107.2
O9—Mn1—O895.36 (7)O4—C4—O5122.97 (17)
O4—Mn1—O885.97 (6)O4—C4—C3121.25 (16)
O6i—Mn1—O292.00 (6)O5—C4—C3115.76 (16)
O9—Mn1—O294.89 (6)C6—C5—C1116.30 (15)
O4—Mn1—O284.89 (6)C6—C5—H5A108.2
O8—Mn1—O2166.60 (5)C1—C5—H5A108.2
O6i—Mn1—O183.80 (6)C6—C5—H5B108.2
O9—Mn1—O1166.66 (6)C1—C5—H5B108.2
O4—Mn1—O179.57 (6)H5A—C5—H5B107.4
O8—Mn1—O195.19 (6)O7—C6—O6124.37 (18)
O2—Mn1—O173.53 (5)O7—C6—C5119.40 (17)
C1—O1—Mn1107.05 (10)O6—C6—C5116.17 (16)
C1—O1—H1O101.9 (14)C11—N11—C15121.11 (18)
Mn1—O1—H1O112.3 (14)N11—C11—C12120.5 (2)
C2—O2—Mn1114.86 (12)N11—C11—H11119.7
C4—O4—Mn1132.39 (13)C12—C11—H11119.7
C4—O5—H5109.5C11—C12—C13119.8 (2)
C6—O6—Mn1i127.51 (12)C11—C12—H12120.1
Mn1—O8—H8A118.4 (17)C13—C12—H12120.1
Mn1—O8—H8B123.3 (17)C12—C13—C14118.3 (2)
H8A—O8—H8B101 (2)C12—C13—C16121.5 (2)
Mn1—O9—H9A117.2 (19)C14—C13—C16120.2 (2)
Mn1—O9—H9B134 (2)C15—C14—C13119.5 (2)
H9A—O9—H9B109 (3)C15—C14—H14120.2
O1—C1—C3106.79 (14)C13—C14—H14120.2
O1—C1—C5110.98 (14)N11—C15—C14120.7 (2)
C3—C1—C5108.23 (15)N11—C15—H15119.7
O1—C1—C2110.46 (14)C14—C15—H15119.7
C3—C1—C2110.69 (15)C13—C16—C16ii111.7 (2)
C5—C1—C2109.64 (15)C13—C16—H16A109.3
O3—C2—O2125.25 (18)C16ii—C16—H16A109.3
O3—C2—C1116.81 (17)C13—C16—H16B109.3
O2—C2—C1117.94 (16)C16ii—C16—H16B109.3
C4—C3—C1117.19 (15)H16A—C16—H16B107.9
C4—C3—H3A108.0H1WA—O1W—H1WB111 (3)
O6i—Mn1—O1—C1128.46 (11)C5—C1—C2—O2134.76 (17)
O9—Mn1—O1—C14.0 (3)O1—C1—C3—C454.5 (2)
O4—Mn1—O1—C153.18 (11)C5—C1—C3—C4174.00 (15)
O8—Mn1—O1—C1138.10 (11)C2—C1—C3—C465.8 (2)
O2—Mn1—O1—C134.53 (10)Mn1—O4—C4—O5150.23 (16)
O6i—Mn1—O2—C2113.17 (14)Mn1—O4—C4—C331.3 (3)
O9—Mn1—O2—C2143.02 (14)C1—C3—C4—O47.7 (3)
O4—Mn1—O2—C250.38 (14)C1—C3—C4—O5173.68 (17)
O8—Mn1—O2—C23.2 (3)O1—C1—C5—C651.4 (2)
O1—Mn1—O2—C230.23 (13)C3—C1—C5—C6168.30 (16)
O6i—Mn1—O4—C43.7 (3)C2—C1—C5—C670.9 (2)
O9—Mn1—O4—C4170.83 (19)Mn1i—O6—C6—O74.3 (3)
O8—Mn1—O4—C494.01 (19)Mn1i—O6—C6—C5172.89 (12)
O2—Mn1—O4—C476.19 (19)C1—C5—C6—O7150.0 (2)
O1—Mn1—O4—C42.03 (18)C1—C5—C6—O632.6 (3)
Mn1—O1—C1—C385.32 (13)C15—N11—C11—C120.6 (3)
Mn1—O1—C1—C5156.92 (12)N11—C11—C12—C130.1 (3)
Mn1—O1—C1—C235.10 (15)C11—C12—C13—C140.8 (3)
Mn1—O2—C2—O3158.86 (17)C11—C12—C13—C16179.6 (2)
Mn1—O2—C2—C120.1 (2)C12—C13—C14—C151.2 (3)
O1—C1—C2—O3168.78 (17)C16—C13—C14—C15179.2 (2)
C3—C1—C2—O373.2 (2)C11—N11—C15—C140.2 (3)
C5—C1—C2—O346.2 (2)C13—C14—C15—N110.7 (4)
O1—C1—C2—O212.2 (2)C12—C13—C16—C16ii113.7 (3)
C3—C1—C2—O2105.91 (19)C14—C13—C16—C16ii65.8 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.96 (1)1.91 (1)2.869 (3)175 (3)
O1—H1O···O60.93 (1)1.74 (1)2.6020 (19)153 (2)
O1W—H1WB···O7iii0.96 (1)2.02 (2)2.903 (3)152 (3)
O5—H5···N11iv0.821.842.649 (2)171
O8—H8A···O5iv0.86 (1)1.84 (1)2.694 (2)170 (2)
O8—H8B···O7v0.86 (1)2.06 (1)2.872 (2)158 (2)
O8—H8B···O7i0.86 (1)2.56 (2)3.075 (3)119 (2)
O9—H9A···O1Wv0.86 (1)1.88 (1)2.722 (3)168 (3)
O9—H9B···O2vi0.86 (1)1.97 (1)2.829 (2)173 (3)
C5—H5B···O30.972.482.834 (3)101
C14—H14···O1Wvii0.932.593.357 (4)141
C15—H15···O4iv0.932.493.114 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y, z; (vi) x+1, y+2, z+1; (vii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C6H6O7)2(H2O)4]·C12H12N2·2H2O
Mr782.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3950 (19), 9.5880 (19), 10.252 (2)
α, β, γ (°)68.90 (3), 67.74 (3), 78.16 (3)
V3)794.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.719, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
4449, 3048, 2780
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.05
No. of reflections3048
No. of parameters239
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.960 (2)1.912 (4)2.869 (3)175 (3)
O1—H1O···O60.930 (2)1.741 (11)2.6020 (19)153 (2)
O1W—H1WB···O7i0.959 (2)2.021 (15)2.903 (3)152 (3)
O5—H5···N11ii0.821.842.649 (2)170.5
O8—H8A···O5ii0.860 (2)1.843 (5)2.694 (2)170 (2)
O8—H8B···O7iii0.859 (2)2.057 (10)2.872 (2)158 (2)
O8—H8B···O7iv0.859 (2)2.56 (2)3.075 (3)119 (2)
O9—H9A···O1Wiii0.860 (2)1.875 (7)2.722 (3)168 (3)
O9—H9B···O2v0.860 (2)1.973 (5)2.829 (2)173 (3)
C5—H5B···O30.972.482.834 (3)101.1
C14—H14···O1Wvi0.932.593.357 (4)140.5
C15—H15···O4ii0.932.493.114 (3)124.9
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x, y1, z+1.
 

Acknowledgements

Financial support from the Forest Science & Technology Projects (S121012L080111) and the Converging Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012001725) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationKim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, Y. J., Lee, S.-W., Jang, K. H., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1495–m1496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317.  Web of Science CSD CrossRef Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds