organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(4-Bromo­phen­yl)-3-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 July 2012; accepted 24 July 2012; online 28 July 2012)

In the title mol­ecule, C17H14BrFN2O, the benzene rings form dihedral angles of 6.58 (6) and 85.31 (6)° with the mean plane of the 4,5-dihydro-1H-pyrazole ring (r.m.s. deviation = 0.0231 Å). The latter ring is planar with a maximum deviation of 0.032 (1) Å The dihedral angle between the benzene rings is 78.75 (6)°. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into corrugated layers parallel to the ab plane.

Related literature

For our work on the synthesis of pyrazoline derivatives, see: Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487-493.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.], 2012[Fun, H.-K., Quah, C. K., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o975.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrFN2O

  • Mr = 361.21

  • Monoclinic, P 21 /c

  • a = 6.0973 (5) Å

  • b = 12.3079 (11) Å

  • c = 20.1432 (16) Å

  • β = 96.700 (1)°

  • V = 1501.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 100 K

  • 0.35 × 0.29 × 0.12 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.449, Tmax = 0.735

  • 20560 measured reflections

  • 5389 independent reflections

  • 4508 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.04

  • 5389 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.95 2.45 3.2772 (15) 146
C14—H14A⋯F1ii 0.95 2.50 3.3806 (15) 153
C15—H15A⋯O1iii 0.95 2.45 3.3800 (15) 166
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2011), the title compound is prepared and its crystal structure is reported.

In the title compound (Fig. 1), the two benzene rings (C1–C6 & C10–C15) form dihedral angles of 6.58 (6) and 85.31 (6)°, respectively, with the mean plane of 4,5-dihydro-1H-pyrazole ring (N1/N2/C7–C9, r.m.s. deviation = 0.0231 Å). The dihedral angle between the two benzene rings is 78.75 (6)°. Bond lengths and angles are comparable with those in the related structures (Fun et al., 2010, 2012).

In the crystal packing (Fig. 2), intermolecular C—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into corrugated layers parallel to the ab plane.

Related literature top

For our work on the synthesis of pyrazoline derivatives, see: Samshuddin et al. (2011). For related structures, see: Fun et al. (2010, 2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and hydrazine hydrate (0.48 ml, 0.01 mol) in 30 ml acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from acetone by slow evaporation method. M.p.: 372–374 K.

Refinement top

All the H atoms were located geometrically and were refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 to 1.00 Å]. A rotating group model was applied to the methyl group. In the final refinement, ten outliners were omitted, namely - 2 0 8, 1 4 2, 1 0 4, -2 7 5, -4 2 9, -3 4 9, -1 8 1, -2 2 4, 1 8 0 and 1 1 4 , respectively.

Structure description top

In continuation of our work on the synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2011), the title compound is prepared and its crystal structure is reported.

In the title compound (Fig. 1), the two benzene rings (C1–C6 & C10–C15) form dihedral angles of 6.58 (6) and 85.31 (6)°, respectively, with the mean plane of 4,5-dihydro-1H-pyrazole ring (N1/N2/C7–C9, r.m.s. deviation = 0.0231 Å). The dihedral angle between the two benzene rings is 78.75 (6)°. Bond lengths and angles are comparable with those in the related structures (Fun et al., 2010, 2012).

In the crystal packing (Fig. 2), intermolecular C—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into corrugated layers parallel to the ab plane.

For our work on the synthesis of pyrazoline derivatives, see: Samshuddin et al. (2011). For related structures, see: Fun et al. (2010, 2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-[5-(4-Bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol- 1-yl]ethanone top
Crystal data top
C17H14BrFN2OF(000) = 728
Mr = 361.21Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7995 reflections
a = 6.0973 (5) Åθ = 3.3–32.4°
b = 12.3079 (11) ŵ = 2.75 mm1
c = 20.1432 (16) ÅT = 100 K
β = 96.700 (1)°Block, colourless
V = 1501.3 (2) Å30.35 × 0.29 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5389 independent reflections
Radiation source: fine-focus sealed tube4508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 32.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.449, Tmax = 0.735k = 1818
20560 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.4844P]
where P = (Fo2 + 2Fc2)/3
5389 reflections(Δ/σ)max = 0.002
200 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H14BrFN2OV = 1501.3 (2) Å3
Mr = 361.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0973 (5) ŵ = 2.75 mm1
b = 12.3079 (11) ÅT = 100 K
c = 20.1432 (16) Å0.35 × 0.29 × 0.12 mm
β = 96.700 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4508 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.735Rint = 0.026
20560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
5389 reflectionsΔρmin = 0.25 e Å3
200 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04341 (2)0.791941 (11)0.448115 (6)0.02747 (5)
F10.59388 (13)1.16479 (7)0.96048 (4)0.02911 (17)
O10.64441 (14)0.86820 (8)0.74360 (4)0.02269 (17)
N10.18952 (16)0.95514 (8)0.82286 (5)0.01709 (17)
N20.33651 (16)0.94281 (8)0.77529 (5)0.01819 (18)
C10.12723 (19)1.02079 (10)0.90775 (6)0.0197 (2)
H1A0.02750.96440.92310.024*
C20.2902 (2)1.05229 (10)0.94636 (6)0.0219 (2)
H2A0.30241.01890.98830.026*
C30.43476 (19)1.13377 (10)0.92222 (6)0.0198 (2)
C40.42365 (19)1.18535 (9)0.86209 (6)0.0198 (2)
H4A0.52651.24040.84680.024*
C50.25649 (19)1.15407 (9)0.82441 (6)0.0182 (2)
H5A0.24311.18960.78320.022*
C60.10798 (18)1.07118 (9)0.84631 (5)0.01613 (19)
C70.06512 (18)1.03787 (9)0.80585 (5)0.01641 (19)
C80.1174 (2)1.09452 (10)0.74299 (6)0.0204 (2)
H8A0.17131.16940.75270.024*
H8B0.01381.09720.70910.024*
C90.30095 (19)1.02199 (9)0.71935 (6)0.0182 (2)
H9A0.43791.06590.71710.022*
C100.23654 (18)0.96573 (9)0.65297 (5)0.01642 (19)
C110.38005 (19)0.96669 (9)0.60390 (6)0.0182 (2)
H11A0.51821.00280.61230.022*
C120.3230 (2)0.91522 (10)0.54268 (6)0.0193 (2)
H12A0.42170.91530.50950.023*
C130.1196 (2)0.86390 (9)0.53106 (6)0.0188 (2)
C140.02684 (19)0.86179 (10)0.57892 (6)0.0204 (2)
H14A0.16560.82630.57010.025*
C150.03330 (19)0.91257 (10)0.64006 (6)0.0193 (2)
H15A0.06480.91110.67340.023*
C160.50858 (18)0.87211 (10)0.78447 (6)0.0179 (2)
C170.5186 (2)0.79944 (10)0.84496 (6)0.0226 (2)
H17A0.64880.75240.84650.034*
H17B0.38510.75460.84220.034*
H17C0.52850.84410.88550.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03694 (8)0.02603 (7)0.01781 (6)0.00295 (5)0.00372 (4)0.00310 (5)
F10.0272 (4)0.0295 (4)0.0332 (4)0.0103 (3)0.0145 (3)0.0057 (3)
O10.0178 (4)0.0292 (4)0.0216 (4)0.0003 (3)0.0047 (3)0.0060 (3)
N10.0168 (4)0.0200 (4)0.0149 (4)0.0013 (3)0.0036 (3)0.0005 (3)
N20.0192 (4)0.0214 (4)0.0148 (4)0.0026 (4)0.0052 (3)0.0007 (3)
C10.0195 (5)0.0191 (5)0.0207 (5)0.0037 (4)0.0036 (4)0.0029 (4)
C20.0220 (5)0.0230 (5)0.0217 (5)0.0041 (4)0.0068 (4)0.0055 (4)
C30.0177 (5)0.0195 (5)0.0230 (5)0.0014 (4)0.0060 (4)0.0011 (4)
C40.0199 (5)0.0161 (5)0.0228 (5)0.0031 (4)0.0001 (4)0.0005 (4)
C50.0214 (5)0.0162 (5)0.0165 (5)0.0011 (4)0.0003 (4)0.0004 (4)
C60.0167 (5)0.0150 (4)0.0165 (5)0.0004 (4)0.0009 (4)0.0020 (4)
C70.0177 (5)0.0164 (5)0.0151 (5)0.0006 (4)0.0019 (4)0.0011 (4)
C80.0266 (6)0.0180 (5)0.0171 (5)0.0026 (4)0.0051 (4)0.0010 (4)
C90.0207 (5)0.0184 (5)0.0160 (5)0.0013 (4)0.0038 (4)0.0004 (4)
C100.0178 (5)0.0162 (5)0.0157 (5)0.0008 (4)0.0037 (4)0.0015 (4)
C110.0182 (5)0.0195 (5)0.0174 (5)0.0039 (4)0.0044 (4)0.0008 (4)
C120.0229 (5)0.0202 (5)0.0155 (5)0.0018 (4)0.0055 (4)0.0018 (4)
C130.0229 (5)0.0174 (5)0.0155 (5)0.0004 (4)0.0007 (4)0.0006 (4)
C140.0172 (5)0.0206 (5)0.0231 (5)0.0025 (4)0.0008 (4)0.0008 (4)
C150.0173 (5)0.0215 (5)0.0199 (5)0.0017 (4)0.0055 (4)0.0010 (4)
C160.0157 (5)0.0204 (5)0.0173 (5)0.0007 (4)0.0003 (4)0.0046 (4)
C170.0241 (5)0.0243 (5)0.0191 (5)0.0057 (4)0.0008 (4)0.0001 (4)
Geometric parameters (Å, º) top
Br1—C131.9003 (11)C8—C91.5494 (16)
F1—C31.3622 (14)C8—H8A0.9900
O1—C161.2349 (14)C8—H8B0.9900
N1—C71.2919 (14)C9—C101.5163 (16)
N1—N21.3947 (13)C9—H9A1.0000
N2—C161.3590 (15)C10—C111.3945 (16)
N2—C91.4864 (15)C10—C151.3987 (16)
C1—C21.3866 (16)C11—C121.3940 (16)
C1—C61.4013 (16)C11—H11A0.9500
C1—H1A0.9500C12—C131.3867 (17)
C2—C31.3853 (16)C12—H12A0.9500
C2—H2A0.9500C13—C141.3887 (17)
C3—C41.3760 (17)C14—C151.3916 (17)
C4—C51.3942 (17)C14—H14A0.9500
C4—H4A0.9500C15—H15A0.9500
C5—C61.4008 (15)C16—C171.5070 (17)
C5—H5A0.9500C17—H17A0.9800
C6—C71.4653 (16)C17—H17B0.9800
C7—C81.5116 (16)C17—H17C0.9800
C7—N1—N2107.94 (9)N2—C9—C8101.04 (9)
C16—N2—N1121.60 (9)C10—C9—C8114.33 (10)
C16—N2—C9124.40 (9)N2—C9—H9A109.8
N1—N2—C9113.63 (9)C10—C9—H9A109.8
C2—C1—C6120.72 (11)C8—C9—H9A109.8
C2—C1—H1A119.6C11—C10—C15119.19 (10)
C6—C1—H1A119.6C11—C10—C9120.12 (10)
C3—C2—C1118.28 (11)C15—C10—C9120.69 (10)
C3—C2—H2A120.9C12—C11—C10120.71 (11)
C1—C2—H2A120.9C12—C11—H11A119.6
F1—C3—C4118.69 (10)C10—C11—H11A119.6
F1—C3—C2118.06 (11)C13—C12—C11118.83 (11)
C4—C3—C2123.25 (11)C13—C12—H12A120.6
C3—C4—C5117.78 (11)C11—C12—H12A120.6
C3—C4—H4A121.1C12—C13—C14121.75 (11)
C5—C4—H4A121.1C12—C13—Br1118.87 (9)
C4—C5—C6121.09 (11)C14—C13—Br1119.37 (9)
C4—C5—H5A119.5C13—C14—C15118.78 (11)
C6—C5—H5A119.5C13—C14—H14A120.6
C5—C6—C1118.87 (10)C15—C14—H14A120.6
C5—C6—C7120.64 (10)C14—C15—C10120.73 (11)
C1—C6—C7120.49 (10)C14—C15—H15A119.6
N1—C7—C6120.77 (10)C10—C15—H15A119.6
N1—C7—C8114.27 (10)O1—C16—N2120.09 (11)
C6—C7—C8124.95 (10)O1—C16—C17123.28 (11)
C7—C8—C9102.84 (9)N2—C16—C17116.61 (10)
C7—C8—H8A111.2C16—C17—H17A109.5
C9—C8—H8A111.2C16—C17—H17B109.5
C7—C8—H8B111.2H17A—C17—H17B109.5
C9—C8—H8B111.2C16—C17—H17C109.5
H8A—C8—H8B109.1H17A—C17—H17C109.5
N2—C9—C10111.65 (9)H17B—C17—H17C109.5
C7—N1—N2—C16170.61 (10)C16—N2—C9—C8168.23 (11)
C7—N1—N2—C92.78 (13)N1—N2—C9—C84.94 (12)
C6—C1—C2—C30.80 (19)C7—C8—C9—N24.85 (11)
C1—C2—C3—F1179.69 (11)C7—C8—C9—C10115.20 (10)
C1—C2—C3—C40.44 (19)N2—C9—C10—C11112.65 (12)
F1—C3—C4—C5178.57 (10)C8—C9—C10—C11133.42 (11)
C2—C3—C4—C50.67 (18)N2—C9—C10—C1567.46 (13)
C3—C4—C5—C61.44 (17)C8—C9—C10—C1546.47 (15)
C4—C5—C6—C11.10 (17)C15—C10—C11—C120.17 (17)
C4—C5—C6—C7179.11 (11)C9—C10—C11—C12179.94 (10)
C2—C1—C6—C50.05 (18)C10—C11—C12—C130.69 (18)
C2—C1—C6—C7179.74 (11)C11—C12—C13—C140.57 (18)
N2—N1—C7—C6179.71 (10)C11—C12—C13—Br1179.12 (9)
N2—N1—C7—C80.93 (13)C12—C13—C14—C150.08 (18)
C5—C6—C7—N1173.72 (11)Br1—C13—C14—C15178.47 (9)
C1—C6—C7—N16.49 (17)C13—C14—C15—C100.61 (18)
C5—C6—C7—C86.99 (17)C11—C10—C15—C140.49 (17)
C1—C6—C7—C8172.79 (11)C9—C10—C15—C14179.39 (11)
N1—C7—C8—C93.93 (13)N1—N2—C16—O1175.15 (10)
C6—C7—C8—C9176.74 (10)C9—N2—C16—O12.50 (17)
C16—N2—C9—C1069.83 (14)N1—N2—C16—C176.25 (16)
N1—N2—C9—C10117.00 (10)C9—N2—C16—C17178.90 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.453.2772 (15)146
C14—H14A···F1ii0.952.503.3806 (15)153
C15—H15A···O1iii0.952.453.3800 (15)166
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14BrFN2O
Mr361.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.0973 (5), 12.3079 (11), 20.1432 (16)
β (°) 96.700 (1)
V3)1501.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.35 × 0.29 × 0.12
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.449, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
20560, 5389, 4508
Rint0.026
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.04
No. of reflections5389
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.95002.45003.2772 (15)146.00
C14—H14A···F1ii0.95002.50003.3806 (15)153.00
C15—H15A···O1iii0.95002.45003.3800 (15)166.00
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1, y1/2, z+3/2; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o975.  CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds