metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium [(1S)-1-azido-2-phenyl­eth­yl]tri­fluorido­borate

aDepartment of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037 Tromsø, Norway, and bX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: tore.lejon@uit.no

(Received 27 June 2012; accepted 2 July 2012; online 10 July 2012)

The title compound, K+·C8H8BF3N3, is a salt containing the chiral organic trifluorido­borate anion. The organic anions and potassium cations are tightly bound to each other by the coordination K—F [2.654 (3)–3.102 (3) Å] and K—N [2.951 (4)–3.338 (4) Å] inter­actions. Thus, the potassium cation adopts a nine-vertex coordination polyhedron, which can be described as a distorted monocapped tetra­gonal anti­prism. In the crystal, the organic anions and potassium cations form layers parallel to (001). Weak C—H⋯π inter­actions between neighbouring phenyl rings further stabilize the crystal.

Related literature

For the Matteson homologation, see: Matteson & Kim (2002[Matteson, D. S. & Kim, B. (2002). Org. Lett. 4, 2153-2155.]); Matteson et al. (2006[Matteson, D. S., Maliakal, D., Pharazyn, P. S. & Kim, B. (2006). Synlett, pp. 3501-3503.]). For related compounds, see: Matteson & Beedle (1987[Matteson, D. S. & Beedle, E. C. (1987). Tetrahedron Lett. 28, 4499-4502.]); Scriven & Turnbull (1988[Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297-368.]); Darses & Genet (2008[Darses, S. & Genet, J. P. (2008). Chem. Rev. 108, 288-325.]); Huang et al. (2009[Huang, J., Macdonald, S. J. F., Cooper, A. W. J., Fisher, G. & Harrity, J. P. A. (2009). Tetrahedron Lett. 50, 5539-5541.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C8H8BF3N3

  • Mr = 253.08

  • Orthorhombic, P 21 21 21

  • a = 6.052 (2) Å

  • b = 6.959 (2) Å

  • c = 25.120 (8) Å

  • V = 1057.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.995

  • 10239 measured reflections

  • 2075 independent reflections

  • 1203 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.081

  • S = 0.98

  • 2075 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 828 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Weak C—H⋯π inter­actions between neighbouring phenyl rings (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯C3i 0.95 2.93 3.528 (6) 122
C4—H4⋯C4i 0.95 2.98 3.823 (6) 149
C4—H4⋯C5i 0.95 3.08 3.974 (7) 158
C4—H4⋯C6i 0.95 3.13 3.841 (7) 133
C4—H4⋯C7i 0.95 3.09 3.556 (7) 112
C4—H4⋯C8i 0.95 2.98 3.382 (6) 107
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The target compound was synthesized as part of our studies on the Matteson homologation and the synthesis of chiral amino boronates. It was accomplished using potassium or caesium bifluorides which have been shown to be useful reagents in the deprotection of boronic esters (Matteson & Kim, 2002; Matteson et al., 2006). However, organotrifluoridoborates are not only used for preservation and release of the boronic acid moiety, but also find application in different synthetic transformations (Darses & Genet, 2008). Moreover, organic azides have a rich chemistry and could prove important as building blocks in click chemistry (Scriven & Turnbull, 1988; Huang et al., 2009).

The title compound - potassium [(1S)-1-azido-2-phenyl-ethyl]-trifluoro-boranuide, C8H8BF3KN3 (I), is a salt containing the chiral organic trifluoridoborate anion (Figure 1). It crystallizes in the orthorhombic space group P212121, with one crystallographically independent formula unit within the lattice cell. The asymmetrical C1 carbon atom has the S-configuration. The organic anions and potassium cations are tightly bound to each other by the coordination K—F [K1—F1 2.648 (3), K1—F1i 2.673 (3), K1—F2i 2.933 (3), K1—F2ii 2.685 (3), K1—F3ii 3.102 (3) and K1—F3iii 2.654 (3) Å] and K—N [K1—N1 2.951 (4), K1—N3iii 3.338 (4) and K1—N3iv 3.020 (4) Å] interactions [symmetry codes: (i) -x, y + 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x + 1, y + 1/2, -z + 3/2; (iv) x - 1, y + 1, z]. Thus, the potassium cation adopts the 9-vertex coordination polyhedron, which can be described as a distorted monocapped tetragonal antiprism (Figure 2).

In the crystal, the organic anions and potassium cations form the layers parallel to (001) (Figure 3). Moreover, the crystal packing is stabilized by the additional C4—H4···π interactions between the phenyl rings, with C4···Centroidv distance of 3.418 (3) Å [symmetry code: (v) x - 1/2, -y + 1/2, -z + 2].

Related literature top

For the Matteson homologation, see: Matteson & Kim (2002); Matteson et al. (2006). For related compounds, see: Matteson & Beedle (1987); Scriven & Turnbull (1988); Darses & Genet (2008); Huang et al. (2009).

Experimental top

The initial 2-[(1S)-1-azido-2-phenyl-ethyl]-hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborole was obtained according to the procedure described earlier (Matteson & Beedle, 1987). A saturated water solution of potassium bifluoride (2.4 g, 30 mmol) was added drop wise to a solution of 2-[(1S)-1-azido-2-phenyl-ethyl]-hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborole (1.0 g, 3 mmol) in methanol (25 ml) at room temperature (Figure 4). The reaction mixture was stirred for 24 h. Then, the solvents were evaporated under reduced pressure (Attention! Hydrogen fluoride). The residue was washed with pentane and re-crystallized from hot methanol to give I as colourless crystals. Yield is 0.6 g (77%). 1H NMR (400 MHz, D2O, 293 K): δ = 7.57–7.12 (m, 5H), 2.94 (dd, J = 14.2, 3.3 Hz, 1H), 2.84 (m, 1H), 2.71 (m, 1H). 13C NMR (101 MHz, D2O, 293 K): δ = 141.68, 128.84, 128.51, 126.10, 35.55. 19F NMR (376 MHz, D2O, 293 K): δ = -145.40 (s).

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Structure description top

The target compound was synthesized as part of our studies on the Matteson homologation and the synthesis of chiral amino boronates. It was accomplished using potassium or caesium bifluorides which have been shown to be useful reagents in the deprotection of boronic esters (Matteson & Kim, 2002; Matteson et al., 2006). However, organotrifluoridoborates are not only used for preservation and release of the boronic acid moiety, but also find application in different synthetic transformations (Darses & Genet, 2008). Moreover, organic azides have a rich chemistry and could prove important as building blocks in click chemistry (Scriven & Turnbull, 1988; Huang et al., 2009).

The title compound - potassium [(1S)-1-azido-2-phenyl-ethyl]-trifluoro-boranuide, C8H8BF3KN3 (I), is a salt containing the chiral organic trifluoridoborate anion (Figure 1). It crystallizes in the orthorhombic space group P212121, with one crystallographically independent formula unit within the lattice cell. The asymmetrical C1 carbon atom has the S-configuration. The organic anions and potassium cations are tightly bound to each other by the coordination K—F [K1—F1 2.648 (3), K1—F1i 2.673 (3), K1—F2i 2.933 (3), K1—F2ii 2.685 (3), K1—F3ii 3.102 (3) and K1—F3iii 2.654 (3) Å] and K—N [K1—N1 2.951 (4), K1—N3iii 3.338 (4) and K1—N3iv 3.020 (4) Å] interactions [symmetry codes: (i) -x, y + 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x + 1, y + 1/2, -z + 3/2; (iv) x - 1, y + 1, z]. Thus, the potassium cation adopts the 9-vertex coordination polyhedron, which can be described as a distorted monocapped tetragonal antiprism (Figure 2).

In the crystal, the organic anions and potassium cations form the layers parallel to (001) (Figure 3). Moreover, the crystal packing is stabilized by the additional C4—H4···π interactions between the phenyl rings, with C4···Centroidv distance of 3.418 (3) Å [symmetry code: (v) x - 1/2, -y + 1/2, -z + 2].

For the Matteson homologation, see: Matteson & Kim (2002); Matteson et al. (2006). For related compounds, see: Matteson & Beedle (1987); Scriven & Turnbull (1988); Darses & Genet (2008); Huang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Independent part of the crystal structure of I. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The coordination environment of potassium cation [symmetry codes: (i) -x, y + 1/2, -z + 3/2; (ii) x, y + 1, z; (iii) -x + 1, y + 1/2, -z + 3/2; (iv) x - 1, y + 1, z].
[Figure 3] Fig. 3. The layers in I parallel to (001).
[Figure 4] Fig. 4. Reaction of 2-[(1S)-1-azido-2-phenyl-ethyl]-hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborole with potassium bifluoride.
Potassium [(1S)-1-azido-2-phenylethyl]trifluoridoborate top
Crystal data top
K+·C8H8BF3N3F(000) = 512
Mr = 253.08Dx = 1.589 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 546 reflections
a = 6.052 (2) Åθ = 3.2–18.5°
b = 6.959 (2) ŵ = 0.52 mm1
c = 25.120 (8) ÅT = 100 K
V = 1057.9 (6) Å3Plate, colourless
Z = 40.15 × 0.10 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2075 independent reflections
Radiation source: fine-focus sealed tube1203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.926, Tmax = 0.995k = 88
10239 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2075 reflectionsΔρmax = 0.33 e Å3
145 parametersΔρmin = 0.40 e Å3
0 restraintsAbsolute structure: Flack (1983), 828 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
K+·C8H8BF3N3V = 1057.9 (6) Å3
Mr = 253.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.052 (2) ŵ = 0.52 mm1
b = 6.959 (2) ÅT = 100 K
c = 25.120 (8) Å0.15 × 0.10 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1203 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.995Rint = 0.060
10239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.33 e Å3
S = 0.98Δρmin = 0.40 e Å3
2075 reflectionsAbsolute structure: Flack (1983), 828 Friedel pairs
145 parametersAbsolute structure parameter: 0.00 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.19352 (19)0.92096 (16)0.77175 (5)0.0230 (3)
N10.4374 (7)0.6992 (6)0.85281 (14)0.0243 (11)
N20.6381 (7)0.7035 (6)0.84172 (15)0.0224 (11)
N30.8199 (7)0.7267 (7)0.83058 (14)0.0296 (11)
C10.3397 (8)0.5009 (6)0.86075 (17)0.0187 (12)
H10.19920.51940.88110.022*
C20.4850 (8)0.3714 (6)0.89471 (16)0.0206 (13)
H2A0.41560.24270.89650.025*
H2B0.62940.35640.87660.025*
C30.5268 (8)0.4407 (6)0.95126 (18)0.0167 (11)
C40.3648 (8)0.4141 (7)0.99013 (17)0.0215 (12)
H40.22860.35460.98110.026*
C50.4030 (8)0.4748 (7)1.04210 (19)0.0227 (13)
H50.29220.45751.06840.027*
C60.6016 (8)0.5603 (7)1.05561 (19)0.0231 (12)
H60.62730.59981.09130.028*
C70.7647 (8)0.5888 (7)1.01697 (18)0.0236 (12)
H70.90060.64891.02600.028*
C80.7250 (8)0.5283 (6)0.96550 (18)0.0219 (13)
H80.83560.54690.93920.026*
F10.1942 (4)0.5408 (3)0.76697 (10)0.0241 (7)
F20.0979 (4)0.2693 (4)0.81157 (9)0.0250 (7)
F30.4491 (4)0.3061 (4)0.78057 (9)0.0270 (7)
B10.2716 (9)0.4042 (8)0.8047 (2)0.0171 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0246 (6)0.0215 (6)0.0227 (6)0.0008 (6)0.0020 (6)0.0005 (6)
N10.021 (3)0.028 (3)0.024 (3)0.002 (2)0.002 (2)0.000 (2)
N20.031 (3)0.017 (3)0.019 (2)0.002 (2)0.000 (2)0.001 (2)
N30.025 (3)0.036 (3)0.029 (2)0.002 (3)0.006 (2)0.003 (2)
C10.017 (3)0.017 (3)0.022 (3)0.004 (2)0.001 (2)0.004 (2)
C20.021 (3)0.023 (3)0.017 (3)0.000 (2)0.001 (2)0.003 (2)
C30.023 (3)0.006 (3)0.021 (3)0.001 (2)0.005 (2)0.002 (2)
C40.025 (3)0.017 (3)0.023 (3)0.006 (3)0.001 (2)0.000 (3)
C50.025 (3)0.025 (3)0.019 (3)0.001 (3)0.001 (3)0.002 (2)
C60.030 (3)0.017 (3)0.022 (3)0.001 (3)0.004 (3)0.001 (3)
C70.020 (3)0.019 (3)0.031 (3)0.001 (3)0.007 (2)0.000 (3)
C80.021 (3)0.018 (3)0.027 (3)0.003 (2)0.000 (3)0.000 (2)
F10.0326 (17)0.0189 (15)0.0209 (16)0.0006 (15)0.0068 (16)0.0024 (13)
F20.0288 (16)0.0240 (17)0.0221 (15)0.0069 (15)0.0006 (12)0.0005 (15)
F30.0234 (16)0.0341 (18)0.0234 (16)0.0050 (14)0.0006 (13)0.0092 (15)
B10.017 (3)0.013 (3)0.021 (3)0.000 (3)0.000 (2)0.001 (3)
Geometric parameters (Å, º) top
K1—F12.648 (3)C2—H2A0.9900
K1—F3i2.654 (3)C2—H2B0.9900
K1—F1ii2.673 (3)C3—C81.392 (6)
K1—F2iii2.685 (3)C3—C41.396 (6)
K1—F2ii2.933 (3)C4—C51.391 (6)
K1—N12.951 (4)C4—H40.9500
K1—N3iv3.020 (4)C5—C61.383 (6)
K1—F3iii3.102 (3)C5—H50.9500
K1—N3i3.338 (4)C6—C71.399 (6)
N1—N21.246 (5)C6—H60.9500
N1—C11.515 (6)C7—C81.381 (6)
N2—N31.147 (5)C7—H70.9500
C1—C21.521 (6)C8—H80.9500
C1—B11.614 (7)F1—B11.422 (6)
C1—H11.0000F2—B11.420 (6)
C2—C31.521 (6)F3—B11.410 (6)
F1—K1—F3i71.05 (9)N1—C1—B1111.4 (4)
F1—K1—F1ii107.25 (7)C2—C1—B1112.9 (4)
F3i—K1—F1ii128.98 (8)N1—C1—H1106.4
F1—K1—F2iii156.77 (10)C2—C1—H1106.4
F3i—K1—F2iii129.20 (9)B1—C1—H1106.4
F1ii—K1—F2iii70.42 (8)C3—C2—C1115.6 (4)
F1—K1—F2ii66.99 (8)C3—C2—H2A108.4
F3i—K1—F2ii91.61 (8)C1—C2—H2A108.4
F1ii—K1—F2ii47.55 (7)C3—C2—H2B108.4
F2iii—K1—F2ii117.46 (7)C1—C2—H2B108.4
F1—K1—N160.53 (10)H2A—C2—H2B107.4
F3i—K1—N177.08 (10)C8—C3—C4118.9 (4)
F1ii—K1—N1148.57 (10)C8—C3—C2121.4 (4)
F2iii—K1—N1108.83 (10)C4—C3—C2119.7 (4)
F2ii—K1—N1127.22 (11)C5—C4—C3120.0 (4)
F1—K1—N3iv64.93 (11)C5—C4—H4120.0
F3i—K1—N3iv135.84 (11)C3—C4—H4120.0
F1ii—K1—N3iv70.16 (10)C6—C5—C4120.3 (5)
F2iii—K1—N3iv93.46 (11)C6—C5—H5119.8
F2ii—K1—N3iv74.82 (10)C4—C5—H5119.8
N1—K1—N3iv78.62 (11)C5—C6—C7120.3 (4)
F1—K1—F3iii149.93 (9)C5—C6—H6119.9
F3i—K1—F3iii83.65 (6)C7—C6—H6119.9
F1ii—K1—F3iii101.20 (8)C8—C7—C6118.9 (4)
F2iii—K1—F3iii45.66 (7)C8—C7—H7120.5
F2ii—K1—F3iii131.42 (8)C6—C7—H7120.5
N1—K1—F3iii98.81 (10)C7—C8—C3121.6 (5)
N3iv—K1—F3iii136.46 (10)C7—C8—H8119.2
F1—K1—N3i127.01 (11)C3—C8—H8119.2
F3i—K1—N3i80.25 (10)B1—F1—K1129.7 (3)
F1ii—K1—N3i59.97 (9)B1—F1—K1vii108.9 (3)
F2iii—K1—N3i72.92 (9)K1—F1—K1vii109.06 (9)
F2ii—K1—N3i70.44 (10)B1—F2—K1viii113.1 (3)
N1—K1—N3i151.29 (11)B1—F2—K1vii96.9 (3)
N3iv—K1—N3i130.08 (7)K1viii—F2—K1vii100.87 (8)
F3iii—K1—N3i61.08 (9)B1—F3—K1vi133.5 (3)
N2—N1—C1115.6 (4)B1—F3—K1viii94.0 (3)
N2—N1—K1108.7 (3)K1vi—F3—K1viii129.14 (10)
C1—N1—K1111.8 (3)F3—B1—F2107.2 (4)
N3—N2—N1173.1 (5)F3—B1—F1106.7 (4)
N2—N3—K1v154.2 (4)F2—B1—F1106.2 (4)
N2—N3—K1vi94.3 (3)F3—B1—C1112.5 (4)
K1v—N3—K1vi85.80 (9)F2—B1—C1111.0 (4)
N1—C1—C2112.8 (4)F1—B1—C1112.7 (4)
F1—K1—N1—N2101.9 (3)N1—K1—F1—B19.8 (4)
F3i—K1—N1—N226.6 (3)N3iv—K1—F1—B181.1 (4)
F1ii—K1—N1—N2176.1 (3)F3iii—K1—F1—B161.1 (4)
F2iii—K1—N1—N2100.8 (3)N3i—K1—F1—B1156.4 (3)
F2ii—K1—N1—N2108.6 (3)F3i—K1—F1—K1vii127.74 (10)
N3iv—K1—N1—N2169.4 (3)F1ii—K1—F1—K1vii1.60 (5)
F3iii—K1—N1—N254.8 (3)F2iii—K1—F1—K1vii78.8 (3)
N3i—K1—N1—N212.2 (5)F2ii—K1—F1—K1vii27.48 (8)
F1—K1—N1—C126.9 (3)N1—K1—F1—K1vii146.70 (13)
F3i—K1—N1—C1102.3 (3)N3iv—K1—F1—K1vii55.89 (11)
F1ii—K1—N1—C147.3 (4)F3iii—K1—F1—K1vii161.99 (14)
F2iii—K1—N1—C1130.4 (3)N3i—K1—F1—K1vii66.63 (15)
F2ii—K1—N1—C120.2 (3)K1vi—F3—B1—F2161.9 (2)
N3iv—K1—N1—C140.6 (3)K1viii—F3—B1—F22.3 (4)
F3iii—K1—N1—C1176.4 (3)K1vi—F3—B1—F148.4 (5)
N3i—K1—N1—C1141.0 (3)K1viii—F3—B1—F1111.2 (3)
N2—N1—C1—C244.7 (5)K1vi—F3—B1—C175.8 (5)
K1—N1—C1—C2169.7 (3)K1viii—F3—B1—C1124.6 (4)
N2—N1—C1—B183.6 (5)K1viii—F2—B1—F32.8 (4)
K1—N1—C1—B141.5 (4)K1vii—F2—B1—F3107.8 (3)
N1—C1—C2—C361.4 (5)K1viii—F2—B1—F1111.0 (3)
B1—C1—C2—C3171.2 (4)K1vii—F2—B1—F16.1 (4)
C1—C2—C3—C8101.8 (5)K1viii—F2—B1—C1126.1 (3)
C1—C2—C3—C479.0 (5)K1vii—F2—B1—C1128.9 (3)
C8—C3—C4—C50.0 (7)K1—F1—B1—F3115.8 (3)
C2—C3—C4—C5179.2 (4)K1vii—F1—B1—F3107.2 (3)
C3—C4—C5—C60.5 (7)K1—F1—B1—F2130.0 (3)
C4—C5—C6—C70.9 (7)K1vii—F1—B1—F27.0 (4)
C5—C6—C7—C80.8 (7)K1—F1—B1—C18.2 (6)
C6—C7—C8—C30.3 (7)K1vii—F1—B1—C1128.8 (3)
C4—C3—C8—C70.1 (7)N1—C1—B1—F386.5 (5)
C2—C3—C8—C7179.0 (4)C2—C1—B1—F341.7 (6)
F3i—K1—F1—B195.3 (4)N1—C1—B1—F2153.3 (4)
F1ii—K1—F1—B1138.5 (4)C2—C1—B1—F278.5 (5)
F2iii—K1—F1—B158.1 (5)N1—C1—B1—F134.3 (6)
F2ii—K1—F1—B1164.4 (4)C2—C1—B1—F1162.5 (4)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y1/2, z+3/2; (vii) x, y1/2, z+3/2; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···C3ix0.952.933.528 (6)122
C4—H4···C4ix0.952.983.823 (6)149
C4—H4···C5ix0.953.083.974 (7)158
C4—H4···C6ix0.953.133.841 (7)133
C4—H4···C7ix0.953.093.556 (7)112
C4—H4···C8ix0.952.983.382 (6)107
Symmetry code: (ix) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaK+·C8H8BF3N3
Mr253.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.052 (2), 6.959 (2), 25.120 (8)
V3)1057.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.15 × 0.10 × 0.01
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.926, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
10239, 2075, 1203
Rint0.060
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.081, 0.98
No. of reflections2075
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.40
Absolute structureFlack (1983), 828 Friedel pairs
Absolute structure parameter0.00 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···C3i0.952.933.528 (6)122
C4—H4···C4i0.952.983.823 (6)149
C4—H4···C5i0.953.083.974 (7)158
C4—H4···C6i0.953.133.841 (7)133
C4—H4···C7i0.953.093.556 (7)112
C4—H4···C8i0.952.983.382 (6)107
Symmetry code: (i) x1/2, y+1/2, z+2.
 

Acknowledgements

Support from the Norwegian Science Council and the FORNY program is gratefully acknowledged.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarses, S. & Genet, J. P. (2008). Chem. Rev. 108, 288–325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, J., Macdonald, S. J. F., Cooper, A. W. J., Fisher, G. & Harrity, J. P. A. (2009). Tetrahedron Lett. 50, 5539–5541.  Web of Science CrossRef CAS Google Scholar
First citationMatteson, D. S. & Beedle, E. C. (1987). Tetrahedron Lett. 28, 4499–4502.  CrossRef CAS Web of Science Google Scholar
First citationMatteson, D. S. & Kim, B. (2002). Org. Lett. 4, 2153–2155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatteson, D. S., Maliakal, D., Pharazyn, P. S. & Kim, B. (2006). Synlett, pp. 3501–3503.  Web of Science CrossRef Google Scholar
First citationScriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds