organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1′S,6′S,8′S,9′R)-9′-Bromo-12′-oxa­spiro­[1,3-dioxolane-2,4′-tri­cyclo­[6.3.1.01,6]dodeca­ne]

aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, A.P. India
*Correspondence e-mail: gmsc@uohyd.ernet.in, gm@orgchem.iisc.ernet.in

(Received 15 June 2012; accepted 29 June 2012; online 10 July 2012)

In an endeavor directed towards the construction of the oxabicyclic[3.2.1]octane segment present in the bioactive natural products of cortistatins and icetexanes genre, the title compound, C13H19BrO3, was synthesized from (4aR,9aS)-1,3,4,4a,5,6,9,9a-octa­hydro­spiro­[benzo[7]annulene-2,2′-[1,3]dioxolane]-4a-ol via a transannular bromo-etherification protocol. The six-membered ring adopts a twist-boat conformation, while the fused cycloheptane ring adopts a chair conformation. The crystal packing is effected through two distinct inter­molecular C—H⋯O hydrogen-bond patterns and mol­ecules are arranged to define an inter­esting motif along the b axis.

Related literature

For the isolation and biological activity of cortistatins, see: Aoki et al. (2006[Aoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N. & Kobayashi, M. (2006). J. Am. Chem. Soc. 128, 3148-3149.], 2007[Aoki, S., Watanabe, Y., Tanabe, D., Setiawan, A., Arai, M. & Kobayashi, M. (2007). Tetrahedron Lett. 48, 4485-4488.]); Watanabe et al. (2007[Watanabe, Y., Aoki, S., Tanabe, D., Setiawan, A. & Kobayashi, M. (2007). Tetrahedron, 63, 4074-4079.]); Zhao (2010[Zhao, W. (2010). Chem. Rev. 110, 1706-1745.]) and for icetexanes, see: Esquivel et al. (1995[Esquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139-143.]); Uchiyama et al. (2005[Uchiyama, N., Kabututu, Z., Kubata, B. K., Kiuchi, F., Ito, M., Nakajima-Shimada, J., Aoki, T., Ohkubo, K., Fukuzumi, S., Martin, S. K., Honda, G. & Urade, Y. (2005). Antimicrob. Agents Chemother. 49, 5123-5126.]). For synthetic approaches towards the construction of the oxabicyclic core of cortistatins, see: Zhao (2010[Zhao, W. (2010). Chem. Rev. 110, 1706-1745.]); Hardin Narayan et al. (2010[Hardin Narayan, A. R., Simmons, E. M. & Sarpong, R. (2010). Eur. J. Org. Chem. pp. 3553-3567.]) and references cited therein. For their use in the treatment of blindness, see: Czako et al. (2009[Czako, B., Kurti, L., Mammoto, A., Ingber, D. E. & Corey, E. J. (2009). J. Am. Chem. Soc. 131, 9014-9015.]). For the construction of relevant 6/7 fused-ring systems involving ring-closing metathesis, see: Mehta & Likhite (2008[Mehta, G. & Likhite, N. S. (2008). Tetrahedron Lett. 49, 7113-7116.], 2009[Mehta, G. & Likhite, N. S. (2009). Tetrahedron Lett. 50, 5263-5266.]). For an example of the exploitation of transannular bromo­etherification towards natural products synthesis, see: Mehta & Sen (2010[Mehta, G. & Sen, S. (2010). Tetrahedron Lett. 51, 503-507.]); Mehta & Yaragorla (2011[Mehta, G. & Yaragorla, S. (2011). Tetrahedron Lett. 52, 4485-4489.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19BrO3

  • Mr = 303.19

  • Monoclinic, P 21 /c

  • a = 11.0159 (3) Å

  • b = 12.6619 (3) Å

  • c = 10.2763 (2) Å

  • β = 117.044 (1)°

  • V = 1276.63 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.446, Tmax = 0.644

  • 11338 measured reflections

  • 2368 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.02

  • 2368 reflections

  • 154 parameters

  • ?

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.98 2.53 3.445 (3) 156
C1—H1⋯O1ii 0.98 2.57 3.471 (3) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The oxabicyclic[3,2,1]octane scaffold manifest itself in a variety of terpenoids class of natural products viz. icetexanes (Fig. 1; Esquivel et al., 1995 & Uchiyama et al., 2005) and cortistatin family (Fig. 1; Aoki et al., 2006, 2007 & Watanabe et al., 2007). In particular, cortistatin A and its structural siblings isolated in trace amounts by Kobayashi & coworkers from an Indonesian marine sponge corticium simplex were shown to possess novel architecture and exhibited potent and promising anti-angiogenic activity (Zhao, 2010) and were effective in treating blindness (Czako et al., 2009), thereby triggering interest to devise tactics for their total synthesis and diversity creation. These attributes of cortistatins encouraged us to devise a strategy to gain rapid access to the oxatricyclic ABC core present in cortistatins.

Several synthetic approaches to cortistatins have been reported utilizing ring-expansion approach, oxidative dearomatization, electrocyclization, 1,3-dipolar cycloaddition/electrocyclization cascade, transannular [4 + 3] cycloaddition, classical Michael/aldol condensation cascade cyclization as the key strategic steps to access the oxatricyclic segment (Hardin Narayan et al., 2010). However, the present strategy employs a stepwise transannular bromoetherification sequence (Mehta & Sen, 2010; Mehta & Yaragorla, 2011) on a readily accessible bicyclic compound obtained via RCM (Fig. 2; Mehta & Likhite, 2008, 2009).

A two step transannular bromoetherification protocol on 7 furnished the title compound 3 (Fig. 2) as the major product corresponding to the oxatricyclic core present in icetexanes along with a minor regioisomeric compound 4 representing the oxatricyclic segment present in cortistatins.

The title compound 3 was crystallized from ethylacetate-hexane(1:1) and the structure was solved and refined in monoclinic P21/c space group with one molecule of 3 in the asymmetric unit. An ORTEP diagram of 3 drawn at 30% ellipsoidal probability is depicted in Fig 3. From the packing diagram it can be seen that the centrosymmetric molecules are connected by weak C11–H11···O2 (2.53 Å, 156°) hydrogen bonds forming a dimeric motif and these dimeric units are further connected by C1–H1···O1 (2.57 Å, 153°)) hydrogen bonds, three dimensionally (Fig. 4).These two hydrogen bond patterns link the molecules to define an interesting motif along the b axis.

Related literature top

For the isolation and biological activity of cortistatins, see: Aoki et al. (2006, 2007); Watanabe et al. (2007); Zhao (2010) and for icetexanes, see: Esquivel et al. (1995); Uchiyama et al. (2005). For synthetic approaches towards the construction of the oxabicyclic core of cortistatins, see: Zhao (2010); Hardin Narayan et al. (2010) and references cited therein. For their use in the treatment of blindness, see: Czako et al. (2009). For the construction of relevant 6/7 fused-ring systems involving ring-closing metathesis, see: Mehta & Likhite (2008, 2009). For an example of the exploitation of transannular bromoetherification towards natural products synthesis, see: Mehta & Sen (2010); Mehta & Yaragorla (2011).

Experimental top

The synthesis of the title compound 3 as depicted in Fig. 2 emanates from the known 7-(prop-2-en-1-yl)-1,4-dioxaspiro[4.5]decan-8-one 5 through addition of butenylmagnesium bromide (1.5 equiv.) in THF at r.t. to furnish the desired RCM precursor 6 in decent yield. Exposure of 6 to Grubbs-1s t generation catalyst (10 mol%) in benzene at r.t. gave the bicyclic compound 7 in good yield. Finally, the stepwise transannular bromotherification on 7 was executed via bromination with pyH+Br3- (1.2 equiv.) in DCM at 0 °C followed by etherification in the presence of 10 M aq. NaOH in THF at 60 °C for 4 h to deliver 3, mp. 78–80 °C, as a colorless crystalline compound in 51% yield.

Refinement top

All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms on the C atoms were introduced on calculated positions and were included in the refinement riding on their respective parent atoms

Structure description top

The oxabicyclic[3,2,1]octane scaffold manifest itself in a variety of terpenoids class of natural products viz. icetexanes (Fig. 1; Esquivel et al., 1995 & Uchiyama et al., 2005) and cortistatin family (Fig. 1; Aoki et al., 2006, 2007 & Watanabe et al., 2007). In particular, cortistatin A and its structural siblings isolated in trace amounts by Kobayashi & coworkers from an Indonesian marine sponge corticium simplex were shown to possess novel architecture and exhibited potent and promising anti-angiogenic activity (Zhao, 2010) and were effective in treating blindness (Czako et al., 2009), thereby triggering interest to devise tactics for their total synthesis and diversity creation. These attributes of cortistatins encouraged us to devise a strategy to gain rapid access to the oxatricyclic ABC core present in cortistatins.

Several synthetic approaches to cortistatins have been reported utilizing ring-expansion approach, oxidative dearomatization, electrocyclization, 1,3-dipolar cycloaddition/electrocyclization cascade, transannular [4 + 3] cycloaddition, classical Michael/aldol condensation cascade cyclization as the key strategic steps to access the oxatricyclic segment (Hardin Narayan et al., 2010). However, the present strategy employs a stepwise transannular bromoetherification sequence (Mehta & Sen, 2010; Mehta & Yaragorla, 2011) on a readily accessible bicyclic compound obtained via RCM (Fig. 2; Mehta & Likhite, 2008, 2009).

A two step transannular bromoetherification protocol on 7 furnished the title compound 3 (Fig. 2) as the major product corresponding to the oxatricyclic core present in icetexanes along with a minor regioisomeric compound 4 representing the oxatricyclic segment present in cortistatins.

The title compound 3 was crystallized from ethylacetate-hexane(1:1) and the structure was solved and refined in monoclinic P21/c space group with one molecule of 3 in the asymmetric unit. An ORTEP diagram of 3 drawn at 30% ellipsoidal probability is depicted in Fig 3. From the packing diagram it can be seen that the centrosymmetric molecules are connected by weak C11–H11···O2 (2.53 Å, 156°) hydrogen bonds forming a dimeric motif and these dimeric units are further connected by C1–H1···O1 (2.57 Å, 153°)) hydrogen bonds, three dimensionally (Fig. 4).These two hydrogen bond patterns link the molecules to define an interesting motif along the b axis.

For the isolation and biological activity of cortistatins, see: Aoki et al. (2006, 2007); Watanabe et al. (2007); Zhao (2010) and for icetexanes, see: Esquivel et al. (1995); Uchiyama et al. (2005). For synthetic approaches towards the construction of the oxabicyclic core of cortistatins, see: Zhao (2010); Hardin Narayan et al. (2010) and references cited therein. For their use in the treatment of blindness, see: Czako et al. (2009). For the construction of relevant 6/7 fused-ring systems involving ring-closing metathesis, see: Mehta & Likhite (2008, 2009). For an example of the exploitation of transannular bromoetherification towards natural products synthesis, see: Mehta & Sen (2010); Mehta & Yaragorla (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Representative example of cortistatin family (cortistatin A 1) & icetexane family (salviasperanol 2).
[Figure 2] Fig. 2. The synthesis of the title compound.
[Figure 3] Fig. 3. The molecular structure of the title compound 3, with the atom numbering scheme. Dispalcement ellipsoids for non-H atoms are drawn at 30% probability.
[Figure 4] Fig. 4. A packing diagram of the title compound 3, viewed along the b axis. Dotted lines indicate the C—H···O hydrogen bonds.
(1'S,6'S,8'S,9'R)-9'-Bromo-12'-oxaspiro[1,3- dioxolane-2,4'-tricyclo[6.3.1.01,6]dodecane] top
Crystal data top
C13H19BrO3F(000) = 624
Mr = 303.19Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4277 reflections
a = 11.0159 (3) Åθ = 2.6–24.2°
b = 12.6619 (3) ŵ = 3.21 mm1
c = 10.2763 (2) ÅT = 296 K
β = 117.044 (1)°Block, colorless
V = 1276.63 (5) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2368 independent reflections
Radiation source: fine-focus sealed tube1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1312
Tmin = 0.446, Tmax = 0.644k = 1514
11338 measured reflectionsl = 912
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.2892P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2368 reflectionsΔρmax = 0.25 e Å3
154 parametersΔρmin = 0.32 e Å3
0 restraints
Crystal data top
C13H19BrO3V = 1276.63 (5) Å3
Mr = 303.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0159 (3) ŵ = 3.21 mm1
b = 12.6619 (3) ÅT = 296 K
c = 10.2763 (2) Å0.30 × 0.20 × 0.15 mm
β = 117.044 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1859 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.644Rint = 0.027
11338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030154 parameters
wR(F2) = 0.0760 restraints
S = 1.02Δρmax = 0.25 e Å3
2368 reflectionsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70444 (3)0.11259 (2)0.71170 (3)0.06222 (13)
O10.66345 (15)0.35583 (12)0.61783 (15)0.0391 (4)
O20.7122 (2)0.73040 (14)0.57865 (18)0.0640 (5)
O30.84162 (18)0.72842 (13)0.82550 (18)0.0529 (4)
C10.6947 (2)0.24005 (18)0.8181 (2)0.0424 (5)
H10.65410.22050.88200.051*
C110.6034 (2)0.32101 (18)0.7079 (2)0.0404 (5)
H110.51250.29150.64800.048*
C130.7789 (3)0.8290 (2)0.7886 (3)0.0547 (7)
H13A0.84410.88480.83770.066*
H13B0.70430.83440.81380.066*
C40.7757 (2)0.42229 (17)0.7136 (2)0.0348 (5)
C20.8358 (2)0.2838 (2)0.9109 (3)0.0479 (6)
H2A0.89850.22590.95660.057*
H2B0.83450.32750.98780.057*
C70.7737 (2)0.66148 (18)0.7019 (2)0.0439 (5)
C50.8222 (3)0.48727 (18)0.6187 (3)0.0482 (6)
H5A0.89060.44820.60380.058*
H5B0.74530.49970.52390.058*
C30.8863 (2)0.34948 (19)0.8204 (3)0.0439 (5)
H3A0.96380.39160.88540.053*
H3B0.91650.30250.76630.053*
C90.7113 (2)0.49168 (18)0.7904 (2)0.0371 (5)
H90.77790.50450.89220.044*
C80.6607 (2)0.59613 (19)0.7111 (3)0.0463 (6)
H8A0.62050.63710.76130.056*
H8B0.59000.58220.61300.056*
C60.8809 (3)0.59178 (19)0.6909 (3)0.0510 (6)
H6A0.91920.62820.63500.061*
H6B0.95400.57900.78810.061*
C120.7281 (3)0.8340 (2)0.6265 (3)0.0637 (7)
H12A0.64190.87130.58050.076*
H12B0.79340.87030.60320.076*
C100.5940 (2)0.4216 (2)0.7848 (3)0.0467 (6)
H10A0.60610.40610.88250.056*
H10B0.50650.45600.73000.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0895 (3)0.04123 (17)0.0633 (2)0.00573 (13)0.04119 (18)0.00022 (12)
O10.0431 (9)0.0423 (8)0.0294 (8)0.0076 (7)0.0142 (7)0.0022 (6)
O20.0890 (14)0.0478 (10)0.0373 (10)0.0019 (10)0.0129 (10)0.0008 (8)
O30.0545 (10)0.0443 (9)0.0425 (9)0.0021 (8)0.0068 (8)0.0056 (7)
C10.0489 (14)0.0453 (13)0.0364 (12)0.0032 (10)0.0223 (11)0.0011 (10)
C110.0321 (12)0.0482 (13)0.0380 (13)0.0066 (10)0.0134 (10)0.0023 (10)
C130.0602 (17)0.0420 (14)0.0590 (17)0.0012 (12)0.0246 (14)0.0077 (12)
C40.0335 (12)0.0383 (11)0.0327 (12)0.0032 (9)0.0153 (10)0.0047 (10)
C20.0453 (14)0.0514 (14)0.0364 (13)0.0075 (11)0.0094 (11)0.0049 (11)
C70.0488 (14)0.0384 (12)0.0372 (13)0.0014 (11)0.0132 (11)0.0032 (10)
C50.0584 (16)0.0430 (13)0.0569 (15)0.0040 (11)0.0382 (13)0.0051 (11)
C30.0313 (12)0.0458 (12)0.0504 (14)0.0011 (10)0.0149 (11)0.0047 (11)
C90.0325 (12)0.0443 (12)0.0337 (12)0.0026 (9)0.0144 (10)0.0042 (10)
C80.0370 (12)0.0462 (14)0.0493 (15)0.0067 (10)0.0140 (11)0.0024 (11)
C60.0516 (15)0.0453 (14)0.0621 (16)0.0098 (11)0.0311 (13)0.0067 (12)
C120.075 (2)0.0490 (16)0.0596 (17)0.0066 (14)0.0237 (15)0.0063 (13)
C100.0399 (13)0.0549 (14)0.0508 (14)0.0033 (11)0.0255 (12)0.0035 (12)
Geometric parameters (Å, º) top
Br1—C11.979 (2)C2—H2B0.9700
O1—C111.430 (3)C7—C61.519 (3)
O1—C41.449 (3)C7—C81.533 (4)
O2—C121.384 (3)C5—C61.511 (3)
O2—C71.430 (3)C5—H5A0.9700
O3—C131.416 (3)C5—H5B0.9700
O3—C71.424 (3)C3—H3A0.9700
C1—C21.512 (3)C3—H3B0.9700
C1—C111.519 (3)C9—C81.520 (3)
C1—H10.9800C9—C101.547 (3)
C11—C101.528 (3)C9—H90.9800
C11—H110.9800C8—H8A0.9700
C13—C121.498 (4)C8—H8B0.9700
C13—H13A0.9700C6—H6A0.9700
C13—H13B0.9700C6—H6B0.9700
C4—C31.524 (3)C12—H12A0.9700
C4—C51.531 (3)C12—H12B0.9700
C4—C91.552 (3)C10—H10A0.9700
C2—C31.529 (3)C10—H10B0.9700
C2—H2A0.9700
C11—O1—C4104.04 (15)C4—C5—H5A109.5
C12—O2—C7109.37 (19)C6—C5—H5B109.5
C13—O3—C7107.58 (18)C4—C5—H5B109.5
C2—C1—C11111.43 (19)H5A—C5—H5B108.1
C2—C1—Br1110.40 (16)C4—C3—C2111.99 (18)
C11—C1—Br1108.80 (15)C4—C3—H3A109.2
C2—C1—H1108.7C2—C3—H3A109.2
C11—C1—H1108.7C4—C3—H3B109.2
Br1—C1—H1108.7C2—C3—H3B109.2
O1—C11—C1110.25 (17)H3A—C3—H3B107.9
O1—C11—C10103.78 (17)C8—C9—C10112.51 (19)
C1—C11—C10110.77 (19)C8—C9—C4111.12 (18)
O1—C11—H11110.6C10—C9—C4102.94 (18)
C1—C11—H11110.6C8—C9—H9110.0
C10—C11—H11110.6C10—C9—H9110.0
O3—C13—C12103.1 (2)C4—C9—H9110.0
O3—C13—H13A111.2C9—C8—C7113.1 (2)
C12—C13—H13A111.2C9—C8—H8A108.9
O3—C13—H13B111.2C7—C8—H8A108.9
C12—C13—H13B111.2C9—C8—H8B108.9
H13A—C13—H13B109.1C7—C8—H8B108.9
O1—C4—C3107.08 (17)H8A—C8—H8B107.8
O1—C4—C5107.98 (17)C5—C6—C7111.8 (2)
C3—C4—C5113.22 (18)C5—C6—H6A109.3
O1—C4—C9103.17 (16)C7—C6—H6A109.3
C3—C4—C9112.15 (18)C5—C6—H6B109.3
C5—C4—C9112.49 (18)C7—C6—H6B109.3
C1—C2—C3111.68 (18)H6A—C6—H6B107.9
C1—C2—H2A109.3O2—C12—C13106.1 (2)
C3—C2—H2A109.3O2—C12—H12A110.5
C1—C2—H2B109.3C13—C12—H12A110.5
C3—C2—H2B109.3O2—C12—H12B110.5
H2A—C2—H2B107.9C13—C12—H12B110.5
O3—C7—O2105.78 (18)H12A—C12—H12B108.7
O3—C7—C6107.5 (2)C11—C10—C9104.20 (17)
O2—C7—C6111.1 (2)C11—C10—H10A110.9
O3—C7—C8112.2 (2)C9—C10—H10A110.9
O2—C7—C8108.2 (2)C11—C10—H10B110.9
C6—C7—C8111.80 (19)C9—C10—H10B110.9
C6—C5—C4110.50 (19)H10A—C10—H10B108.9
C6—C5—H5A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.982.533.445 (3)156
C1—H1···O1ii0.982.573.471 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H19BrO3
Mr303.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.0159 (3), 12.6619 (3), 10.2763 (2)
β (°) 117.044 (1)
V3)1276.63 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.446, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
11338, 2368, 1859
Rint0.027
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.02
No. of reflections2368
No. of parameters154
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.982.533.445 (3)156.0
C1—H1···O1ii0.982.573.471 (3)153.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

TBK thanks the University Grants Commission, India for the award of Dr Kothari post-doctoral fellowship. We thank Mr Saikat Sen for his help in determining the X-ray crystal structure at the CCD facility of the Indian Institute of Science (IISc), Bangalore. GM acknowledges the research support from Eli Lilly and Jubilant-Bhartia Foundations.

References

First citationAoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N. & Kobayashi, M. (2006). J. Am. Chem. Soc. 128, 3148–3149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAoki, S., Watanabe, Y., Tanabe, D., Setiawan, A., Arai, M. & Kobayashi, M. (2007). Tetrahedron Lett. 48, 4485–4488.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzako, B., Kurti, L., Mammoto, A., Ingber, D. E. & Corey, E. J. (2009). J. Am. Chem. Soc. 131, 9014–9015.  Web of Science PubMed CAS Google Scholar
First citationEsquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139–143.  CSD CrossRef CAS Web of Science Google Scholar
First citationHardin Narayan, A. R., Simmons, E. M. & Sarpong, R. (2010). Eur. J. Org. Chem. pp. 3553–3567.  Web of Science CrossRef Google Scholar
First citationMehta, G. & Likhite, N. S. (2008). Tetrahedron Lett. 49, 7113–7116.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehta, G. & Likhite, N. S. (2009). Tetrahedron Lett. 50, 5263–5266.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehta, G. & Sen, S. (2010). Tetrahedron Lett. 51, 503–507.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehta, G. & Yaragorla, S. (2011). Tetrahedron Lett. 52, 4485–4489.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchiyama, N., Kabututu, Z., Kubata, B. K., Kiuchi, F., Ito, M., Nakajima-Shimada, J., Aoki, T., Ohkubo, K., Fukuzumi, S., Martin, S. K., Honda, G. & Urade, Y. (2005). Antimicrob. Agents Chemother. 49, 5123–5126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatanabe, Y., Aoki, S., Tanabe, D., Setiawan, A. & Kobayashi, M. (2007). Tetrahedron, 63, 4074–4079.  Web of Science CrossRef CAS Google Scholar
First citationZhao, W. (2010). Chem. Rev. 110, 1706–1745.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds