organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Adamantan-1-yl)-3-(4-meth­­oxy­phenyl)prop-2-en-1-one1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 13 July 2012; accepted 16 July 2012; online 25 July 2012)

The title mol­ecule, C20H24O2, is a chalconoid derivative in which the keto–enone group is slightly distorted from planarity; the O=C—C=C torsion angle is 12.24 (13)°.

Related literature

For the role of the keto-enone group in chalconoid chemistry, see: Homan et al. (1997[Homan, H., Herreros, R. N., Abboud, L. M., Esseffar, M., Mo, O., Yanez, M., Foces, C. F., Gallardo, A. R., Ripoll, M. M., Vegas, A., Molina, M. T., Jimenez, P., Roux, M. V. & Turrion, C. J. (1997). J. Org. Chem. 62, 8503-8512.]). Many chalconoid derivatives are bioactive agents with anti­flammatory, anti­tumor, anti­viral, gastroprotective and/or mutagenic activity, see: Ravishankar et al. (2003[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143-o1145.]); Sathiya Moorthi et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480-o482.]); Patil et al. (2006[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896-o898.]). Some adamantane derivatives have shown anti­viral activity, especially against influenza and herpes viruses, see: Mullica et al. (1999[Mullica, D. F., Scott, T. G., Farmer, J. M. & Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845-848.]). For the synthesis, see: Kazlov et al. (1995[Kazlov, N. G., Korotyshova, G. P. & Zalesskaya, E. G. (1995). Zh. Obshch. Khim. 65, 1367-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O2

  • Mr = 296.39

  • Monoclinic, P 21 /n

  • a = 6.4648 (1) Å

  • b = 16.4712 (3) Å

  • c = 14.6134 (4) Å

  • β = 92.612 (1)°

  • V = 1554.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.35 × 0.28 × 0.24 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.973, Tmax = 0.981

  • 11653 measured reflections

  • 6165 independent reflections

  • 4860 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 0.99

  • 6165 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Many chalconoid derivatives are bioactive agents with antiflammatory, antitumor, antiviral, gastroprotective and/or mutagenic activity (Ravishankar et al., 2003; Sathiya Moorthi et al., 2005; Patil et al., 2006). Title compound I is a chalconoid derivative with an adamantyl group in place of an aromatic system. Some adamantane derivatives have shown antiviral activity, specially against influenza and herpes viruses (Mullica et al., 1999).

The keto-enone group in particular plays a significant role in chalconoid chemistry since it is susceptible to a number of transformations (Homan et al., 1997). In I, this group is not planar: the O=C—C=C torsion is 12.24 (13)°. All other bond lengths and bond angles are within expected norms.

Related literature top

For the role of the keto-enone group in chalconoid chemistry, see: Homan et al. (1997). Many chalconoid derivatives are bioactive agents with antiflammatory, antitumor, antiviral, gastroprotective and/or mutagenic activity, see: Ravishankar et al. (2003); Sathiya Moorthi et al. (2005); Patil et al. (2006). Some adamantane derivatives have shown antiviral activity, especially against influenza and herpes viruses, see: Mullica et al. (1999). For the synthesis, see: Kazlov et al. (1995).

Experimental top

The title compound was synthesized by Dr. Gabriel Garcia following the procedure of Kazlov et al. (1995). A suitable crystal was obtained by recrystallization from ethanol.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances constrained to the range 0.95–1.00 Å, and Uiso=1.2Ueq (1.5 for the methyl group), thereafter refined as riding. A torsional parameter was also refined for the methyl group.

Structure description top

Many chalconoid derivatives are bioactive agents with antiflammatory, antitumor, antiviral, gastroprotective and/or mutagenic activity (Ravishankar et al., 2003; Sathiya Moorthi et al., 2005; Patil et al., 2006). Title compound I is a chalconoid derivative with an adamantyl group in place of an aromatic system. Some adamantane derivatives have shown antiviral activity, specially against influenza and herpes viruses (Mullica et al., 1999).

The keto-enone group in particular plays a significant role in chalconoid chemistry since it is susceptible to a number of transformations (Homan et al., 1997). In I, this group is not planar: the O=C—C=C torsion is 12.24 (13)°. All other bond lengths and bond angles are within expected norms.

For the role of the keto-enone group in chalconoid chemistry, see: Homan et al. (1997). Many chalconoid derivatives are bioactive agents with antiflammatory, antitumor, antiviral, gastroprotective and/or mutagenic activity, see: Ravishankar et al. (2003); Sathiya Moorthi et al. (2005); Patil et al. (2006). Some adamantane derivatives have shown antiviral activity, especially against influenza and herpes viruses, see: Mullica et al. (1999). For the synthesis, see: Kazlov et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
1-(Adamantan-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C20H24O2F(000) = 640
Mr = 296.39Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5846 reflections
a = 6.4648 (1) Åθ = 2.6–33.7°
b = 16.4712 (3) ŵ = 0.08 mm1
c = 14.6134 (4) ÅT = 90 K
β = 92.612 (1)°Prism, colorless
V = 1554.46 (6) Å30.35 × 0.28 × 0.24 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6165 independent reflections
Radiation source: sealed tube4860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 33.7°, θmin = 2.8°
CCD rotation images, thick slices scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 2524
Tmin = 0.973, Tmax = 0.981l = 2222
11653 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.485P]
where P = (Fo2 + 2Fc2)/3
6165 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
0 constraints
Crystal data top
C20H24O2V = 1554.46 (6) Å3
Mr = 296.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4648 (1) ŵ = 0.08 mm1
b = 16.4712 (3) ÅT = 90 K
c = 14.6134 (4) Å0.35 × 0.28 × 0.24 mm
β = 92.612 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6165 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4860 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.026
11653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.99Δρmax = 0.47 e Å3
6165 reflectionsΔρmin = 0.29 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.17484 (12)0.49689 (5)0.77117 (6)0.01203 (14)
C21.39267 (13)0.50311 (5)0.81790 (6)0.01455 (15)
H2A1.49650.51050.77090.017*
H2B1.39940.55090.8590.017*
C31.44258 (12)0.42587 (5)0.87340 (6)0.01529 (16)
H31.5850.43030.90270.018*
C41.43213 (13)0.35203 (5)0.80922 (7)0.01668 (16)
H4A1.46710.30210.84440.02*
H4B1.5340.35840.76110.02*
C51.21310 (13)0.34455 (5)0.76470 (6)0.01470 (15)
H51.20620.2960.72360.018*
C61.05468 (13)0.33524 (5)0.83940 (6)0.01542 (15)
H6A0.91360.33040.81070.019*
H6B1.08480.28530.87530.019*
C71.06570 (13)0.40947 (5)0.90296 (6)0.01396 (15)
H70.96260.40320.95150.017*
C81.01594 (12)0.48667 (5)0.84674 (6)0.01350 (15)
H8A1.02120.53460.88760.016*
H8B0.87440.48270.81820.016*
C91.16385 (13)0.42133 (5)0.70825 (6)0.01387 (15)
H9A1.02360.41680.67860.017*
H9B1.26450.4270.65960.017*
C101.28430 (13)0.41594 (6)0.94802 (6)0.01611 (16)
H10A1.31630.36640.98440.019*
H10B1.29190.46320.98990.019*
C111.12481 (13)0.57368 (5)0.71656 (6)0.01414 (15)
C120.93169 (13)0.57598 (5)0.65717 (6)0.01481 (15)
H120.82980.53480.66160.018*
C130.90363 (13)0.63728 (5)0.59715 (6)0.01471 (15)
H131.01730.67350.59340.018*
C140.72429 (13)0.65630 (5)0.53694 (6)0.01366 (15)
C150.53920 (13)0.61095 (5)0.53374 (6)0.01574 (16)
H150.52960.56350.57030.019*
C160.37129 (13)0.63471 (5)0.47793 (6)0.01635 (16)
H160.24820.60320.47580.02*
C170.38227 (13)0.70527 (5)0.42450 (6)0.01399 (15)
C180.56503 (13)0.75027 (5)0.42526 (6)0.01432 (15)
H180.57470.79730.38810.017*
C190.73332 (13)0.72522 (5)0.48129 (6)0.01446 (15)
H190.85790.75590.48170.017*
C200.21429 (14)0.79562 (5)0.31728 (6)0.01815 (17)
H20A0.25120.84320.35490.027*
H20B0.07860.80430.28610.027*
H20C0.31870.78750.27160.027*
O11.23918 (11)0.63302 (4)0.72203 (5)0.02329 (16)
O20.20598 (10)0.72512 (4)0.37467 (5)0.01787 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0108 (3)0.0126 (3)0.0126 (3)0.0000 (2)0.0000 (2)0.0001 (3)
C20.0118 (3)0.0153 (4)0.0165 (4)0.0015 (3)0.0007 (3)0.0012 (3)
C30.0114 (3)0.0175 (4)0.0168 (4)0.0001 (3)0.0013 (3)0.0023 (3)
C40.0146 (3)0.0163 (4)0.0193 (4)0.0042 (3)0.0033 (3)0.0022 (3)
C50.0169 (3)0.0122 (3)0.0151 (4)0.0011 (3)0.0019 (3)0.0010 (3)
C60.0159 (3)0.0142 (4)0.0162 (4)0.0018 (3)0.0019 (3)0.0005 (3)
C70.0133 (3)0.0164 (4)0.0123 (4)0.0003 (3)0.0025 (3)0.0003 (3)
C80.0119 (3)0.0151 (4)0.0137 (4)0.0017 (3)0.0020 (3)0.0011 (3)
C90.0154 (3)0.0138 (4)0.0125 (4)0.0006 (3)0.0016 (3)0.0011 (3)
C100.0163 (3)0.0187 (4)0.0132 (4)0.0002 (3)0.0010 (3)0.0008 (3)
C110.0144 (3)0.0136 (4)0.0143 (4)0.0008 (3)0.0005 (3)0.0002 (3)
C120.0141 (3)0.0148 (4)0.0154 (4)0.0006 (3)0.0007 (3)0.0006 (3)
C130.0157 (3)0.0139 (4)0.0144 (4)0.0017 (3)0.0005 (3)0.0010 (3)
C140.0150 (3)0.0134 (3)0.0126 (4)0.0015 (3)0.0005 (3)0.0002 (3)
C150.0179 (4)0.0143 (4)0.0150 (4)0.0000 (3)0.0008 (3)0.0026 (3)
C160.0153 (3)0.0168 (4)0.0169 (4)0.0018 (3)0.0008 (3)0.0020 (3)
C170.0139 (3)0.0151 (4)0.0129 (3)0.0012 (3)0.0000 (3)0.0002 (3)
C180.0160 (3)0.0135 (3)0.0135 (4)0.0005 (3)0.0008 (3)0.0013 (3)
C190.0147 (3)0.0140 (4)0.0147 (4)0.0005 (3)0.0004 (3)0.0004 (3)
C200.0208 (4)0.0154 (4)0.0179 (4)0.0016 (3)0.0032 (3)0.0016 (3)
O10.0247 (3)0.0153 (3)0.0289 (4)0.0052 (2)0.0089 (3)0.0040 (3)
O20.0146 (3)0.0193 (3)0.0194 (3)0.0003 (2)0.0026 (2)0.0047 (2)
Geometric parameters (Å, º) top
C1—C111.5223 (12)C9—H9B0.99
C1—C21.5402 (11)C10—H10A0.99
C1—C91.5471 (12)C10—H10B0.99
C1—C81.5513 (12)C11—O11.2260 (11)
C2—C31.5351 (12)C11—C121.4882 (12)
C2—H2A0.99C12—C131.3443 (12)
C2—H2B0.99C12—H120.95
C3—C41.5355 (13)C13—C141.4572 (12)
C3—C101.5378 (13)C13—H130.95
C3—H31C14—C191.3992 (12)
C4—C51.5361 (12)C14—C151.4095 (12)
C4—H4A0.99C15—C161.3842 (12)
C4—H4B0.99C15—H150.95
C5—C91.5354 (12)C16—C171.4037 (12)
C5—C61.5382 (12)C16—H160.95
C5—H51C17—O21.3639 (10)
C6—C71.5351 (12)C17—C181.3943 (12)
C6—H6A0.99C18—C191.3939 (12)
C6—H6B0.99C18—H180.95
C7—C101.5354 (12)C19—H190.95
C7—C81.5398 (12)C20—O21.4348 (11)
C7—H71C20—H20A0.98
C8—H8A0.99C20—H20B0.98
C8—H8B0.99C20—H20C0.98
C9—H9A0.99
C11—C1—C2110.20 (7)H8A—C8—H8B108.2
C11—C1—C9110.73 (7)C5—C9—C1109.91 (7)
C2—C1—C9109.47 (7)C5—C9—H9A109.7
C11—C1—C8109.37 (7)C1—C9—H9A109.7
C2—C1—C8108.26 (7)C5—C9—H9B109.7
C9—C1—C8108.77 (6)C1—C9—H9B109.7
C3—C2—C1110.19 (7)H9A—C9—H9B108.2
C3—C2—H2A109.6C7—C10—C3109.42 (7)
C1—C2—H2A109.6C7—C10—H10A109.8
C3—C2—H2B109.6C3—C10—H10A109.8
C1—C2—H2B109.6C7—C10—H10B109.8
H2A—C2—H2B108.1C3—C10—H10B109.8
C2—C3—C4109.35 (7)H10A—C10—H10B108.2
C2—C3—C10109.40 (7)O1—C11—C12120.34 (8)
C4—C3—C10109.68 (7)O1—C11—C1121.00 (7)
C2—C3—H3109.5C12—C11—C1118.65 (7)
C4—C3—H3109.5C13—C12—C11118.97 (8)
C10—C3—H3109.5C13—C12—H12120.5
C3—C4—C5109.65 (7)C11—C12—H12120.5
C3—C4—H4A109.7C12—C13—C14129.45 (8)
C5—C4—H4A109.7C12—C13—H13115.3
C3—C4—H4B109.7C14—C13—H13115.3
C5—C4—H4B109.7C19—C14—C15117.94 (7)
H4A—C4—H4B108.2C19—C14—C13118.18 (7)
C9—C5—C4109.03 (7)C15—C14—C13123.84 (8)
C9—C5—C6109.56 (7)C16—C15—C14120.76 (8)
C4—C5—C6109.76 (7)C16—C15—H15119.6
C9—C5—H5109.5C14—C15—H15119.6
C4—C5—H5109.5C15—C16—C17120.24 (8)
C6—C5—H5109.5C15—C16—H16119.9
C7—C6—C5109.64 (7)C17—C16—H16119.9
C7—C6—H6A109.7O2—C17—C18124.33 (8)
C5—C6—H6A109.7O2—C17—C16115.67 (7)
C7—C6—H6B109.7C18—C17—C16120.00 (8)
C5—C6—H6B109.7C19—C18—C17119.06 (8)
H6A—C6—H6B108.2C19—C18—H18120.5
C10—C7—C6109.34 (7)C17—C18—H18120.5
C10—C7—C8109.71 (7)C18—C19—C14121.97 (8)
C6—C7—C8109.39 (7)C18—C19—H19119
C10—C7—H7109.5C14—C19—H19119
C6—C7—H7109.5O2—C20—H20A109.5
C8—C7—H7109.5O2—C20—H20B109.5
C7—C8—C1109.90 (6)H20A—C20—H20B109.5
C7—C8—H8A109.7O2—C20—H20C109.5
C1—C8—H8A109.7H20A—C20—H20C109.5
C7—C8—H8B109.7H20B—C20—H20C109.5
C1—C8—H8B109.7C17—O2—C20116.96 (7)
C11—C1—C2—C3179.68 (7)C2—C3—C10—C759.86 (9)
C9—C1—C2—C358.31 (9)C4—C3—C10—C760.08 (9)
C8—C1—C2—C360.12 (9)C2—C1—C11—O18.16 (12)
C1—C2—C3—C459.33 (9)C9—C1—C11—O1129.42 (9)
C1—C2—C3—C1060.81 (9)C8—C1—C11—O1110.73 (9)
C2—C3—C4—C560.59 (9)C2—C1—C11—C12172.81 (7)
C10—C3—C4—C559.37 (9)C9—C1—C11—C1251.55 (10)
C3—C4—C5—C960.99 (9)C8—C1—C11—C1268.30 (9)
C3—C4—C5—C659.03 (9)O1—C11—C12—C1312.24 (13)
C9—C5—C6—C760.23 (9)C1—C11—C12—C13168.72 (8)
C4—C5—C6—C759.47 (9)C11—C12—C13—C14175.10 (8)
C5—C6—C7—C1060.07 (9)C12—C13—C14—C19179.04 (9)
C5—C6—C7—C860.10 (9)C12—C13—C14—C151.35 (15)
C10—C7—C8—C159.94 (9)C19—C14—C15—C160.75 (13)
C6—C7—C8—C160.01 (8)C13—C14—C15—C16176.95 (8)
C11—C1—C8—C7179.62 (6)C14—C15—C16—C170.90 (14)
C2—C1—C8—C759.53 (8)C15—C16—C17—O2177.53 (8)
C9—C1—C8—C759.34 (8)C15—C16—C17—C182.08 (14)
C4—C5—C9—C160.05 (9)O2—C17—C18—C19178.00 (8)
C6—C5—C9—C160.10 (9)C16—C17—C18—C191.57 (13)
C11—C1—C9—C5179.57 (7)C17—C18—C19—C140.10 (13)
C2—C1—C9—C558.74 (9)C15—C14—C19—C181.25 (13)
C8—C1—C9—C559.36 (8)C13—C14—C19—C18176.58 (8)
C6—C7—C10—C360.33 (9)C18—C17—O2—C202.20 (13)
C8—C7—C10—C359.64 (9)C16—C17—O2—C20178.21 (8)

Experimental details

Crystal data
Chemical formulaC20H24O2
Mr296.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)6.4648 (1), 16.4712 (3), 14.6134 (4)
β (°) 92.612 (1)
V3)1554.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.24
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11653, 6165, 4860
Rint0.026
(sin θ/λ)max1)0.781
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 0.99
No. of reflections6165
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

1CAS 174315-56-1.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank Dr Gabriel Garcia for providing the sample.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoman, H., Herreros, R. N., Abboud, L. M., Esseffar, M., Mo, O., Yanez, M., Foces, C. F., Gallardo, A. R., Ripoll, M. M., Vegas, A., Molina, M. T., Jimenez, P., Roux, M. V. & Turrion, C. J. (1997). J. Org. Chem. 62, 8503–8512.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKazlov, N. G., Korotyshova, G. P. & Zalesskaya, E. G. (1995). Zh. Obshch. Khim. 65, 1367–1369.  CAS Google Scholar
First citationMullica, D. F., Scott, T. G., Farmer, J. M. & Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o480–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds