organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Allyl-9H-carbazole-3,6-dicarbaldehyde

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 21 June 2012; accepted 12 July 2012; online 21 July 2012)

In the title mol­ecule, C17H13NO2, the allyl group is almost perpendicular to the carbazole mean plane, with a dihedral angle of 89.0 (2)°. In the crystal, nonclassical C—H⋯O hydrogen bonds link the mol­ecules into corrugated sheets parallel to the bc plane. Weak inter­molecular ππ inter­actions are observed between the benzene rings [centroid–centroid distance = 3.874 (4) Å] from neighbouring sheets.

Related literature

For applications of carbazole derivatives, see: Hong et al. (2012[Hong, Y. P., Liao, J. Y., Fu, J. L., Kuang, D. B., Meier, H., Su, C. Y. & Cao, D. R. (2012). Dyes Pigm. 94, 481-489.]); Samanta et al. (2001[Samanta, A., Saha, S. & Fessenden, R. W. (2001). J. Phys. Chem. A, 105, 5438-5441.]); Koyuncua et al. (2011[Koyuncua, F. B., Koyuncub, S. & Ozdemira, E. (2011). Synth. Met. 161, 1005-1013.]); Zhang et al. (2010[Zhang, F. F., Gan, L. L. & Zhou, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881-1884.]). For related structures, see: Wang et al. (2008[Wang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.]); Zhao et al. (2012[Zhao, B.-H., Zhu, X.-F., Guan, S. & Li, D.-F. (2012). Acta Cryst. E68, o2026.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Monoclinic, P 21 /n

  • a = 8.4062 (8) Å

  • b = 10.3279 (10) Å

  • c = 15.2432 (19) Å

  • β = 94.958 (9)°

  • V = 1318.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.44 × 0.28 × 0.26 mm

Data collection
  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.963, Tmax = 0.978

  • 5464 measured reflections

  • 2835 independent reflections

  • 1909 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.02

  • 2835 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.58 3.489 (3) 166
C5—H5⋯O2ii 0.93 2.54 3.332 (2) 143
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The carbazole ring has a highly conjugated π system with desirable optical and charge-transport properties, and these characteristics make carozole derivatives the excellent candidates to yield materials for applications in different areas of science, such as dye-sensitized solar cell (Hong et al., 2012), electroluminescent (Samanta et al., 2001), electrochromic displays (Koyuncua et al., 2011) and antibacterial and antitumor agents (Zhang et al., 2010). These are the reasons why they have attracted our interest. Here we report the crystal structure of the title compound which consists of a carbazole skeleton with a allyl group and two formacyls (Fig. 1).

In the title molecule, the bond lengths and angles are unexceptional, and generally agree with those observed in the related compounds (Wang et al., 2008; Zhao et al., 2012). The non-H atoms of the carbazole ring and the two formacyls are approximately coplanar with r.m.s. deviation from the best fit plane of 0.006 (3) °, the allyl group is almost perpendicular to the carbazole mean plane with a dihedral angle of 89.0 (2)°. In the crystal, C2—H···O1 and C5—H···O2 non-classical H-bonds (Table 1) link the molecules into corrugated sheets parallel to bc plane (Fig. 2). Weak intermolecular ππ interactions between the benzene rings [centroid-centroid distance = 3.874 (4) Å] from the neighbouring sheets stabilize further the crystal packing.

Related literature top

For applications of carbazole derivatives, see: Hong et al. (2012); Samanta et al. (2001); Koyuncua et al. (2011); Zhang et al. (2010). For related structures, see: Wang et al. (2008); Zhao et al. (2012).

Experimental top

Phosphorus oxychloride (2.0 ml, 20 mmol) was added dropwise to the mixture of dry dimethylformamide (DMF, 3.0 ml, 40 mmol) and 9-allylcarbazole (2.07 g, 10 mmol) in chlorobenzene (20 ml) at 273 K under stirring. This solution was warmed up slowly to the room temperature in 0.5 h and stirred for another 0.5 h. After standing for 18 h at 343 K, more 3 ml DMF and 2 ml phosphorus oxychloride were added and stirred for 18 h continuously at the same temperature. After cooling, the resulting mixture was neutralized with saturated sodium bicarbonate solution until pH reached a value of 6 - 7, then the chlorobenzene was removed by water steam distillation, and the product was extracted with chloroform. After washing three times with water, the organic layer was dried over magnesium sulfate and evaporated in vacuo. The residue was separated by silica-gel column chromatography using petroleum ether-ethyl acetate (10:1) as eluting solvent and the title compound (I) was obtained (55.2% yield). Light brown crystals suitable for X-ray analysis (m.p. 429 K) grew over a period of one week when the ethyl acetate solution of I was exposed to the air at room temperature.

Refinement top

All H atoms were positioned geometrically [C—H = 0.97 Å for CH2, 0.93 Å for CH2(alkene), 0.93 Å for CH] and refined using a riding model, with Uiso = 1.2Ueq of the parent atom.

Structure description top

The carbazole ring has a highly conjugated π system with desirable optical and charge-transport properties, and these characteristics make carozole derivatives the excellent candidates to yield materials for applications in different areas of science, such as dye-sensitized solar cell (Hong et al., 2012), electroluminescent (Samanta et al., 2001), electrochromic displays (Koyuncua et al., 2011) and antibacterial and antitumor agents (Zhang et al., 2010). These are the reasons why they have attracted our interest. Here we report the crystal structure of the title compound which consists of a carbazole skeleton with a allyl group and two formacyls (Fig. 1).

In the title molecule, the bond lengths and angles are unexceptional, and generally agree with those observed in the related compounds (Wang et al., 2008; Zhao et al., 2012). The non-H atoms of the carbazole ring and the two formacyls are approximately coplanar with r.m.s. deviation from the best fit plane of 0.006 (3) °, the allyl group is almost perpendicular to the carbazole mean plane with a dihedral angle of 89.0 (2)°. In the crystal, C2—H···O1 and C5—H···O2 non-classical H-bonds (Table 1) link the molecules into corrugated sheets parallel to bc plane (Fig. 2). Weak intermolecular ππ interactions between the benzene rings [centroid-centroid distance = 3.874 (4) Å] from the neighbouring sheets stabilize further the crystal packing.

For applications of carbazole derivatives, see: Hong et al. (2012); Samanta et al. (2001); Koyuncua et al. (2011); Zhang et al. (2010). For related structures, see: Wang et al. (2008); Zhao et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing the sheet formed by the weak C—H···O hydrogen bonds (dashed lines).
9-Allyl-9H-carbazole-3,6-dicarbaldehyde top
Crystal data top
C17H13NO2Dx = 1.326 Mg m3
Mr = 263.28Melting point: 429 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4062 (8) ÅCell parameters from 1300 reflections
b = 10.3279 (10) Åθ = 3.3–29.4°
c = 15.2432 (19) ŵ = 0.09 mm1
β = 94.958 (9)°T = 293 K
V = 1318.4 (2) Å3Block, light brown
Z = 40.44 × 0.28 × 0.26 mm
F(000) = 552
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2835 independent reflections
Radiation source: fine-focus sealed tube1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 610
Tmin = 0.963, Tmax = 0.978k = 1212
5464 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2427P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2835 reflectionsΔρmax = 0.16 e Å3
182 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (4)
Crystal data top
C17H13NO2V = 1318.4 (2) Å3
Mr = 263.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4062 (8) ŵ = 0.09 mm1
b = 10.3279 (10) ÅT = 293 K
c = 15.2432 (19) Å0.44 × 0.28 × 0.26 mm
β = 94.958 (9)°
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
2835 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1909 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.978Rint = 0.024
5464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2835 reflectionsΔρmin = 0.15 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59424 (16)0.67631 (13)1.01449 (10)0.0497 (4)
C70.69533 (17)0.55686 (15)0.90689 (11)0.0421 (4)
C50.84834 (18)0.39928 (15)1.01791 (11)0.0451 (4)
H50.89260.34780.97630.054*
C10.68710 (19)0.58033 (16)1.05593 (12)0.0461 (4)
C120.59952 (19)0.66450 (16)0.92455 (12)0.0461 (4)
C90.64340 (19)0.59883 (17)0.75251 (12)0.0483 (4)
C60.75183 (18)0.50343 (15)0.99146 (11)0.0422 (4)
C40.87835 (19)0.37238 (17)1.10679 (12)0.0483 (4)
C80.71472 (19)0.52431 (16)0.82040 (11)0.0455 (4)
H80.77560.45250.80790.055*
C20.7177 (2)0.55521 (19)1.14551 (12)0.0552 (5)
H20.67530.60721.18750.066*
O11.00518 (18)0.22217 (15)1.20823 (10)0.0826 (5)
C110.5259 (2)0.73978 (17)0.85642 (13)0.0537 (5)
H110.46260.81050.86820.064*
O20.62394 (17)0.62669 (15)0.59663 (10)0.0806 (5)
C170.6687 (2)0.5651 (2)0.66156 (13)0.0587 (5)
H170.72450.48910.65290.070*
C30.8126 (2)0.45114 (19)1.16965 (12)0.0555 (5)
H30.83400.43211.22910.067*
C140.5887 (2)0.89280 (17)1.08156 (13)0.0592 (5)
H140.53160.95721.10770.071*
C100.5500 (2)0.70602 (17)0.77173 (13)0.0546 (5)
H100.50310.75560.72560.066*
C130.5018 (2)0.77164 (17)1.05870 (13)0.0573 (5)
H13A0.46820.73351.11220.069*
H13B0.40640.79231.02090.069*
C160.9756 (2)0.26040 (19)1.13370 (14)0.0601 (5)
H161.01910.21381.08930.072*
C150.7349 (3)0.9192 (2)1.06934 (15)0.0763 (7)
H15A0.79750.85821.04350.092*
H15B0.77780.99921.08640.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0457 (8)0.0427 (8)0.0613 (10)0.0001 (7)0.0086 (7)0.0127 (7)
C70.0380 (8)0.0360 (8)0.0528 (11)0.0056 (7)0.0068 (7)0.0053 (7)
C50.0409 (8)0.0425 (9)0.0527 (11)0.0054 (8)0.0089 (7)0.0038 (8)
C10.0413 (8)0.0424 (9)0.0554 (11)0.0082 (8)0.0087 (8)0.0086 (8)
C120.0397 (8)0.0384 (9)0.0605 (12)0.0079 (8)0.0065 (7)0.0081 (8)
C90.0441 (9)0.0470 (10)0.0539 (11)0.0096 (9)0.0047 (8)0.0030 (8)
C60.0382 (8)0.0398 (9)0.0490 (10)0.0058 (8)0.0069 (7)0.0058 (8)
C40.0445 (9)0.0484 (9)0.0524 (11)0.0071 (8)0.0059 (8)0.0036 (8)
C80.0432 (8)0.0403 (9)0.0541 (11)0.0025 (8)0.0098 (7)0.0031 (8)
C20.0542 (10)0.0593 (11)0.0536 (12)0.0077 (10)0.0141 (8)0.0134 (9)
O10.0964 (11)0.0819 (10)0.0701 (10)0.0061 (9)0.0108 (8)0.0289 (9)
C110.0467 (9)0.0379 (9)0.0762 (13)0.0018 (8)0.0045 (9)0.0026 (9)
O20.0836 (10)0.0966 (11)0.0625 (10)0.0006 (9)0.0108 (8)0.0236 (9)
C170.0551 (10)0.0630 (12)0.0588 (13)0.0077 (10)0.0090 (9)0.0089 (10)
C30.0556 (10)0.0632 (12)0.0481 (11)0.0115 (10)0.0070 (8)0.0009 (9)
C140.0607 (11)0.0458 (10)0.0705 (14)0.0025 (10)0.0025 (10)0.0154 (9)
C100.0494 (10)0.0454 (10)0.0681 (13)0.0051 (9)0.0000 (9)0.0081 (9)
C130.0501 (10)0.0510 (10)0.0725 (13)0.0022 (9)0.0144 (9)0.0166 (10)
C160.0610 (11)0.0576 (11)0.0627 (13)0.0049 (10)0.0105 (9)0.0114 (10)
C150.0719 (14)0.0600 (13)0.0958 (18)0.0142 (12)0.0002 (12)0.0126 (12)
Geometric parameters (Å, º) top
N1—C11.380 (2)C2—C31.370 (3)
N1—C121.381 (2)C2—H20.9300
N1—C131.455 (2)O1—C161.208 (2)
C7—C81.384 (2)C11—C101.369 (2)
C7—C121.412 (2)C11—H110.9300
C7—C61.444 (2)O2—C171.209 (2)
C5—C41.385 (2)C17—H170.9300
C5—C61.386 (2)C3—H30.9300
C5—H50.9300C14—C151.288 (3)
C1—C21.392 (2)C14—C131.475 (2)
C1—C61.409 (2)C14—H140.9300
C12—C111.398 (2)C10—H100.9300
C9—C81.384 (2)C13—H13A0.9700
C9—C101.403 (2)C13—H13B0.9700
C9—C171.463 (3)C16—H160.9300
C4—C31.406 (3)C15—H15A0.9300
C4—C161.455 (3)C15—H15B0.9300
C8—H80.9300
C1—N1—C12108.99 (13)C1—C2—H2121.2
C1—N1—C13125.26 (16)C10—C11—C12117.82 (16)
C12—N1—C13125.72 (15)C10—C11—H11121.1
C8—C7—C12119.27 (16)C12—C11—H11121.1
C8—C7—C6134.49 (15)O2—C17—C9126.2 (2)
C12—C7—C6106.23 (15)O2—C17—H17116.9
C4—C5—C6119.54 (16)C9—C17—H17116.9
C4—C5—H5120.2C2—C3—C4121.67 (17)
C6—C5—H5120.2C2—C3—H3119.2
N1—C1—C2129.20 (16)C4—C3—H3119.2
N1—C1—C6108.83 (15)C15—C14—C13127.18 (19)
C2—C1—C6121.96 (17)C15—C14—H14116.4
N1—C12—C11129.66 (16)C13—C14—H14116.4
N1—C12—C7109.06 (15)C11—C10—C9121.94 (17)
C11—C12—C7121.27 (17)C11—C10—H10119.0
C8—C9—C10119.79 (17)C9—C10—H10119.0
C8—C9—C17119.17 (17)N1—C13—C14114.22 (14)
C10—C9—C17121.04 (17)N1—C13—H13A108.7
C5—C6—C1119.09 (16)C14—C13—H13A108.7
C5—C6—C7134.05 (15)N1—C13—H13B108.7
C1—C6—C7106.87 (14)C14—C13—H13B108.7
C5—C4—C3120.10 (17)H13A—C13—H13B107.6
C5—C4—C16119.06 (17)O1—C16—C4126.1 (2)
C3—C4—C16120.82 (17)O1—C16—H16116.9
C7—C8—C9119.89 (16)C4—C16—H16116.9
C7—C8—H8120.1C14—C15—H15A120.0
C9—C8—H8120.1C14—C15—H15B120.0
C3—C2—C1117.63 (17)H15A—C15—H15B120.0
C3—C2—H2121.2
C12—N1—C1—C2179.57 (16)C6—C5—C4—C16178.05 (14)
C13—N1—C1—C22.3 (3)C12—C7—C8—C91.4 (2)
C12—N1—C1—C60.97 (17)C6—C7—C8—C9179.34 (16)
C13—N1—C1—C6177.21 (14)C10—C9—C8—C70.8 (2)
C1—N1—C12—C11179.46 (16)C17—C9—C8—C7178.34 (15)
C13—N1—C12—C112.4 (3)N1—C1—C2—C3178.68 (15)
C1—N1—C12—C71.20 (17)C6—C1—C2—C30.7 (2)
C13—N1—C12—C7176.96 (14)N1—C12—C11—C10179.46 (16)
C8—C7—C12—N1178.47 (13)C7—C12—C11—C100.2 (2)
C6—C7—C12—N10.95 (17)C8—C9—C17—O2174.17 (17)
C8—C7—C12—C110.9 (2)C10—C9—C17—O25.0 (3)
C6—C7—C12—C11179.64 (14)C1—C2—C3—C40.5 (3)
C4—C5—C6—C10.4 (2)C5—C4—C3—C20.2 (3)
C4—C5—C6—C7179.03 (16)C16—C4—C3—C2178.48 (16)
N1—C1—C6—C5179.23 (13)C12—C11—C10—C90.8 (2)
C2—C1—C6—C50.3 (2)C8—C9—C10—C110.3 (3)
N1—C1—C6—C70.36 (17)C17—C9—C10—C11179.48 (16)
C2—C1—C6—C7179.87 (14)C1—N1—C13—C1491.2 (2)
C8—C7—C6—C50.6 (3)C12—N1—C13—C1490.9 (2)
C12—C7—C6—C5179.86 (16)C15—C14—C13—N12.6 (3)
C8—C7—C6—C1178.93 (16)C5—C4—C16—O1176.38 (18)
C12—C7—C6—C10.36 (17)C3—C4—C16—O12.3 (3)
C6—C5—C4—C30.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.583.489 (3)166
C5—H5···O2ii0.932.543.332 (2)143
Symmetry codes: (i) x+3/2, y+1/2, z+5/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H13NO2
Mr263.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.4062 (8), 10.3279 (10), 15.2432 (19)
β (°) 94.958 (9)
V3)1318.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.28 × 0.26
Data collection
DiffractometerOxford Gemini S Ultra area-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.963, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
5464, 2835, 1909
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.02
No. of reflections2835
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.583.489 (3)166
C5—H5···O2ii0.932.543.332 (2)143
Symmetry codes: (i) x+3/2, y+1/2, z+5/2; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This work has been supported by the Natural Science Foundation of Guangdong Province, China (grant No. 06300581).

References

First citationHong, Y. P., Liao, J. Y., Fu, J. L., Kuang, D. B., Meier, H., Su, C. Y. & Cao, D. R. (2012). Dyes Pigm. 94, 481–489.  Web of Science CrossRef CAS Google Scholar
First citationKoyuncua, F. B., Koyuncub, S. & Ozdemira, E. (2011). Synth. Met. 161, 1005–1013.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSamanta, A., Saha, S. & Fessenden, R. W. (2001). J. Phys. Chem. A, 105, 5438–5441.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. J., Zhang, X., Zhang, B. Q., Wang, G. & Yu, X. Q. (2008). Acta Cryst. E64, o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, F. F., Gan, L. L. & Zhou, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, B.-H., Zhu, X.-F., Guan, S. & Li, D.-F. (2012). Acta Cryst. E68, o2026.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds