metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cinnamato-κ2O,O′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

aSchool of Bioscience and Bioengineering, South China University of Technology, Guangzhou Guangdong 510006, People's Republic of China
*Correspondence e-mail: gaoqiang021@126.com

(Received 14 June 2012; accepted 15 July 2012; online 21 July 2012)

In the title compound, [Ni(C9H7O2)(C16H36N4)]ClO4·H2O, the macrocyclic 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane ligand (L) folds around the NiII atom, which is also chelated by the carboxyl­ate group. The geometry is a distorted N4O2 octa­hedron. In the crystal, adjacent mol­ecules are connected by O—H⋯O and N—H⋯O hydrogen bonds into a zigzag chain parallel to [010].

Related literature

For background to this study, see: Tait & Busch (1976[Tait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4-7.]); Curtis (1965[Curtis, N. F. (1965). J. Chem. Soc. A, pp. 924-931.]). For related structures, see: Ou et al. (2008[Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2008). Acta Cryst. E64, m1010.], 2009a[Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2009a). Acta Cryst. E65, m726.],b[Ou, G.-C., Zhou, Q. & Ng, S. W. (2009b). Acta Cryst. E65, m728.]); Ou & Ng 2010a[Ou, G.-C. & Ng, S. W. (2010a). Acta Cryst. E66, m1295-m1296.],b[Ou, G.-C. & Ng, S. W. (2010b). Acta Cryst. E66, m1468.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H7O2)(C16H36N4)]ClO4·H2O

  • Mr = 607.81

  • Monoclinic, P 21 /n

  • a = 10.6903 (11) Å

  • b = 14.5396 (8) Å

  • c = 19.2498 (12) Å

  • β = 94.225 (6)°

  • V = 2983.9 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.16 mm−1

  • T = 153 K

  • 0.42 × 0.21 × 0.16 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.464, Tmax = 0.724

  • 10750 measured reflections

  • 5001 independent reflections

  • 4533 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.04

  • 5001 reflections

  • 355 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4D⋯O1Wi 0.93 2.11 3.009 (2) 163
N2—H2C⋯O1Wi 0.93 2.19 3.073 (2) 158
O1W—H1WA⋯O1ii 0.80 (3) 1.94 (3) 2.732 (2) 173 (3)
O1W—H1WB⋯O5 0.80 (3) 2.13 (3) 2.921 (3) 171 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Similar other nickel salts involving the macrocyclic ligand L were reported (Ou et al., 2008, 2009a, 2009b, 2010a, 2010b). The asymmetric unit in the title compound contains one [NiL(C6H5C2H2CO2)]+, one [ClO4]- and one free water molecule. In each cation (Fig. 1), the nickel(II) ion displays a distorted octahedral coordination geometry by coordination with four nitrogen atoms of L in a folded conformation, and two carboxylate oxygen atoms of cinnamic acid in cis position. Adjacent molecules are connected through the O—H···O (2.732 (2)–2.921 (3) Å) and N—H···O (3.009 (2)–3.073 (2) Å) (Table 1) hydrogen bonding interactions between the carboxylate oxygen atom of cinnamic acid, oxygen atom of water molecule and secondary amine of L, generating a zigzag chain (Figs. 2, 3).

Related literature top

For background to this study, see: Tait & Busch (1976); Curtis (1965). For related structures, see: Ou et al. (2008, 2009a,b); Ou & Ng 2010a,b).

Experimental top

A solution of [Ni(rac-L)](ClO4)2 (0.541 g, 1 mmol) in acetonitrile (10 ml) was added to a solution of cinnamic acid (0.148 g, 1 mmol) and NaOH (0.040 g, 1 mmol) in 10 ml of water. The resultant blue solution was evaporated slowly at room temperature. After several weeks, violet prism-shaped crystals were obtained.

Refinement top

H atoms bound to carbon, oxygen and nitrogen atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 to 1.00 Å, O—H = 0.80 Å and N—H = 0.93 Å, and with U(H) set to 1.2 to 1.5 Ueq(C, O, N).

Structure description top

Similar other nickel salts involving the macrocyclic ligand L were reported (Ou et al., 2008, 2009a, 2009b, 2010a, 2010b). The asymmetric unit in the title compound contains one [NiL(C6H5C2H2CO2)]+, one [ClO4]- and one free water molecule. In each cation (Fig. 1), the nickel(II) ion displays a distorted octahedral coordination geometry by coordination with four nitrogen atoms of L in a folded conformation, and two carboxylate oxygen atoms of cinnamic acid in cis position. Adjacent molecules are connected through the O—H···O (2.732 (2)–2.921 (3) Å) and N—H···O (3.009 (2)–3.073 (2) Å) (Table 1) hydrogen bonding interactions between the carboxylate oxygen atom of cinnamic acid, oxygen atom of water molecule and secondary amine of L, generating a zigzag chain (Figs. 2, 3).

For background to this study, see: Tait & Busch (1976); Curtis (1965). For related structures, see: Ou et al. (2008, 2009a,b); Ou & Ng 2010a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the packing of the title compound
[Figure 3] Fig. 3. Hydrogen bonding (dashed lines) of the title compound
(Cinnamato-κ2O,O')(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane- κ4N,N',N'',N''')nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C9H7O2)(C16H36N4)]ClO4·H2OF(000) = 1296
Mr = 607.81Dx = 1.353 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 10750 reflections
a = 10.6903 (11) Åθ = 3.8–65.5°
b = 14.5396 (8) ŵ = 2.16 mm1
c = 19.2498 (12) ÅT = 153 K
β = 94.225 (6)°Prism, violet
V = 2983.9 (4) Å30.42 × 0.21 × 0.16 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5001 independent reflections
Radiation source: fine-focus sealed tube4533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 65.5°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 912
Tmin = 0.464, Tmax = 0.724k = 1516
10750 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 2.0261P]
where P = (Fo2 + 2Fc2)/3
5001 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C9H7O2)(C16H36N4)]ClO4·H2OV = 2983.9 (4) Å3
Mr = 607.81Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.6903 (11) ŵ = 2.16 mm1
b = 14.5396 (8) ÅT = 153 K
c = 19.2498 (12) Å0.42 × 0.21 × 0.16 mm
β = 94.225 (6)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5001 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4533 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.724Rint = 0.022
10750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.67 e Å3
5001 reflectionsΔρmin = 0.53 e Å3
355 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.15 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82693 (3)0.10829 (2)0.168866 (17)0.01820 (11)
Cl10.37923 (5)0.79143 (4)0.11605 (3)0.03427 (15)
O1W0.65932 (16)0.88699 (11)0.21653 (9)0.0329 (4)
N40.71496 (15)0.08543 (12)0.25076 (9)0.0215 (4)
H4D0.68750.02480.24770.026*
N30.98016 (15)0.07735 (12)0.24375 (9)0.0226 (4)
H3A1.01420.13380.25780.027*
N10.66694 (16)0.12951 (11)0.09671 (9)0.0224 (4)
H1C0.69450.16790.06230.027*
O10.86371 (13)0.25222 (10)0.18630 (7)0.0246 (3)
O20.93361 (13)0.17771 (9)0.09782 (7)0.0234 (3)
N20.83993 (15)0.01980 (11)0.12133 (8)0.0199 (4)
H2C0.79740.06240.14690.024*
C71.1671 (2)0.07934 (17)0.17803 (13)0.0336 (5)
H7A1.11390.10240.13820.050*
H7B1.23560.04260.16120.050*
H7C1.20210.13130.20540.050*
C180.99490 (19)0.33452 (14)0.11318 (11)0.0254 (5)
H180.97820.39140.13490.030*
C90.9196 (2)0.04063 (18)0.30456 (11)0.0305 (5)
H9A0.97760.04620.34690.037*
H9B0.89980.02530.29720.037*
C130.51412 (19)0.13204 (15)0.18830 (12)0.0271 (5)
H13A0.50270.06510.18090.033*
H13B0.43140.15740.19820.033*
O50.4206 (2)0.88266 (13)0.13241 (12)0.0614 (6)
C120.5291 (2)0.12492 (19)0.31703 (13)0.0379 (6)
H12A0.49760.06160.31440.057*
H12B0.45840.16770.31780.057*
H12C0.58440.13260.35960.057*
O30.29831 (17)0.79250 (13)0.05395 (9)0.0459 (5)
O60.3166 (3)0.75420 (18)0.17151 (11)0.0832 (8)
C61.08899 (19)0.01963 (15)0.22362 (11)0.0266 (5)
C110.60231 (19)0.14496 (15)0.25364 (11)0.0258 (5)
H110.63020.21060.25590.031*
C81.1740 (2)0.00999 (18)0.28747 (13)0.0366 (6)
H8A1.19620.04400.31630.055*
H8B1.25050.03820.27210.055*
H8C1.12950.05460.31480.055*
C51.0409 (2)0.06705 (15)0.18454 (11)0.0265 (5)
H5A1.11410.10710.17810.032*
H5B0.98600.10060.21510.032*
C140.54944 (19)0.17362 (15)0.11962 (12)0.0280 (5)
C150.5743 (2)0.27698 (16)0.12686 (14)0.0378 (6)
H15A0.64820.28720.15920.057*
H15B0.50130.30710.14480.057*
H15C0.58950.30280.08120.057*
C20.7687 (2)0.00750 (15)0.05307 (11)0.0255 (5)
H2A0.75400.06810.03060.031*
H2B0.81800.03060.02240.031*
C170.92733 (18)0.25108 (14)0.13254 (11)0.0224 (4)
O40.4837 (2)0.73377 (18)0.10554 (16)0.0933 (9)
C160.4378 (2)0.15948 (18)0.06591 (13)0.0381 (6)
H16A0.46060.18010.02010.057*
H16B0.36590.19520.07970.057*
H16C0.41570.09410.06370.057*
C231.3114 (4)0.5501 (3)0.00822 (16)0.0737 (12)
H231.36640.59860.00240.088*
C10.64498 (19)0.03845 (14)0.06257 (11)0.0254 (5)
H1A0.59810.04680.01670.031*
H1B0.59410.00080.09170.031*
C201.1556 (2)0.40741 (16)0.04353 (11)0.0275 (5)
C241.3420 (3)0.4605 (3)0.00655 (14)0.0672 (11)
H241.41680.44790.02860.081*
C211.1246 (3)0.49896 (16)0.05564 (12)0.0368 (6)
H211.04890.51280.07630.044*
C100.8008 (2)0.09348 (17)0.31431 (11)0.0307 (5)
H10A0.75980.06870.35480.037*
H10B0.82100.15900.32350.037*
C251.2639 (2)0.3878 (2)0.01061 (12)0.0411 (6)
H251.28470.32610.00010.049*
C40.9680 (2)0.14652 (17)0.07386 (13)0.0389 (6)
H4A0.91740.19170.09710.058*
H4B1.05400.16950.07270.058*
H4C0.93190.13670.02620.058*
C30.96907 (19)0.05558 (14)0.11380 (11)0.0243 (4)
H31.01470.00930.08680.029*
C221.2023 (3)0.5696 (2)0.03801 (14)0.0595 (10)
H221.18000.63160.04650.071*
C191.07876 (19)0.33104 (14)0.06586 (11)0.0228 (4)
H191.09020.27320.04430.027*
H1WA0.657 (2)0.8500 (19)0.2470 (14)0.034*
H1WB0.597 (3)0.8806 (18)0.1911 (14)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01681 (19)0.01662 (19)0.02133 (19)0.00561 (13)0.00246 (13)0.00172 (13)
Cl10.0359 (3)0.0264 (3)0.0385 (3)0.0035 (2)0.0111 (2)0.0074 (2)
O1W0.0335 (9)0.0305 (9)0.0336 (9)0.0151 (7)0.0042 (7)0.0111 (7)
N40.0191 (8)0.0208 (9)0.0248 (9)0.0045 (7)0.0038 (7)0.0013 (7)
N30.0202 (9)0.0248 (9)0.0229 (9)0.0049 (7)0.0026 (7)0.0053 (7)
N10.0225 (9)0.0182 (9)0.0263 (9)0.0052 (7)0.0008 (7)0.0026 (7)
O10.0242 (7)0.0212 (7)0.0293 (8)0.0070 (6)0.0086 (6)0.0051 (6)
O20.0259 (7)0.0185 (7)0.0263 (7)0.0071 (6)0.0058 (6)0.0049 (6)
N20.0193 (8)0.0197 (8)0.0205 (8)0.0054 (7)0.0008 (7)0.0008 (7)
C70.0186 (11)0.0387 (13)0.0441 (14)0.0068 (10)0.0061 (10)0.0040 (11)
C180.0269 (11)0.0164 (10)0.0334 (12)0.0068 (9)0.0058 (9)0.0038 (9)
C90.0253 (11)0.0448 (14)0.0211 (11)0.0014 (10)0.0008 (9)0.0028 (10)
C130.0173 (10)0.0253 (11)0.0391 (13)0.0035 (8)0.0038 (9)0.0034 (10)
O50.0721 (14)0.0309 (10)0.0761 (15)0.0172 (10)0.0277 (12)0.0059 (10)
C120.0270 (12)0.0488 (15)0.0394 (14)0.0043 (11)0.0138 (10)0.0077 (12)
O30.0502 (11)0.0433 (11)0.0412 (10)0.0115 (9)0.0168 (8)0.0114 (8)
O60.121 (2)0.0837 (18)0.0447 (13)0.0476 (16)0.0012 (13)0.0221 (12)
C60.0177 (10)0.0306 (12)0.0314 (12)0.0001 (9)0.0008 (9)0.0048 (9)
C110.0203 (10)0.0228 (11)0.0351 (12)0.0038 (9)0.0067 (9)0.0027 (9)
C80.0232 (11)0.0477 (15)0.0376 (13)0.0025 (10)0.0056 (10)0.0055 (11)
C50.0218 (10)0.0264 (11)0.0311 (12)0.0022 (9)0.0006 (9)0.0022 (9)
C140.0208 (10)0.0236 (11)0.0391 (13)0.0001 (9)0.0009 (9)0.0024 (10)
C150.0353 (13)0.0215 (12)0.0563 (16)0.0028 (10)0.0016 (11)0.0055 (11)
C20.0278 (11)0.0241 (11)0.0235 (11)0.0029 (9)0.0045 (8)0.0040 (9)
C170.0189 (10)0.0195 (10)0.0289 (11)0.0066 (8)0.0031 (8)0.0013 (9)
O40.0641 (15)0.0748 (17)0.136 (3)0.0368 (14)0.0290 (16)0.0102 (16)
C160.0265 (12)0.0396 (14)0.0468 (15)0.0053 (11)0.0062 (10)0.0038 (11)
C230.097 (3)0.085 (3)0.0373 (16)0.071 (2)0.0065 (17)0.0221 (17)
C10.0245 (11)0.0227 (11)0.0278 (11)0.0059 (9)0.0065 (9)0.0022 (9)
C200.0298 (12)0.0336 (12)0.0185 (10)0.0150 (10)0.0024 (8)0.0028 (9)
C240.0511 (18)0.121 (3)0.0305 (14)0.052 (2)0.0080 (12)0.0054 (17)
C210.0532 (15)0.0282 (12)0.0274 (12)0.0194 (11)0.0085 (11)0.0051 (10)
C100.0257 (11)0.0440 (14)0.0229 (11)0.0004 (10)0.0041 (9)0.0024 (10)
C250.0330 (13)0.0656 (18)0.0248 (12)0.0198 (12)0.0034 (10)0.0052 (12)
C40.0389 (13)0.0328 (13)0.0437 (14)0.0087 (11)0.0050 (11)0.0144 (11)
C30.0220 (10)0.0238 (11)0.0273 (11)0.0012 (9)0.0030 (8)0.0042 (9)
C220.097 (3)0.0437 (17)0.0341 (14)0.0435 (17)0.0206 (16)0.0173 (13)
C190.0238 (10)0.0198 (10)0.0247 (10)0.0067 (8)0.0004 (8)0.0022 (8)
Geometric parameters (Å, º) top
Ni1—N42.0752 (17)C12—H12C0.9800
Ni1—N22.0841 (17)C6—C81.535 (3)
Ni1—O22.1023 (14)C6—C51.537 (3)
Ni1—N12.1447 (17)C11—H111.0000
Ni1—N32.1485 (17)C8—H8A0.9800
Ni1—O12.1512 (14)C8—H8B0.9800
Ni1—C172.462 (2)C8—H8C0.9800
Cl1—O61.409 (2)C5—C31.522 (3)
Cl1—O41.422 (2)C5—H5A0.9900
Cl1—O31.4231 (17)C5—H5B0.9900
Cl1—O51.4260 (19)C14—C151.531 (3)
O1W—H1WA0.80 (3)C14—C161.534 (3)
O1W—H1WB0.80 (3)C15—H15A0.9800
N4—C101.479 (3)C15—H15B0.9800
N4—C111.487 (3)C15—H15C0.9800
N4—H4D0.9300C2—C11.505 (3)
N3—C91.478 (3)C2—H2A0.9900
N3—C61.508 (3)C2—H2B0.9900
N3—H3A0.9300C16—H16A0.9800
N1—C11.489 (3)C16—H16B0.9800
N1—C141.505 (3)C16—H16C0.9800
N1—H1C0.9300C23—C221.367 (5)
O1—C171.280 (2)C23—C241.378 (6)
O2—C171.263 (2)C23—H230.9500
N2—C21.480 (3)C1—H1A0.9900
N2—C31.492 (3)C1—H1B0.9900
N2—H2C0.9300C20—C251.390 (3)
C7—C61.526 (3)C20—C211.395 (3)
C7—H7A0.9800C20—C191.464 (3)
C7—H7B0.9800C24—C251.402 (4)
C7—H7C0.9800C24—H240.9500
C18—C191.325 (3)C21—C221.379 (4)
C18—C171.474 (3)C21—H210.9500
C18—H180.9500C10—H10A0.9900
C9—C101.508 (3)C10—H10B0.9900
C9—H9A0.9900C25—H250.9500
C9—H9B0.9900C4—C31.529 (3)
C13—C141.526 (3)C4—H4A0.9800
C13—C111.527 (3)C4—H4B0.9800
C13—H13A0.9900C4—H4C0.9800
C13—H13B0.9900C3—H31.0000
C12—C111.525 (3)C22—H220.9500
C12—H12A0.9800C19—H190.9500
C12—H12B0.9800
N4—Ni1—N2104.55 (7)N4—C11—H11108.5
N4—Ni1—O2160.39 (6)C12—C11—H11108.5
N2—Ni1—O294.96 (6)C13—C11—H11108.5
N4—Ni1—N192.18 (7)C6—C8—H8A109.5
N2—Ni1—N185.41 (6)C6—C8—H8B109.5
O2—Ni1—N187.40 (6)H8A—C8—H8B109.5
N4—Ni1—N384.88 (6)C6—C8—H8C109.5
N2—Ni1—N392.02 (7)H8A—C8—H8C109.5
O2—Ni1—N396.52 (6)H8B—C8—H8C109.5
N1—Ni1—N3175.49 (6)C3—C5—C6118.46 (18)
N4—Ni1—O198.41 (6)C3—C5—H5A107.7
N2—Ni1—O1157.00 (6)C6—C5—H5A107.7
O2—Ni1—O162.14 (5)C3—C5—H5B107.7
N1—Ni1—O195.11 (6)C6—C5—H5B107.7
N3—Ni1—O188.70 (6)H5A—C5—H5B107.1
N4—Ni1—C17129.70 (7)N1—C14—C13110.50 (17)
N2—Ni1—C17125.75 (7)N1—C14—C15107.56 (17)
O2—Ni1—C1730.87 (6)C13—C14—C15111.3 (2)
N1—Ni1—C1792.19 (7)N1—C14—C16111.70 (18)
N3—Ni1—C1792.31 (7)C13—C14—C16107.52 (18)
O1—Ni1—C1731.29 (6)C15—C14—C16108.32 (19)
O6—Cl1—O4107.63 (19)C14—C15—H15A109.5
O6—Cl1—O3110.32 (13)C14—C15—H15B109.5
O4—Cl1—O3108.77 (15)H15A—C15—H15B109.5
O6—Cl1—O5110.30 (15)C14—C15—H15C109.5
O4—Cl1—O5110.23 (15)H15A—C15—H15C109.5
O3—Cl1—O5109.56 (11)H15B—C15—H15C109.5
H1WA—O1W—H1WB107 (3)N2—C2—C1110.18 (17)
C10—N4—C11112.21 (16)N2—C2—H2A109.6
C10—N4—Ni1104.95 (12)C1—C2—H2A109.6
C11—N4—Ni1116.68 (13)N2—C2—H2B109.6
C10—N4—H4D107.5C1—C2—H2B109.6
C11—N4—H4D107.5H2A—C2—H2B108.1
Ni1—N4—H4D107.5O2—C17—O1119.40 (18)
C9—N3—C6113.18 (17)O2—C17—C18121.02 (18)
C9—N3—Ni1104.49 (12)O1—C17—C18119.56 (18)
C6—N3—Ni1120.57 (12)O2—C17—Ni158.63 (10)
C9—N3—H3A105.8O1—C17—Ni160.82 (10)
C6—N3—H3A105.8C18—C17—Ni1176.35 (15)
Ni1—N3—H3A105.8C14—C16—H16A109.5
C1—N1—C14113.60 (16)C14—C16—H16B109.5
C1—N1—Ni1104.49 (12)H16A—C16—H16B109.5
C14—N1—Ni1120.96 (13)C14—C16—H16C109.5
C1—N1—H1C105.5H16A—C16—H16C109.5
C14—N1—H1C105.5H16B—C16—H16C109.5
Ni1—N1—H1C105.5C22—C23—C24120.4 (3)
C17—O1—Ni187.89 (11)C22—C23—H23119.8
C17—O2—Ni190.50 (12)C24—C23—H23119.8
C2—N2—C3112.02 (16)N1—C1—C2109.69 (16)
C2—N2—Ni1103.61 (12)N1—C1—H1A109.7
C3—N2—Ni1116.50 (12)C2—C1—H1A109.7
C2—N2—H2C108.1N1—C1—H1B109.7
C3—N2—H2C108.1C2—C1—H1B109.7
Ni1—N2—H2C108.1H1A—C1—H1B108.2
C6—C7—H7A109.5C25—C20—C21119.2 (2)
C6—C7—H7B109.5C25—C20—C19118.8 (2)
H7A—C7—H7B109.5C21—C20—C19122.0 (2)
C6—C7—H7C109.5C23—C24—C25120.7 (3)
H7A—C7—H7C109.5C23—C24—H24119.7
H7B—C7—H7C109.5C25—C24—H24119.7
C19—C18—C17120.75 (19)C22—C21—C20121.0 (3)
C19—C18—H18119.6C22—C21—H21119.5
C17—C18—H18119.6C20—C21—H21119.5
N3—C9—C10109.66 (18)N4—C10—C9109.51 (17)
N3—C9—H9A109.7N4—C10—H10A109.8
C10—C9—H9A109.7C9—C10—H10A109.8
N3—C9—H9B109.7N4—C10—H10B109.8
C10—C9—H9B109.7C9—C10—H10B109.8
H9A—C9—H9B108.2H10A—C10—H10B108.2
C14—C13—C11119.19 (17)C20—C25—C24118.9 (3)
C14—C13—H13A107.5C20—C25—H25120.6
C11—C13—H13A107.5C24—C25—H25120.6
C14—C13—H13B107.5C3—C4—H4A109.5
C11—C13—H13B107.5C3—C4—H4B109.5
H13A—C13—H13B107.0H4A—C4—H4B109.5
C11—C12—H12A109.5C3—C4—H4C109.5
C11—C12—H12B109.5H4A—C4—H4C109.5
H12A—C12—H12B109.5H4B—C4—H4C109.5
C11—C12—H12C109.5N2—C3—C5111.13 (16)
H12A—C12—H12C109.5N2—C3—C4112.18 (17)
H12B—C12—H12C109.5C5—C3—C4109.85 (18)
N3—C6—C7107.25 (18)N2—C3—H3107.8
N3—C6—C8111.87 (17)C5—C3—H3107.8
C7—C6—C8107.64 (18)C4—C3—H3107.8
N3—C6—C5110.21 (16)C23—C22—C21119.8 (3)
C7—C6—C5111.26 (18)C23—C22—H22120.1
C8—C6—C5108.59 (19)C21—C22—H22120.1
N4—C11—C12112.52 (19)C18—C19—C20126.5 (2)
N4—C11—C13110.49 (17)C18—C19—H19116.7
C12—C11—C13108.28 (17)C20—C19—H19116.7
N2—Ni1—N4—C10109.46 (13)C10—N4—C11—C1256.9 (2)
O2—Ni1—N4—C1076.4 (2)Ni1—N4—C11—C12177.99 (14)
N1—Ni1—N4—C10164.72 (14)C10—N4—C11—C13178.01 (17)
N3—Ni1—N4—C1018.70 (14)Ni1—N4—C11—C1360.86 (19)
O1—Ni1—N4—C1069.22 (14)C14—C13—C11—N474.0 (2)
C17—Ni1—N4—C1070.05 (16)C14—C13—C11—C12162.3 (2)
N2—Ni1—N4—C11125.64 (14)N3—C6—C5—C365.4 (2)
O2—Ni1—N4—C1148.5 (3)C7—C6—C5—C353.4 (2)
N1—Ni1—N4—C1139.82 (14)C8—C6—C5—C3171.74 (18)
N3—Ni1—N4—C11143.60 (14)C1—N1—C14—C1379.9 (2)
O1—Ni1—N4—C1155.67 (14)Ni1—N1—C14—C1345.6 (2)
C17—Ni1—N4—C1154.85 (16)C1—N1—C14—C15158.53 (18)
N4—Ni1—N3—C910.68 (14)Ni1—N1—C14—C1576.0 (2)
N2—Ni1—N3—C993.76 (14)C1—N1—C14—C1639.8 (2)
O2—Ni1—N3—C9171.01 (13)Ni1—N1—C14—C16165.28 (15)
N1—Ni1—N3—C938.6 (9)C11—C13—C14—N164.3 (2)
O1—Ni1—N3—C9109.24 (14)C11—C13—C14—C1555.1 (3)
C17—Ni1—N3—C9140.33 (14)C11—C13—C14—C16173.57 (19)
N4—Ni1—N3—C6139.34 (15)C3—N2—C2—C1173.67 (16)
N2—Ni1—N3—C634.91 (15)Ni1—N2—C2—C147.29 (18)
O2—Ni1—N3—C660.32 (15)Ni1—O2—C17—O12.56 (19)
N1—Ni1—N3—C690.1 (8)Ni1—O2—C17—C18175.75 (18)
O1—Ni1—N3—C6122.09 (15)Ni1—O1—C17—O22.50 (19)
C17—Ni1—N3—C691.00 (15)Ni1—O1—C17—C18175.83 (18)
N4—Ni1—N1—C196.07 (13)C19—C18—C17—O210.4 (3)
N2—Ni1—N1—C18.36 (13)C19—C18—C17—O1167.9 (2)
O2—Ni1—N1—C1103.55 (13)C19—C18—C17—Ni173 (3)
N3—Ni1—N1—C147.0 (9)N4—Ni1—C17—O2175.87 (11)
O1—Ni1—N1—C1165.28 (12)N2—Ni1—C17—O24.71 (15)
C17—Ni1—N1—C1134.05 (13)N1—Ni1—C17—O281.22 (12)
N4—Ni1—N1—C1433.51 (15)N3—Ni1—C17—O298.87 (12)
N2—Ni1—N1—C14137.94 (15)O1—Ni1—C17—O2177.45 (19)
O2—Ni1—N1—C14126.86 (14)N4—Ni1—C17—O11.57 (15)
N3—Ni1—N1—C1482.6 (8)N2—Ni1—C17—O1177.85 (10)
O1—Ni1—N1—C1465.14 (14)O2—Ni1—C17—O1177.45 (19)
C17—Ni1—N1—C1496.36 (15)N1—Ni1—C17—O196.23 (12)
N4—Ni1—O1—C17178.78 (12)N3—Ni1—C17—O183.69 (12)
N2—Ni1—O1—C174.5 (2)N4—Ni1—C17—C1899 (2)
O2—Ni1—O1—C171.48 (11)N2—Ni1—C17—C1881 (2)
N1—Ni1—O1—C1785.81 (12)O2—Ni1—C17—C1886 (2)
N3—Ni1—O1—C1796.60 (12)N1—Ni1—C17—C18167 (2)
N4—Ni1—O2—C179.5 (2)N3—Ni1—C17—C1813 (2)
N2—Ni1—O2—C17176.17 (12)O1—Ni1—C17—C1897 (2)
N1—Ni1—O2—C1798.67 (12)C14—N1—C1—C2170.05 (17)
N3—Ni1—O2—C1783.56 (12)Ni1—N1—C1—C236.21 (18)
O1—Ni1—O2—C171.50 (11)N2—C2—C1—N159.0 (2)
N4—Ni1—N2—C2111.64 (12)C22—C23—C24—C252.0 (5)
O2—Ni1—N2—C266.40 (12)C25—C20—C21—C222.6 (3)
N1—Ni1—N2—C220.58 (12)C19—C20—C21—C22176.0 (2)
N3—Ni1—N2—C2163.13 (12)C11—N4—C10—C9173.26 (18)
O1—Ni1—N2—C271.7 (2)Ni1—N4—C10—C945.6 (2)
C17—Ni1—N2—C268.82 (14)N3—C9—C10—N459.0 (2)
N4—Ni1—N2—C3124.88 (14)C21—C20—C25—C242.9 (3)
O2—Ni1—N2—C357.08 (14)C19—C20—C25—C24175.7 (2)
N1—Ni1—N2—C3144.06 (14)C23—C24—C25—C200.7 (4)
N3—Ni1—N2—C339.65 (14)C2—N2—C3—C5179.60 (17)
O1—Ni1—N2—C351.8 (2)Ni1—N2—C3—C560.6 (2)
C17—Ni1—N2—C354.66 (16)C2—N2—C3—C457.0 (2)
C6—N3—C9—C10171.36 (17)Ni1—N2—C3—C4176.01 (15)
Ni1—N3—C9—C1038.4 (2)C6—C5—C3—N274.0 (2)
C9—N3—C6—C7161.79 (17)C6—C5—C3—C4161.30 (19)
Ni1—N3—C6—C773.53 (19)C24—C23—C22—C212.3 (4)
C9—N3—C6—C844.0 (2)C20—C21—C22—C230.0 (4)
Ni1—N3—C6—C8168.65 (15)C17—C18—C19—C20177.7 (2)
C9—N3—C6—C577.0 (2)C25—C20—C19—C18160.3 (2)
Ni1—N3—C6—C547.7 (2)C21—C20—C19—C1818.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O1Wi0.932.113.009 (2)163
N2—H2C···O1Wi0.932.193.073 (2)158
O1W—H1WA···O1ii0.80 (3)1.94 (3)2.732 (2)173 (3)
O1W—H1WB···O50.80 (3)2.13 (3)2.921 (3)171 (3)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H7O2)(C16H36N4)]ClO4·H2O
Mr607.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)10.6903 (11), 14.5396 (8), 19.2498 (12)
β (°) 94.225 (6)
V3)2983.9 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.16
Crystal size (mm)0.42 × 0.21 × 0.16
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.464, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
10750, 5001, 4533
Rint0.022
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04
No. of reflections5001
No. of parameters355
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.53

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O1Wi0.932.113.009 (2)163.2
N2—H2C···O1Wi0.932.193.073 (2)157.6
O1W—H1WA···O1ii0.80 (3)1.94 (3)2.732 (2)173 (3)
O1W—H1WB···O50.80 (3)2.13 (3)2.921 (3)171 (3)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Foundation of Natural Science of China (No. 90412015) and the Key Project of Science and Technology of Guangzhou City (2005Z12E4023) for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCurtis, N. F. (1965). J. Chem. Soc. A, pp. 924–931.  CrossRef Web of Science Google Scholar
First citationOu, G.-C. & Ng, S. W. (2010a). Acta Cryst. E66, m1295–m1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, G.-C. & Ng, S. W. (2010b). Acta Cryst. E66, m1468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhang, M. & Yuan, X.-Y. (2008). Acta Cryst. E64, m1010.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhang, M. & Yuan, X.-Y. (2009a). Acta Cryst. E65, m726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhou, Q. & Ng, S. W. (2009b). Acta Cryst. E65, m728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTait, A. M. & Busch, D. H. (1976). Inorg. Synth. 18, 4–7.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds