organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Melaminium hydrogen malonate

aInstitute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

(Received 17 July 2012; accepted 20 July 2012; online 25 July 2012)

The melaminium (2,4,6-triamino-1,3,5-triazin-1-ium) cation in the title compound, C3H7N6+·C3H3O4, is essentially planar, with a r.m.s. deviation of the non-H atoms of 0.0085 Å. Extensive hydrogen bonding of the types N—H⋯N and N—H⋯O between cations and cations and between cations and hydrogen malonate (2-carb­oxy­ethano­ate) anions leads to the formation of supra­molecular layers parallel to (1-2-1). An intra­molecular O—H⋯O hydrogen bond in the single deprotonated malonate anion also occurs.

Related literature

For the use of melaminium salts in polymer science, see: Weinstabl et al. (2001[Weinstabl, A., Binder, W. H., Gruber, H. & Kantner, W. (2001). J. Appl. Polym. Sci. 81, 1654-1661.]). For structural studies of melaminium salts of purely organic carb­oxy­lic acids, see: Choi et al. (2004[Choi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295-o296.]); Janczak & Perpétuo (2001[Janczak, J. & Perpétuo, G. J. (2001). Acta Cryst. C57, 123-125.], 2002[Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339-o341.], 2003[Janczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349-o352.], 2004[Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211-o214.]); Karle et al. (2003[Karle, I., Gilardi, R. D., Rao, C. C., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.]); Marchewka et al. (2003[Marchewka, M. K., Baran, J., Pietrasko, A., Haznar, A., Debrus, S. & Ratajczak, H. (2003). Solid State Sci. 5, 509-518.]); Perpétuo & Janczak (2002[Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112-o114.], 2005[Perpétuo, G. J. & Janczak, J. (2005). Acta Cryst. E61, o287-o289.]); Perpétuo et al. (2005[Perpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818-o1820.]); Prior et al. (2009[Prior, T. J., Goch, O. & Kift, R. L. (2009). Acta Cryst. E65, o2133.]); Su et al. (2009[Su, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933.]); Udaya Lakshmi et al. (2006[Udaya Lakshmi, K., Thamotharan, S., Ramamurthi, K. & Varghese, B. (2006). Acta Cryst. E62, o455-o457.]); Froschauer & Weil (2012[Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555.]); Zhang et al. (2004[Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462-o463.], 2005[Zhang, X.-L., Chen, X.-M. & Ng, S. W. (2005). Acta Cryst. E61, o156-o157.]).

[Scheme 1]

Experimental

Crystal data
  • C3H7N6+·C3H3O4

  • Mr = 230.20

  • Triclinic, [P \overline 1]

  • a = 5.1996 (15) Å

  • b = 7.499 (2) Å

  • c = 13.119 (4) Å

  • α = 100.206 (5)°

  • β = 98.014 (5)°

  • γ = 106.534 (5)°

  • V = 472.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.12 mm

Data collection
  • Siemens SMART CCD diffractometer

  • 4807 measured reflections

  • 2354 independent reflections

  • 1190 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 0.89

  • 2354 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 1.82 2.6785 (19) 176
N4—H2⋯O2ii 0.86 2.17 2.8350 (19) 134
N4—H3⋯N2ii 0.86 2.14 2.994 (2) 171
N5—H4⋯O2 0.86 2.14 2.998 (2) 172
N5—H5⋯N3iii 0.86 2.23 3.091 (2) 178
N6—H6⋯O1iii 0.86 2.15 2.8592 (19) 140
N6—H7⋯O3i 0.86 2.02 2.880 (2) 173
O1—H10⋯O3 1.00 (2) 1.47 (2) 2.450 (2) 165 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Melamine is a weak base with three different pKa values which decline with decreasing protonation status. The first (pKa = 5.10) is slightly above the pKa of acetic acid (4.75), the second and third (0.20 and -2.10, respectively) are significantly below the most organic carboxylic acids. Since the difference between the pKa values during an acid-base reaction corresponds to the free energy of reaction, stable products can only be expected for acids with a pKa value significantly below 5.10, whereas organic acids with acidities in the range of 5.10 or above can be expected to yield mixtures of unreacted melamine, free acid and melaminium salts. Depending on the acid valency and strengths, mono and disalts can be formed by simply heating the components or their respective solutions.

In the past, organic melamine salts were tested as potential melamine substitutes for melamine urea formaldehyde (MUF) resins (Weinstabl et al., 2001). Up to now, the following melaminium salts of purely organic carboxylic acids, viz only those with C, H and N contents, have been crystallographically characterized: melaminium acetate acetic acid solvate monohydrate (Perpétuo & Janczak, 2002), melaminium 2,4,6-trihydroxybenzoate dihydrate (Prior et al.., 2009), melaminium benzoate dihydrate (Perpétuo & Janczak, 2005), melaminium formate (Perpétuo et al., 2005), melaminium glutarate monohydrate (Janczak & Perpétuo, 2002), melaminium levulinate monohydrate (Choi et al., 2004), melaminium maleate monohydrate (Janczak & Perpétuo, 2004), bis(melaminium) DL-malate tetrahydrate (Janczak & Perpétuo, 2003), melamin(1,3)ium dihydrogenmellitate dihydrate (Karle et al.., 2003), melaminium bis(hydrogen oxalate) (Zhang et al., 2005), melaminium hydrogenphtalate (Janczak & Perpétuo, 2001), bis(melaminium) succinate succinic acid solvate dihydrate (Froschauer & Weil, 2012), melamin(1,3)ium tartrate monohydrate (Marchewka et al., 2003), bis(melaminium) tartrate 2.5-hydrate (Udaya Lakshmi et al., 2006), bis(melaminium) tartrate dihydrate (Su et al., 2009), and bis(melaminium) terephtalate dihydrate (Zhang et al., 2004).

The pKa values of 2.82 and 5.69 for the first and second deprotonation step of malonic acid led to a single deprotonated anion in the title compound, melaminium hydrogen malonate, C3H7N6+.C3H3O4-. The protonation of melamine takes place at one of the triazine N ring atoms (Fig. 1) as observed for all other single protonated melaminium salts listed above.

Both the melaminium cation and the hydrogenmalonate anions are essentially planar with r.m.s. deviations of 0.0085 Å (cation) and 0.061 Å (anion) for the non-H atoms. The angle between the two least-squares planes is 6.61 (8) °, making it possible to set up supramolecular layers held together by strong to medium hydrogen bonds of the type N—H···O and N—H···.N between cations and cations and cations and anions (Fig. 2; Table 1). The motif for the hydrogen-bonded assembly of two melaminium cations is observed in many other melamine or melaminium structures as reported previously by Prior et al. (2009). In the crystal, the supramolecular layers are arranged parallel to (121) (Fig. 3) with an interplanar distance of approximately 2.96 Å.

Related literature top

For the use of melaminium salts in polymer science, see: Weinstabl et al. (2001). For structural studies of melaminium salts of purely organic carboxylic acids, see: Choi et al. (2004); Janczak & Perpétuo (2001, 2002, 2003, 2004); Karle et al. (2003); Marchewka et al. (2003); Perpétuo & Janczak (2002, 2005); Perpétuo et al. (2005); Prior et al. (2009); Su et al. (2009); Udaya Lakshmi et al. (2006); Froschauer & Weil (2012); Zhang et al. (2004, 2005).

Experimental top

39.6 mmol melamine was dissolved under refluxing conditions in 150 ml distilled water. The stoichiometric quantity (1:1) of malonic acid was added within five minutes. The mixture was then refluxed for 30 minutes and then cooled to room temperature. The precipitate formed on cooling was separeted by filtration and washed with cold methanol. The crystalline product was then dried in vacuo at 303–313 K. Single crystal growth was accomplished by dissolution of 1 g of the crystalline product under refluxing conditions in an aqueous methanol solution (2:1 v/v) to get a saturated solution. Then the solution was slowly cooled down to room temperature. Suitable crystals were obtained by slow evaporation of the solvents during five days. The crystals were washed with methanol and dried in vacuo at room temperature giving analytical pure samples. CHN analysis (found/calc.): C (31.19/31.30), H (4.01/4.37), N (36.26/36.50). NMR: (solution, DMSO) chemical shift [p.p.m.]: 1H 11.04 (s, 2H), 6.97 (s, 6H), 3.01 (s, 2H); 13C 170.45, 163.38, 40.95.

Refinement top

The proton at the triazine ring of the melaminium cation was clearly discernible from a difference Fourier map (like all other H atoms). For refinement, the H atoms attached to C or N atoms were set in calculated positions and treated as riding on their parent atoms with C—H = 0.97 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). The remaining proton of the carboxyl group was refined freely.

Structure description top

Melamine is a weak base with three different pKa values which decline with decreasing protonation status. The first (pKa = 5.10) is slightly above the pKa of acetic acid (4.75), the second and third (0.20 and -2.10, respectively) are significantly below the most organic carboxylic acids. Since the difference between the pKa values during an acid-base reaction corresponds to the free energy of reaction, stable products can only be expected for acids with a pKa value significantly below 5.10, whereas organic acids with acidities in the range of 5.10 or above can be expected to yield mixtures of unreacted melamine, free acid and melaminium salts. Depending on the acid valency and strengths, mono and disalts can be formed by simply heating the components or their respective solutions.

In the past, organic melamine salts were tested as potential melamine substitutes for melamine urea formaldehyde (MUF) resins (Weinstabl et al., 2001). Up to now, the following melaminium salts of purely organic carboxylic acids, viz only those with C, H and N contents, have been crystallographically characterized: melaminium acetate acetic acid solvate monohydrate (Perpétuo & Janczak, 2002), melaminium 2,4,6-trihydroxybenzoate dihydrate (Prior et al.., 2009), melaminium benzoate dihydrate (Perpétuo & Janczak, 2005), melaminium formate (Perpétuo et al., 2005), melaminium glutarate monohydrate (Janczak & Perpétuo, 2002), melaminium levulinate monohydrate (Choi et al., 2004), melaminium maleate monohydrate (Janczak & Perpétuo, 2004), bis(melaminium) DL-malate tetrahydrate (Janczak & Perpétuo, 2003), melamin(1,3)ium dihydrogenmellitate dihydrate (Karle et al.., 2003), melaminium bis(hydrogen oxalate) (Zhang et al., 2005), melaminium hydrogenphtalate (Janczak & Perpétuo, 2001), bis(melaminium) succinate succinic acid solvate dihydrate (Froschauer & Weil, 2012), melamin(1,3)ium tartrate monohydrate (Marchewka et al., 2003), bis(melaminium) tartrate 2.5-hydrate (Udaya Lakshmi et al., 2006), bis(melaminium) tartrate dihydrate (Su et al., 2009), and bis(melaminium) terephtalate dihydrate (Zhang et al., 2004).

The pKa values of 2.82 and 5.69 for the first and second deprotonation step of malonic acid led to a single deprotonated anion in the title compound, melaminium hydrogen malonate, C3H7N6+.C3H3O4-. The protonation of melamine takes place at one of the triazine N ring atoms (Fig. 1) as observed for all other single protonated melaminium salts listed above.

Both the melaminium cation and the hydrogenmalonate anions are essentially planar with r.m.s. deviations of 0.0085 Å (cation) and 0.061 Å (anion) for the non-H atoms. The angle between the two least-squares planes is 6.61 (8) °, making it possible to set up supramolecular layers held together by strong to medium hydrogen bonds of the type N—H···O and N—H···.N between cations and cations and cations and anions (Fig. 2; Table 1). The motif for the hydrogen-bonded assembly of two melaminium cations is observed in many other melamine or melaminium structures as reported previously by Prior et al. (2009). In the crystal, the supramolecular layers are arranged parallel to (121) (Fig. 3) with an interplanar distance of approximately 2.96 Å.

For the use of melaminium salts in polymer science, see: Weinstabl et al. (2001). For structural studies of melaminium salts of purely organic carboxylic acids, see: Choi et al. (2004); Janczak & Perpétuo (2001, 2002, 2003, 2004); Karle et al. (2003); Marchewka et al. (2003); Perpétuo & Janczak (2002, 2005); Perpétuo et al. (2005); Prior et al. (2009); Su et al. (2009); Udaya Lakshmi et al. (2006); Froschauer & Weil (2012); Zhang et al. (2004, 2005).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular components of the title compound with displacement parameters drawn at the 90% probability level. H atoms are displayed as spheres with an arbirtary radius.
[Figure 2] Fig. 2. Supramolecular layer built up through hydrogen bonding interactions (dashed lines) between cations and cations and between cations and anions.
[Figure 3] Fig. 3. The assembly of supramolecular layers in the crystal parallel to (121).
2,4,6-Triamino-1,3,5-triazin-1-ium 2-carboxyethanoate top
Crystal data top
C3H7N6+·C3H3O4Z = 2
Mr = 230.20F(000) = 240
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1996 (15) ÅCell parameters from 950 reflections
b = 7.499 (2) Åθ = 2.9–25.6°
c = 13.119 (4) ŵ = 0.14 mm1
α = 100.206 (5)°T = 293 K
β = 98.014 (5)°Irregular, colourless
γ = 106.534 (5)°0.23 × 0.18 × 0.12 mm
V = 472.7 (2) Å3
Data collection top
Siemens SMART CCD
diffractometer
1190 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 28.5°, θmin = 2.9°
ω scansh = 66
4807 measured reflectionsk = 1010
2354 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2354 reflectionsΔρmax = 0.23 e Å3
150 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.058 (10)
Crystal data top
C3H7N6+·C3H3O4γ = 106.534 (5)°
Mr = 230.20V = 472.7 (2) Å3
Triclinic, P1Z = 2
a = 5.1996 (15) ÅMo Kα radiation
b = 7.499 (2) ŵ = 0.14 mm1
c = 13.119 (4) ÅT = 293 K
α = 100.206 (5)°0.23 × 0.18 × 0.12 mm
β = 98.014 (5)°
Data collection top
Siemens SMART CCD
diffractometer
1190 reflections with I > 2σ(I)
4807 measured reflectionsRint = 0.078
2354 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.23 e Å3
2354 reflectionsΔρmin = 0.23 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H101.131 (4)0.844 (3)0.9236 (18)0.068 (7)*
O11.0512 (3)0.8287 (2)0.84785 (11)0.0556 (5)
N10.2299 (3)0.7179 (2)0.29981 (11)0.0321 (4)
H10.11590.69500.24120.038*
N20.3254 (3)0.6667 (2)0.47008 (11)0.0313 (4)
O20.6330 (3)0.6777 (2)0.75923 (10)0.0490 (4)
N30.6677 (3)0.8814 (2)0.40391 (11)0.0322 (4)
N40.0943 (3)0.5082 (2)0.36078 (11)0.0385 (4)
H30.14740.45050.40890.046*
H20.20360.48580.30110.046*
C10.1545 (3)0.6307 (2)0.37848 (13)0.0294 (4)
C30.4874 (3)0.8417 (2)0.31493 (14)0.0311 (4)
C50.7245 (4)0.6701 (3)0.94033 (14)0.0429 (5)
H80.63230.53330.92290.051*
H90.59200.73110.96050.051*
C20.5776 (3)0.7909 (2)0.47902 (13)0.0288 (4)
N60.5500 (3)0.9219 (2)0.23620 (11)0.0452 (5)
H60.71041.00150.24230.054*
H70.43040.89460.17870.054*
N50.7554 (3)0.8292 (2)0.56860 (11)0.0387 (4)
H40.70900.77560.61900.046*
H50.91750.90780.57660.046*
C60.7986 (3)0.7256 (3)0.84124 (14)0.0337 (5)
O40.8950 (3)0.6463 (2)1.11234 (10)0.0585 (5)
C40.9489 (4)0.7151 (3)1.03630 (15)0.0394 (5)
O31.1859 (2)0.8250 (2)1.03379 (10)0.0528 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0362 (8)0.0771 (11)0.0396 (9)0.0090 (7)0.0065 (7)0.0240 (8)
N10.0280 (8)0.0396 (9)0.0232 (8)0.0021 (7)0.0000 (6)0.0118 (7)
N20.0264 (8)0.0365 (9)0.0258 (8)0.0008 (7)0.0023 (6)0.0110 (7)
O20.0391 (8)0.0689 (10)0.0324 (8)0.0037 (7)0.0010 (6)0.0218 (7)
N30.0280 (8)0.0395 (9)0.0275 (8)0.0042 (6)0.0043 (6)0.0153 (7)
N40.0290 (8)0.0480 (10)0.0293 (9)0.0025 (7)0.0005 (7)0.0152 (7)
C10.0274 (9)0.0309 (10)0.0273 (10)0.0048 (8)0.0050 (8)0.0075 (8)
C30.0284 (10)0.0324 (10)0.0307 (11)0.0055 (8)0.0061 (8)0.0098 (8)
C50.0295 (10)0.0590 (13)0.0356 (11)0.0024 (9)0.0034 (8)0.0208 (10)
C20.0253 (9)0.0306 (10)0.0281 (10)0.0065 (8)0.0017 (8)0.0077 (8)
N60.0338 (9)0.0611 (11)0.0309 (9)0.0052 (8)0.0003 (7)0.0232 (8)
N50.0307 (8)0.0493 (10)0.0286 (9)0.0019 (7)0.0002 (7)0.0183 (7)
C60.0288 (10)0.0397 (11)0.0312 (11)0.0064 (8)0.0044 (9)0.0132 (9)
O40.0481 (9)0.0789 (11)0.0345 (8)0.0047 (8)0.0037 (7)0.0274 (8)
C40.0344 (11)0.0459 (12)0.0330 (11)0.0065 (9)0.0033 (8)0.0100 (9)
O30.0327 (8)0.0700 (10)0.0404 (9)0.0041 (7)0.0012 (6)0.0140 (7)
Geometric parameters (Å, º) top
O1—C61.303 (2)C3—N61.318 (2)
O1—H100.99 (2)C5—C61.501 (2)
N1—C31.359 (2)C5—C41.509 (3)
N1—C11.361 (2)C5—H80.9700
N1—H10.8600C5—H90.9700
N2—C11.326 (2)C2—N51.321 (2)
N2—C21.351 (2)N6—H60.8600
O2—C61.207 (2)N6—H70.8600
N3—C31.320 (2)N5—H40.8600
N3—C21.355 (2)N5—H50.8600
N4—C11.318 (2)O4—C41.232 (2)
N4—H30.8600C4—O31.281 (2)
N4—H20.8600O3—H101.47 (2)
C6—O1—H10101.7 (12)C4—C5—H9107.6
C3—N1—C1119.22 (15)H8—C5—H9107.0
C3—N1—H1120.4N5—C2—N2117.92 (16)
C1—N1—H1120.4N5—C2—N3116.12 (15)
C1—N2—C2115.93 (15)N2—C2—N3125.96 (15)
C3—N3—C2115.32 (15)C3—N6—H6120.0
C1—N4—H3120.0C3—N6—H7120.0
C1—N4—H2120.0H6—N6—H7120.0
H3—N4—H2120.0C2—N5—H4120.0
N4—C1—N2120.72 (15)C2—N5—H5120.0
N4—C1—N1117.93 (15)H4—N5—H5120.0
N2—C1—N1121.35 (15)O2—C6—O1121.35 (17)
N6—C3—N3121.03 (15)O2—C6—C5121.91 (16)
N6—C3—N1116.77 (15)O1—C6—C5116.74 (16)
N3—C3—N1122.21 (15)O4—C4—O3123.80 (18)
C6—C5—C4118.87 (15)O4—C4—C5118.79 (17)
C6—C5—H8107.6O3—C4—C5117.40 (17)
C4—C5—H8107.6C4—O3—H1098.9 (8)
C6—C5—H9107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.822.6785 (19)176
N4—H2···O2ii0.862.172.8350 (19)134
N4—H3···N2ii0.862.142.994 (2)171
N5—H4···O20.862.142.998 (2)172
N5—H5···N3iii0.862.233.091 (2)178
N6—H6···O1iii0.862.152.8592 (19)140
N6—H7···O3i0.862.022.880 (2)173
O1—H10···O31.00 (2)1.47 (2)2.450 (2)165 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC3H7N6+·C3H3O4
Mr230.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.1996 (15), 7.499 (2), 13.119 (4)
α, β, γ (°)100.206 (5), 98.014 (5), 106.534 (5)
V3)472.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.23 × 0.18 × 0.12
Data collection
DiffractometerSiemens SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4807, 2354, 1190
Rint0.078
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 0.89
No. of reflections2354
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ATOMS (Dowty, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.822.6785 (19)175.9
N4—H2···O2ii0.862.172.8350 (19)133.6
N4—H3···N2ii0.862.142.994 (2)170.6
N5—H4···O20.862.142.998 (2)171.9
N5—H5···N3iii0.862.233.091 (2)178.2
N6—H6···O1iii0.862.152.8592 (19)140.2
N6—H7···O3i0.862.022.880 (2)172.9
O1—H10···O31.00 (2)1.47 (2)2.450 (2)165 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.

References

First citationChoi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295–o296.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFroschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2555.  CSD CrossRef IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001). Acta Cryst. C57, 123–125.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339–o341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarle, I., Gilardi, R. D., Rao, C. C., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarchewka, M. K., Baran, J., Pietrasko, A., Haznar, A., Debrus, S. & Ratajczak, H. (2003). Solid State Sci. 5, 509–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112–o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2005). Acta Cryst. E61, o287–o289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818–o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrior, T. J., Goch, O. & Kift, R. L. (2009). Acta Cryst. E65, o2133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSu, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUdaya Lakshmi, K., Thamotharan, S., Ramamurthi, K. & Varghese, B. (2006). Acta Cryst. E62, o455–o457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeinstabl, A., Binder, W. H., Gruber, H. & Kantner, W. (2001). J. Appl. Polym. Sci. 81, 1654–1661.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-L., Chen, X.-M. & Ng, S. W. (2005). Acta Cryst. E61, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462–o463.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds