organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-chloro-1-cyclo­propyl-6-fluoro-8-nitro-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ate

aDepartment of Chemistry, University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: r.alqawasmeh@ju.edu.jo

(Received 22 February 2012; accepted 15 March 2012; online 25 July 2012)

In the title compound, C15H12ClFN2O5, mol­ecules are packed in the crystal lattice in a parallel fashion sustained by various C—H⋯O [C⋯O = 3.065 (5)–3.537 (5) Å] and C—H⋯Cl [3.431 (5)–3.735 (4) Å] inter­actions.

Related literature

For the biological activities of fluoro­quinolone derivatives, see: Li et al. (2000[Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.]); Mitscher (2005[Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.]). For the synthesis of the title compound, see: Al-Qawasmeh et al. (2009[Al-Qawasmeh, R. A., Zahra, J. A., Zani, F., Vicini, P., Boese, B. & El-Abadelah, M. M. (2009). Arkivoc, pp. 322-336.]); Al-Hiari et al. (2006[Al-Hiari, Y. H., Khanfar, M. A., Qaisi, A. M., Abu Shuheil, M. Y., Elabadelah, M. M. & Boese, R. (2006). Heterocycles, pp. 1163-1172.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClFN2O5

  • Mr = 354.72

  • Triclinic, [P \overline 1]

  • a = 8.2339 (16) Å

  • b = 9.1523 (18) Å

  • c = 10.736 (2) Å

  • α = 85.60 (3)°

  • β = 81.20 (3)°

  • γ = 74.13 (3)°

  • V = 768.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 K

  • 0.96 × 0.35 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.857, Tmax = 1.000

  • 4468 measured reflections

  • 2713 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.195

  • S = 1.05

  • 2713 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.97 2.54 3.489 (4) 167
C14—H14B⋯O1ii 0.97 2.51 3.471 (5) 172
C15—H15A⋯O2iii 0.98 2.58 3.537 (5) 165
C4—H4A⋯O2iv 0.93 2.71 3.065 (5) 104
C13—H13A⋯O4ii 0.97 2.71 3.439 (5) 132
C11—H11A⋯Cl1v 0.97 2.91 3.431 (5) 115
C13—H13A⋯Cl1vi 0.97 2.89 3.735 (4) 146
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z-1; (iii) -x+1, -y-1, -z; (iv) -x+1, -y, -z; (v) x+1, y, z-1; (vi) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluoroquinolone derivatives have been widely investigated as drugs against bacterial infections. Ciprofloxacine, one derivative of fluoroquinolone, represents one of the most effective antiinfectious drugs currently in clinical use (Li et al., 2000; Mitscher 2005). In the present paper, we describe the title compound, I, which has been synthesized from 2,4,-di chloro-5-fluoro-3-nitrobenzoic acid according to the published literature (Al-Hiari et al., 2006) and (Al-Qawasmeh et al., 2009). The title compound is an important synthetic intermediate for the synthesis of the analogues of the antimicrobial drug ciprofloxcaine. The title molecule crystallizes in the centrosymmetric triclinic space group P-1. In the crystal structure of (I), the molecules are held together by C—H···O [3.065 (5)-3.537 (5) Å] and C—H···Cl [3.431 (5)-3.735 (4) Å] (Table 1).

Related literature top

For the biological activities of fluoroquinolone derivatives, see: Li et al. (2000); Mitscher (2005). For the synthesis of the title compound, see: Al-Qawasmeh et al. (2009); Al-Hiari et al. (2006). [ok as edited?]

Experimental top

The title compound was synthesized according to the published literature (Al-Hiari et al., 2006) and it has been recrystallized from hot ethanol to produce a yellow crystalline material

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Structure description top

Fluoroquinolone derivatives have been widely investigated as drugs against bacterial infections. Ciprofloxacine, one derivative of fluoroquinolone, represents one of the most effective antiinfectious drugs currently in clinical use (Li et al., 2000; Mitscher 2005). In the present paper, we describe the title compound, I, which has been synthesized from 2,4,-di chloro-5-fluoro-3-nitrobenzoic acid according to the published literature (Al-Hiari et al., 2006) and (Al-Qawasmeh et al., 2009). The title compound is an important synthetic intermediate for the synthesis of the analogues of the antimicrobial drug ciprofloxcaine. The title molecule crystallizes in the centrosymmetric triclinic space group P-1. In the crystal structure of (I), the molecules are held together by C—H···O [3.065 (5)-3.537 (5) Å] and C—H···Cl [3.431 (5)-3.735 (4) Å] (Table 1).

For the biological activities of fluoroquinolone derivatives, see: Li et al. (2000); Mitscher (2005). For the synthesis of the title compound, see: Al-Qawasmeh et al. (2009); Al-Hiari et al. (2006). [ok as edited?]

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The thermal ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing displaying C–H···Cl and C–H···O interactions in the title compound (I).
Ethyl 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C15H12ClFN2O5F(000) = 364
Mr = 354.72none
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Melting point: 438 K
a = 8.2339 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1523 (18) ÅCell parameters from 1074 reflections
c = 10.736 (2) Åθ = 3.1–29.0°
α = 85.60 (3)°µ = 0.29 mm1
β = 81.20 (3)°T = 291 K
γ = 74.13 (3)°Needle, yellow
V = 768.5 (3) Å30.96 × 0.35 × 0.21 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2713 independent reflections
Radiation source: Enhance (Mo) X-ray Source1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 810
Tmin = 0.857, Tmax = 1.000l = 1210
4468 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.0377P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2713 reflectionsΔρmax = 0.29 e Å3
218 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (5)
Crystal data top
C15H12ClFN2O5γ = 74.13 (3)°
Mr = 354.72V = 768.5 (3) Å3
Triclinic, P1Z = 2
a = 8.2339 (16) ÅMo Kα radiation
b = 9.1523 (18) ŵ = 0.29 mm1
c = 10.736 (2) ÅT = 291 K
α = 85.60 (3)°0.96 × 0.35 × 0.21 mm
β = 81.20 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1617 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 1.000Rint = 0.031
4468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2713 reflectionsΔρmin = 0.26 e Å3
218 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (CrysAlisPro; Oxford Diffraction, 2009)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12355 (14)0.02366 (11)0.15569 (10)0.0800 (4)
N20.4807 (4)0.2165 (3)0.2558 (3)0.0577 (8)
F10.1920 (3)0.2933 (2)0.0257 (2)0.0921 (8)
N10.2887 (5)0.2409 (3)0.0032 (3)0.0651 (8)
O10.5691 (4)0.1923 (3)0.3780 (3)0.0833 (9)
C10.3081 (4)0.0978 (3)0.0616 (3)0.0571 (9)
O30.1470 (4)0.2615 (3)0.0265 (3)0.0833 (9)
C30.2613 (5)0.1687 (4)0.0426 (4)0.0663 (10)
O50.8693 (4)0.2246 (3)0.5300 (3)0.0892 (10)
O40.8073 (4)0.0240 (3)0.5725 (3)0.0872 (9)
C70.5977 (5)0.2042 (4)0.3557 (3)0.0616 (10)
H7A0.65270.29210.39920.074*
O20.4183 (4)0.3294 (3)0.0328 (3)0.0830 (9)
C20.2348 (4)0.0321 (4)0.0076 (3)0.0611 (9)
C50.4362 (4)0.0483 (4)0.2238 (3)0.0572 (9)
C90.5534 (5)0.0667 (4)0.3412 (4)0.0607 (9)
C60.4075 (4)0.0917 (3)0.1800 (3)0.0544 (9)
C80.6428 (5)0.0756 (4)0.3988 (3)0.0615 (10)
C100.7786 (5)0.0812 (4)0.5092 (4)0.0673 (10)
C150.4290 (5)0.3592 (4)0.2387 (4)0.0669 (11)
H15A0.48780.43590.18030.080*
C40.3601 (5)0.1772 (4)0.1551 (4)0.0668 (11)
H4A0.37680.27040.18620.080*
C140.3847 (5)0.4180 (4)0.3509 (4)0.0797 (13)
H14A0.41810.52710.36050.096*
H14B0.38850.35800.42920.096*
C130.2480 (5)0.3550 (4)0.2451 (4)0.0774 (12)
H13A0.16930.25700.25950.093*
H13B0.19890.42620.19070.093*
C111.0073 (6)0.2448 (5)0.6353 (5)0.1002 (16)
H11A0.96280.20120.71240.120*
H11B1.09080.19370.61970.120*
C121.0855 (8)0.4041 (6)0.6479 (6)0.146 (3)
H12A1.17490.41930.71820.219*
H12B1.00160.45400.66170.219*
H12C1.13220.44570.57220.219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0797 (8)0.0847 (8)0.0611 (7)0.0052 (6)0.0105 (5)0.0156 (5)
N20.0693 (19)0.0411 (14)0.0518 (19)0.0083 (13)0.0134 (15)0.0013 (12)
F10.0937 (18)0.0661 (13)0.104 (2)0.0100 (12)0.0191 (15)0.0361 (12)
N10.075 (2)0.0571 (18)0.053 (2)0.0090 (17)0.0059 (17)0.0042 (14)
O10.107 (2)0.0508 (14)0.083 (2)0.0210 (14)0.0142 (17)0.0036 (13)
C10.057 (2)0.0463 (18)0.061 (2)0.0079 (16)0.0012 (18)0.0004 (16)
O30.080 (2)0.0817 (18)0.079 (2)0.0246 (16)0.0223 (16)0.0017 (15)
C30.071 (2)0.0511 (19)0.071 (3)0.0066 (18)0.001 (2)0.0195 (18)
O50.084 (2)0.0671 (16)0.091 (2)0.0053 (15)0.0381 (17)0.0004 (15)
O40.089 (2)0.0769 (17)0.084 (2)0.0202 (16)0.0145 (17)0.0147 (15)
C70.066 (2)0.0482 (18)0.056 (2)0.0011 (17)0.0079 (19)0.0019 (16)
O20.093 (2)0.0639 (15)0.080 (2)0.0013 (15)0.0148 (17)0.0056 (14)
C20.054 (2)0.063 (2)0.057 (2)0.0038 (17)0.0024 (18)0.0075 (17)
C50.061 (2)0.0502 (18)0.055 (2)0.0107 (16)0.0004 (18)0.0015 (16)
C90.066 (2)0.0518 (19)0.059 (2)0.0126 (17)0.0004 (19)0.0021 (16)
C60.055 (2)0.0463 (18)0.054 (2)0.0047 (15)0.0003 (17)0.0010 (15)
C80.064 (2)0.056 (2)0.057 (2)0.0111 (17)0.0043 (19)0.0020 (16)
C100.067 (2)0.068 (2)0.058 (3)0.012 (2)0.0045 (19)0.0027 (19)
C150.080 (3)0.0407 (18)0.063 (3)0.0031 (18)0.017 (2)0.0002 (16)
C40.074 (3)0.0480 (19)0.071 (3)0.0110 (18)0.004 (2)0.0055 (17)
C140.109 (3)0.0484 (19)0.071 (3)0.021 (2)0.027 (2)0.0162 (18)
C130.081 (3)0.057 (2)0.084 (3)0.017 (2)0.023 (2)0.0202 (19)
C110.081 (3)0.094 (3)0.096 (4)0.007 (3)0.047 (3)0.001 (3)
C120.147 (5)0.108 (4)0.131 (5)0.004 (4)0.075 (4)0.005 (4)
Geometric parameters (Å, º) top
Cl1—C21.716 (4)C5—C61.399 (4)
N2—C71.347 (4)C5—C91.494 (5)
N2—C61.396 (4)C9—C81.442 (5)
N2—C151.471 (4)C8—C101.494 (5)
F1—C31.345 (4)C15—C141.487 (5)
N1—O31.218 (4)C15—C131.492 (5)
N1—O21.220 (4)C15—H15A0.9800
N1—C11.471 (4)C4—H4A0.9300
O1—C91.221 (4)C14—C131.498 (5)
C1—C21.391 (5)C14—H14A0.9700
C1—C61.408 (5)C14—H14B0.9700
C3—C41.358 (5)C13—H13A0.9700
C3—C21.382 (5)C13—H13B0.9700
O5—C101.336 (5)C11—C121.431 (7)
O5—C111.459 (5)C11—H11A0.9700
O4—C101.192 (4)C11—H11B0.9700
C7—C81.357 (4)C12—H12A0.9600
C7—H7A0.9300C12—H12B0.9600
C5—C41.384 (5)C12—H12C0.9600
C7—N2—C6118.9 (3)N2—C15—C14117.5 (3)
C7—N2—C15117.2 (3)N2—C15—C13119.2 (3)
C6—N2—C15123.7 (3)C14—C15—C1360.4 (3)
O3—N1—O2124.7 (3)N2—C15—H15A116.1
O3—N1—C1119.0 (3)C14—C15—H15A116.1
O2—N1—C1116.3 (3)C13—C15—H15A116.1
C2—C1—C6121.3 (3)C3—C4—C5120.6 (3)
C2—C1—N1115.2 (3)C3—C4—H4A119.7
C6—C1—N1123.2 (3)C5—C4—H4A119.7
F1—C3—C4120.4 (3)C15—C14—C1360.0 (3)
F1—C3—C2118.0 (3)C15—C14—H14A117.8
C4—C3—C2121.6 (3)C13—C14—H14A117.8
C10—O5—C11115.8 (3)C15—C14—H14B117.8
N2—C7—C8126.1 (3)C13—C14—H14B117.8
N2—C7—H7A116.9H14A—C14—H14B114.9
C8—C7—H7A116.9C15—C13—C1459.7 (2)
C3—C2—C1118.4 (3)C15—C13—H13A117.8
C3—C2—Cl1120.0 (3)C14—C13—H13A117.8
C1—C2—Cl1121.5 (3)C15—C13—H13B117.8
C4—C5—C6120.2 (3)C14—C13—H13B117.8
C4—C5—C9116.7 (3)H13A—C13—H13B114.9
C6—C5—C9123.1 (3)C12—C11—O5108.5 (4)
O1—C9—C8126.4 (3)C12—C11—H11A110.0
O1—C9—C5120.5 (3)O5—C11—H11A110.0
C8—C9—C5113.1 (3)C12—C11—H11B110.0
N2—C6—C5117.9 (3)O5—C11—H11B110.0
N2—C6—C1124.2 (3)H11A—C11—H11B108.4
C5—C6—C1117.9 (3)C11—C12—H12A109.5
C7—C8—C9119.6 (3)C11—C12—H12B109.5
C7—C8—C10119.8 (3)H12A—C12—H12B109.5
C9—C8—C10120.6 (3)C11—C12—H12C109.5
O4—C10—O5122.6 (4)H12A—C12—H12C109.5
O4—C10—C8126.8 (4)H12B—C12—H12C109.5
O5—C10—C8110.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.543.489 (4)167
C14—H14B···O1ii0.972.513.471 (5)172
C15—H15A···O2iii0.982.583.537 (5)165
C4—H4A···O2iv0.932.713.065 (5)104
C13—H13A···O4ii0.972.713.439 (5)132
C11—H11A···Cl1v0.972.913.431 (5)115
C13—H13A···Cl1vi0.972.893.735 (4)146
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y, z1; (vi) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H12ClFN2O5
Mr354.72
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.2339 (16), 9.1523 (18), 10.736 (2)
α, β, γ (°)85.60 (3), 81.20 (3), 74.13 (3)
V3)768.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.96 × 0.35 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.857, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4468, 2713, 1617
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.195, 1.05
No. of reflections2713
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.543.489 (4)167.4
C14—H14B···O1ii0.972.513.471 (5)172.2
C15—H15A···O2iii0.982.583.537 (5)165.2
C4—H4A···O2iv0.932.713.065 (5)103.8
C13—H13A···O4ii0.972.713.439 (5)132.0
C11—H11A···Cl1v0.972.913.431 (5)114.8
C13—H13A···Cl1vi0.972.893.735 (4)146.4
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y, z1; (vi) x, y, z.
 

Acknowledgements

The author gratefully acknowledges financial support from the Deanship of Scientific Research at the University of Jordan (grant No. 7/1005/2006). Dr Murad AlDamen is acknowledged for collecting the data.

References

First citationAl-Hiari, Y. H., Khanfar, M. A., Qaisi, A. M., Abu Shuheil, M. Y., Elabadelah, M. M. & Boese, R. (2006). Heterocycles, pp. 1163–1172.  Google Scholar
First citationAl-Qawasmeh, R. A., Zahra, J. A., Zani, F., Vicini, P., Boese, B. & El-Abadelah, M. M. (2009). Arkivoc, pp. 322–336.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231–293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitscher, L. A. (2005). Chem. Rev. 105, 559–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds