organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Diiso­propyl­phen­­oxy)-4-phenyl­phthalazine

aCollege of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, School Library, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: tongbihai@163.com

(Received 12 July 2012; accepted 23 July 2012; online 28 July 2012)

In the title mol­ecule, C26H26N2O, the phenyl and phen­oxy rings form dihedral angles of 54.66 (7) and 84.83 (6)°, respectively, with the phthalazine mean plane. The crystal packing exhibits weak C—H⋯π inter­actions.

Related literature

For details of the synthesis, see: Tong et al. (2008[Tong, B. H., Mei, Q. B., Wang, S. J., Meng, Y. Z. & Wang, B. (2008). J. Mater. Chem. 18, 1636-1639.], 2012[Tong, B. H., Qiang, J. Y., Mei, Q. B., Wang, H. S. & Zhang, Q. F. (2012). Inorg. Chem. Commun. 17, 113-115.]). For related structures, see: Dilek et al. (2004[Dilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157-x158.]); Rajnikant et al. (2006[Rajnikant, Dinesh, Kamni & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615-618.]); Sakthivel et al. (2011[Sakthivel, K., Srinivasan, K. & Natarajan, S. (2011). Acta Cryst. E67, o3497.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O

  • Mr = 382.49

  • Monoclinic, P 21 /c

  • a = 14.079 (10) Å

  • b = 8.369 (6) Å

  • c = 19.244 (13) Å

  • β = 109.104 (9)°

  • V = 2143 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 273 K

  • 0.31 × 0.29 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.990

  • 9404 measured reflections

  • 3596 independent reflections

  • 2028 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.165

  • S = 0.90

  • 3596 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg 0.93 2.77 3.624 (2) 154

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phthalazine is a well known heterocyclic system which is widely used in coordination chemistry and pharmaceutical chemistry. Recently, we have reported the direct synthesis of a series of highly efficient tris-cyclometalated iridium(III) complexes using phenylphthalazine derivatives as ligands (Tong et al., 2008). However, the 2, 6-dimethylphenoxyl groups of phenylphthalazine derivatives hydrolyzate easily in the coordination procedure (Tong et al., 2012). In order to suppress the hydrolyzation process, the title molecule was synthesized as the ligand of cyclometalated iridium(III) complexes.

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 2.00 (6)°. A phenyl and a phenoxyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 54.66 (7) and 84.83 (6)°, respectively. The molecular dimensions in the title compound are in agreement with the corresponding molecular dimensions reported for closely related compounds (Dilek et al., 2004; Rajnikant et al., 2006; Sakthivel et al., 2011). In the crystal, the molecules are held together via the weak C—H···π interactions (Table 1).

Related literature top

For details of the synthesis, see: Tong et al. (2008, 2012). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006); Sakthivel et al. (2011).

Experimental top

The title compound was obtained in 89% yield by refluxing 1-chloro-4- phenylphthalazine (4.8 g, 20 mmol), 2,6-diisopropylphenol (2.5 g, 20 mmol) and potassium carbonate (2.8 g, 20 mmol) in N,N-dimethylformamide (50 ml) at 383 K for 5 h under nitrogen atmosphere. The crystals suitable for crystallographic study were grow from ethanol by slow evaporation at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C).

Structure description top

Phthalazine is a well known heterocyclic system which is widely used in coordination chemistry and pharmaceutical chemistry. Recently, we have reported the direct synthesis of a series of highly efficient tris-cyclometalated iridium(III) complexes using phenylphthalazine derivatives as ligands (Tong et al., 2008). However, the 2, 6-dimethylphenoxyl groups of phenylphthalazine derivatives hydrolyzate easily in the coordination procedure (Tong et al., 2012). In order to suppress the hydrolyzation process, the title molecule was synthesized as the ligand of cyclometalated iridium(III) complexes.

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 2.00 (6)°. A phenyl and a phenoxyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 54.66 (7) and 84.83 (6)°, respectively. The molecular dimensions in the title compound are in agreement with the corresponding molecular dimensions reported for closely related compounds (Dilek et al., 2004; Rajnikant et al., 2006; Sakthivel et al., 2011). In the crystal, the molecules are held together via the weak C—H···π interactions (Table 1).

For details of the synthesis, see: Tong et al. (2008, 2012). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006); Sakthivel et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic labeling and 30% probability displacement ellipsoids. H atoms omitted for clarity.
1-(2,6-Diisopropylphenoxy)-4-phenylphthalazine top
Crystal data top
C26H26N2OF(000) = 816
Mr = 382.49Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1750 reflections
a = 14.079 (10) Åθ = 2.7–22.8°
b = 8.369 (6) ŵ = 0.07 mm1
c = 19.244 (13) ÅT = 273 K
β = 109.104 (9)°Block, colourless
V = 2143 (3) Å30.31 × 0.29 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3596 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1612
Tmin = 0.978, Tmax = 0.990k = 99
9404 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3596 reflectionsΔρmax = 0.16 e Å3
267 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (16)
Crystal data top
C26H26N2OV = 2143 (3) Å3
Mr = 382.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.079 (10) ŵ = 0.07 mm1
b = 8.369 (6) ÅT = 273 K
c = 19.244 (13) Å0.31 × 0.29 × 0.14 mm
β = 109.104 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3596 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2028 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.990Rint = 0.036
9404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.90Δρmax = 0.16 e Å3
3596 reflectionsΔρmin = 0.15 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34098 (10)0.39831 (14)0.11904 (7)0.0538 (4)
N10.21896 (13)0.28031 (18)0.02336 (10)0.0589 (5)
N20.13859 (13)0.29298 (18)0.04103 (10)0.0586 (5)
C10.05395 (18)0.5056 (3)0.26486 (13)0.0669 (7)
H10.04930.55830.30610.080*
C20.02474 (16)0.5119 (2)0.19941 (12)0.0585 (6)
H20.08210.57020.19670.070*
C30.01925 (14)0.4318 (2)0.13752 (12)0.0476 (5)
C40.06648 (16)0.3467 (3)0.14229 (13)0.0598 (6)
H40.07110.29200.10150.072*
C50.14592 (17)0.3428 (3)0.20810 (15)0.0703 (7)
H50.20410.28660.21100.084*
C60.13891 (19)0.4214 (3)0.26883 (15)0.0707 (8)
H60.19210.41750.31290.085*
C70.11235 (17)0.7351 (2)0.05706 (12)0.0573 (6)
H70.05540.74650.09820.069*
C80.16031 (18)0.8674 (2)0.02080 (13)0.0628 (7)
H80.13610.96840.03790.075*
C90.24466 (17)0.8534 (2)0.04120 (12)0.0605 (6)
H90.27760.94480.06450.073*
C100.27973 (15)0.7063 (2)0.06820 (12)0.0519 (6)
H100.33530.69730.11060.062*
C110.23150 (14)0.5686 (2)0.03174 (11)0.0443 (5)
C120.14875 (14)0.5808 (2)0.03242 (11)0.0452 (5)
C130.10543 (15)0.4343 (2)0.06729 (11)0.0480 (5)
C140.26126 (14)0.4091 (2)0.05578 (11)0.0471 (5)
C150.38186 (15)0.2456 (2)0.14320 (11)0.0474 (5)
C160.46379 (16)0.1981 (2)0.12297 (12)0.0560 (6)
C170.50782 (17)0.0537 (3)0.15145 (14)0.0668 (7)
H170.56220.01660.13870.080*
C180.47331 (18)0.0360 (3)0.19788 (13)0.0666 (7)
H180.50390.13280.21600.080*
C190.39335 (17)0.0175 (2)0.21759 (12)0.0612 (6)
H190.37070.04370.24940.073*
C200.34555 (15)0.1613 (2)0.19098 (11)0.0517 (6)
C210.5026 (2)0.2971 (3)0.07181 (16)0.0760 (8)
H210.48350.40840.07590.091*
C220.4544 (2)0.2473 (4)0.00709 (16)0.1097 (11)
H22A0.47310.13920.01320.165*
H22B0.47670.31660.03840.165*
H22C0.38260.25430.02000.165*
C230.6165 (2)0.2921 (4)0.09240 (17)0.1019 (10)
H23A0.63680.18910.08040.153*
H23B0.64650.31090.14420.153*
H23C0.63820.37310.06560.153*
C240.25826 (17)0.2197 (3)0.21399 (14)0.0654 (7)
H240.24860.33340.20160.079*
C250.16130 (18)0.1335 (4)0.17186 (16)0.0937 (9)
H25A0.16940.02090.18150.141*
H25B0.14590.15240.12010.141*
H25C0.10750.17290.18740.141*
C260.2778 (2)0.2039 (3)0.29605 (15)0.0852 (8)
H26A0.28160.09290.30920.128*
H26B0.22400.25350.30850.128*
H26C0.34010.25550.32240.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0598 (9)0.0348 (7)0.0532 (9)0.0037 (6)0.0002 (7)0.0011 (6)
N10.0646 (11)0.0363 (9)0.0595 (12)0.0007 (8)0.0018 (9)0.0003 (8)
N20.0653 (11)0.0372 (9)0.0587 (12)0.0017 (8)0.0003 (9)0.0007 (8)
C10.0774 (16)0.0641 (14)0.0521 (15)0.0064 (13)0.0114 (12)0.0010 (11)
C20.0643 (13)0.0506 (12)0.0563 (15)0.0018 (10)0.0138 (11)0.0013 (11)
C30.0519 (12)0.0370 (10)0.0505 (14)0.0041 (9)0.0121 (10)0.0036 (9)
C40.0614 (14)0.0543 (13)0.0605 (15)0.0038 (11)0.0155 (12)0.0015 (11)
C50.0563 (14)0.0654 (15)0.0784 (19)0.0089 (12)0.0072 (13)0.0137 (13)
C60.0710 (16)0.0656 (15)0.0588 (17)0.0075 (13)0.0016 (13)0.0094 (12)
C70.0664 (13)0.0404 (11)0.0563 (14)0.0078 (10)0.0081 (11)0.0039 (10)
C80.0878 (16)0.0348 (10)0.0587 (15)0.0072 (11)0.0145 (13)0.0019 (10)
C90.0790 (16)0.0352 (11)0.0620 (15)0.0052 (10)0.0157 (13)0.0046 (10)
C100.0599 (13)0.0419 (11)0.0499 (13)0.0044 (9)0.0127 (10)0.0039 (9)
C110.0489 (11)0.0346 (10)0.0489 (13)0.0002 (8)0.0150 (10)0.0007 (8)
C120.0499 (11)0.0380 (10)0.0471 (13)0.0017 (9)0.0151 (10)0.0000 (8)
C130.0511 (11)0.0382 (10)0.0516 (14)0.0016 (9)0.0124 (10)0.0012 (9)
C140.0503 (12)0.0363 (10)0.0499 (13)0.0009 (9)0.0100 (10)0.0011 (9)
C150.0531 (12)0.0356 (10)0.0431 (12)0.0004 (9)0.0015 (10)0.0001 (8)
C160.0579 (13)0.0504 (12)0.0547 (14)0.0041 (11)0.0115 (11)0.0023 (10)
C170.0661 (14)0.0667 (14)0.0645 (16)0.0174 (12)0.0169 (12)0.0064 (12)
C180.0709 (15)0.0567 (13)0.0616 (16)0.0210 (12)0.0072 (13)0.0125 (11)
C190.0735 (15)0.0501 (12)0.0541 (15)0.0063 (11)0.0128 (12)0.0103 (10)
C200.0558 (12)0.0428 (11)0.0486 (13)0.0022 (9)0.0062 (10)0.0012 (9)
C210.0927 (19)0.0602 (14)0.086 (2)0.0058 (13)0.0440 (16)0.0081 (13)
C220.117 (2)0.139 (3)0.069 (2)0.004 (2)0.0252 (18)0.0288 (19)
C230.095 (2)0.127 (3)0.095 (2)0.0228 (19)0.0463 (18)0.0186 (19)
C240.0721 (15)0.0506 (12)0.0747 (18)0.0056 (11)0.0255 (13)0.0055 (11)
C250.0593 (16)0.127 (2)0.092 (2)0.0058 (16)0.0200 (15)0.0062 (18)
C260.0941 (19)0.0898 (19)0.074 (2)0.0024 (15)0.0309 (16)0.0057 (15)
Geometric parameters (Å, º) top
O1—C141.362 (2)C15—C201.383 (3)
O1—C151.416 (2)C15—C161.391 (3)
N1—C141.289 (2)C16—C171.386 (3)
N1—N21.382 (2)C16—C211.519 (3)
N2—C131.311 (2)C17—C181.372 (3)
C1—C61.369 (3)C17—H170.9300
C1—C21.380 (3)C18—C191.375 (3)
C1—H10.9300C18—H180.9300
C2—C31.390 (3)C19—C201.392 (3)
C2—H20.9300C19—H190.9300
C3—C41.379 (3)C20—C241.517 (3)
C3—C131.492 (3)C21—C221.505 (4)
C4—C51.389 (3)C21—C231.522 (4)
C4—H40.9300C21—H210.9800
C5—C61.373 (4)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—H60.9300C22—H22C0.9600
C7—C81.364 (3)C23—H23A0.9600
C7—C121.412 (3)C23—H23B0.9600
C7—H70.9300C23—H23C0.9600
C8—C91.386 (3)C24—C261.518 (4)
C8—H80.9300C24—C251.522 (3)
C9—C101.364 (3)C24—H240.9800
C9—H90.9300C25—H25A0.9600
C10—C111.403 (3)C25—H25B0.9600
C10—H100.9300C25—H25C0.9600
C11—C121.397 (3)C26—H26A0.9600
C11—C141.430 (3)C26—H26B0.9600
C12—C131.435 (3)C26—H26C0.9600
C14—O1—C15118.74 (13)C15—C16—C21122.17 (19)
C14—N1—N2118.87 (15)C18—C17—C16121.8 (2)
C13—N2—N1119.92 (15)C18—C17—H17119.1
C6—C1—C2119.8 (2)C16—C17—H17119.1
C6—C1—H1120.1C17—C18—C19119.9 (2)
C2—C1—H1120.1C17—C18—H18120.1
C1—C2—C3120.7 (2)C19—C18—H18120.1
C1—C2—H2119.6C18—C19—C20121.4 (2)
C3—C2—H2119.6C18—C19—H19119.3
C4—C3—C2119.00 (19)C20—C19—H19119.3
C4—C3—C13120.14 (19)C15—C20—C19116.5 (2)
C2—C3—C13120.84 (19)C15—C20—C24122.73 (18)
C3—C4—C5119.9 (2)C19—C20—C24120.8 (2)
C3—C4—H4120.0C22—C21—C16111.3 (2)
C5—C4—H4120.0C22—C21—C23110.1 (2)
C6—C5—C4120.3 (2)C16—C21—C23112.9 (2)
C6—C5—H5119.9C22—C21—H21107.4
C4—C5—H5119.9C16—C21—H21107.4
C1—C6—C5120.3 (2)C23—C21—H21107.4
C1—C6—H6119.9C21—C22—H22A109.5
C5—C6—H6119.9C21—C22—H22B109.5
C8—C7—C12120.4 (2)H22A—C22—H22B109.5
C8—C7—H7119.8C21—C22—H22C109.5
C12—C7—H7119.8H22A—C22—H22C109.5
C7—C8—C9120.84 (19)H22B—C22—H22C109.5
C7—C8—H8119.6C21—C23—H23A109.5
C9—C8—H8119.6C21—C23—H23B109.5
C10—C9—C8120.39 (18)H23A—C23—H23B109.5
C10—C9—H9119.8C21—C23—H23C109.5
C8—C9—H9119.8H23A—C23—H23C109.5
C9—C10—C11119.66 (19)H23B—C23—H23C109.5
C9—C10—H10120.2C20—C24—C26112.8 (2)
C11—C10—H10120.2C20—C24—C25111.3 (2)
C12—C11—C10120.60 (16)C26—C24—C25109.8 (2)
C12—C11—C14115.19 (16)C20—C24—H24107.6
C10—C11—C14124.21 (18)C26—C24—H24107.6
C11—C12—C7118.01 (16)C25—C24—H24107.6
C11—C12—C13117.06 (16)C24—C25—H25A109.5
C7—C12—C13124.90 (18)C24—C25—H25B109.5
N2—C13—C12123.21 (18)H25A—C25—H25B109.5
N2—C13—C3114.73 (16)C24—C25—H25C109.5
C12—C13—C3122.06 (16)H25A—C25—H25C109.5
N1—C14—O1119.47 (16)H25B—C25—H25C109.5
N1—C14—C11125.72 (18)C24—C26—H26A109.5
O1—C14—C11114.81 (16)C24—C26—H26B109.5
C20—C15—C16124.11 (18)H26A—C26—H26B109.5
C20—C15—O1118.68 (18)C24—C26—H26C109.5
C16—C15—O1116.85 (18)H26A—C26—H26C109.5
C17—C16—C15116.3 (2)H26B—C26—H26C109.5
C17—C16—C21121.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg0.932.773.624 (2)154

Experimental details

Crystal data
Chemical formulaC26H26N2O
Mr382.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.079 (10), 8.369 (6), 19.244 (13)
β (°) 109.104 (9)
V3)2143 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.31 × 0.29 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.978, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9404, 3596, 2028
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.165, 0.90
No. of reflections3596
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg0.932.773.624 (2)154
 

Acknowledgements

The authors thank the National Natural Science Foundation of China for financial support (grant No. 50903001).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157–x158.  CAS Google Scholar
First citationRajnikant, Dinesh, Kamni & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615–618.  Google Scholar
First citationSakthivel, K., Srinivasan, K. & Natarajan, S. (2011). Acta Cryst. E67, o3497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, B. H., Mei, Q. B., Wang, S. J., Meng, Y. Z. & Wang, B. (2008). J. Mater. Chem. 18, 1636–1639.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, B. H., Qiang, J. Y., Mei, Q. B., Wang, H. S. & Zhang, Q. F. (2012). Inorg. Chem. Commun. 17, 113–115.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds