organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2RS)-2-(2,4-Di­fluoro­phen­yl)-1-[(4-iodo­benz­yl)(meth­yl)amino]-3-(1H-1,2,4-tri­azol-1-yl)propan-2-ol

aSchool of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China, and bDepartment of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, People's Republic of China
*Correspondence e-mail: wuzhijun999@sina.com

(Received 8 June 2012; accepted 10 July 2012; online 14 July 2012)

In the title compound (common name: iodiconazole), C19H19F2IN4O, there is an intra­molecular O—H⋯N hydrogen bond and mol­ecules are linked by weak inter­actions only, namely C—H⋯N, C—H⋯O and C—H⋯F hydrogen bonds, and π-electron ring–π-electron ring inter­actions between the triazole rings with centroid–centroid distances of 3.725 (3) Å.

Related literature

For the pharmacological activity of azole compounds, see Fromtling (1988[Fromtling, R. A. (1988). Clin. Microbiol. Rev. 1, 187-217.]); Gallagher et al. (2003[Gallagher, J. G., Dodds Ashley, E. S., Drew, R. H. & Perfect, J. R. (2003). Expert Opin. Pharmacother. 4, 147-164.]). For a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of trace amounts of iodiconazole in human plasma, see Gao et al. (2009[Gao, S. H., Tao, X., Sun, L. N., Sheng, C. Q., Zhang, W. N., Yun, Y. L., Li, J. X., Miao, H. J. & Chen, W. S. (2009). J. Chromatogr. B, 877, 382-386.]). For an ultra-fast LC method for the determination of iodiconazole in microdialysis samples and its application in the calibration of laboratory-made linear probes, see Sun et al. (2010[Sun, N., Wen, J., Lu, G., Hong, Z. Y., Fan, G. R., Wu, Y. T., Sheng, C. Q. & Zhang, W. N. (2010). J. Pharm. Biomed. Anal. 51, 248-251.]). For the high-performance liquid chromatographic (HPLC) determination of iodiconazole in rat plasma, see Wen et al. (2007[Wen, J., Fan, G. R., Hong, Z. Y., Chai, Y. F., Yin, Y. T., Sheng, C. Q. & Zhang, W. N. (2007). J. Pharm. Biomed. Anal. 50, 580-586.]). For the synthesis of iodiconazole, see Sheng et al. (2002[Sheng, C. Q., Zhang, W. N., Ji, H. T., Zhou, Y. J., Song, Y. L., Zhou, J., Lu, J. G. & Yang, S. (2002). J. Chin. Pharm. Sci. 11, 5-10.]); Zhang et al. (2001[Zhang, W. N., Ji, H. T., Zhou, Y. J., Lu, J. G., Zhou, J., Liu, X. L., Zhang, L. & Zhu, J. (2001). Chin. Patent No. CN1292378A.]). For classification of the hydrogen bonds, see Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory, p. 61. International Union of Crystallography Book Series. Oxford, New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19F2IN4O

  • Mr = 484.28

  • Monoclinic, C 2/c

  • a = 34.398 (14) Å

  • b = 5.812 (2) Å

  • c = 21.619 (9) Å

  • β = 114.895 (5)°

  • V = 3921 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.635, Tmax = 0.681

  • 8473 measured reflections

  • 3929 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.07

  • 3929 reflections

  • 249 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N2 0.97 2.60 3.045 (4) 108
C9—H9B⋯N4 0.97 2.42 3.191 (4) 136
C12—H12A⋯O1 0.93 2.39 2.759 (4) 103
C17—H17A⋯F1 0.97 2.43 3.061 (4) 122
O1—H1⋯N1 0.81 (2) 1.97 (3) 2.651 (4) 141 (4)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azole antifungal drugs play chief role in the treatment of fungal infections. Azole drugs are advantageous because they undergo stable metabolism and can be applied either per os or by injection. They are efficient for internal and external fungal infections (Gallagher et al., 2003), too. In order to obtain new compounds with more potent activity, less toxicity and a broader antifungal spectrum, several azole compounds have been synthesized (Sheng et al., 2002; Zhang et al., 2001). Herein we report the crystal structure determination of the title compound which belongs to the same chemical class.

There is an intramolecular O1—H1···N1 hydrogen bond of moderate strength in the structure. (Table 1; For classification of the hydrogen bonds, see Gilli & Gilli, 2009). The molecules are linked by weak C—H···N, C—H···O and C—H···F hydrogen bonds (Table 1). Moreover, there are π-electron ring—π-electron ring interactions between the triazole rings with the centroid distances of 3.725 (3) Å with the symmetry code of the second ring is -x, y, 3/2-z.

Related literature top

For the pharmacological activity of azole compounds, see Fromtling (1988); Gallagher et al. (2003). For a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of trace amounts of iodiconazole in human plasma, see Gao et al. (2009). For an ultra-fast LC method for the determination of iodiconazole in microdialysis samples and its application in the calibration of laboratory-made linear probes, see Sun et al. (2010). For the high-performance liquid chromatographic (HPLC) determination of iodiconazole in rat plasma, see Wen et al. (2007). For the synthesis of iodiconazole, see Sheng et al. (2002); Zhang et al. (2001). For classification of the hydrogen bonds, see Gilli & Gilli (2009).

Experimental top

The title compound was prepared according to the procedure described by Sheng et al. (2002): To a stirred mixture of 1-[2-(2,4-difluorophenyl)-2,3-epoxypropyl]-1H-1,2,4-triazole methanesulphonate (3 g, 0.009 mol), anhydrous CH3OH (20 ml) and NaOH (0.4 g), 4-iodo-N-methyl-benzylamine (4.46 g, 0.022 mol) was added. The mixture was heated at 50–60 C° for 6 h. The reaction was monitored by thin-layer chromatography (TLC). The resulting mixture was kept at room temperature for 12 h. After filtration, the filtrate was evaporated under reduced pressure. Water (50 ml) was added to the residue and it was extracted with ethyl acetate (3 × 100 ml). The extract was washed with saturated NaCl solution (50 ml × 3), dried over anhydrous Na2SO4 and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether: EtOAc 1: 1 v/v) to afford iodiconazole. Single crystals (colourless prisms) were grown by slow evaporation of a solution of the title compound in petroleum ether/acetone (1:1, v/v) at room temperature.

Refinement top

All the hydrogens were discernible in the difference electron density map. Despite of it the hydrogens attached to the C atoms were treated in the riding atom formalism: Caryl—H=0.93 , Cmethyl—H=0.96, Cmethylene—H=0.97 Å. Uiso(H)=1.2Ueq(Caryl/methylene), Uiso(H)=1.5Ueq(Cmethyl). The positional parameters of the hydroxyl hydrogen H1 were refined applying the distance restraint O1-H1 distance equal to 0.82 (2) Å. Uiso(H1)=1.5Ueq(O1).

Structure description top

Azole antifungal drugs play chief role in the treatment of fungal infections. Azole drugs are advantageous because they undergo stable metabolism and can be applied either per os or by injection. They are efficient for internal and external fungal infections (Gallagher et al., 2003), too. In order to obtain new compounds with more potent activity, less toxicity and a broader antifungal spectrum, several azole compounds have been synthesized (Sheng et al., 2002; Zhang et al., 2001). Herein we report the crystal structure determination of the title compound which belongs to the same chemical class.

There is an intramolecular O1—H1···N1 hydrogen bond of moderate strength in the structure. (Table 1; For classification of the hydrogen bonds, see Gilli & Gilli, 2009). The molecules are linked by weak C—H···N, C—H···O and C—H···F hydrogen bonds (Table 1). Moreover, there are π-electron ring—π-electron ring interactions between the triazole rings with the centroid distances of 3.725 (3) Å with the symmetry code of the second ring is -x, y, 3/2-z.

For the pharmacological activity of azole compounds, see Fromtling (1988); Gallagher et al. (2003). For a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determination of trace amounts of iodiconazole in human plasma, see Gao et al. (2009). For an ultra-fast LC method for the determination of iodiconazole in microdialysis samples and its application in the calibration of laboratory-made linear probes, see Sun et al. (2010). For the high-performance liquid chromatographic (HPLC) determination of iodiconazole in rat plasma, see Wen et al. (2007). For the synthesis of iodiconazole, see Sheng et al. (2002); Zhang et al. (2001). For classification of the hydrogen bonds, see Gilli & Gilli (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbitrary radius.
(2RS)-2-(2,4-Difluorophenyl)-1-[(4-iodobenzyl)(methyl)amino]- 3-(1H-1,2,4-triazol-1-yl)propan-2-ol top
Crystal data top
C19H19F2IN4OF(000) = 1920
Mr = 484.28Dx = 1.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 935 reflections
a = 34.398 (14) Åθ = 2.4–27.3°
b = 5.812 (2) ŵ = 1.67 mm1
c = 21.619 (9) ÅT = 293 K
β = 114.895 (5)°Prism, colourless
V = 3921 (3) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
3929 independent reflections
Radiation source: fine-focus sealed tube3441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4237
Tmin = 0.635, Tmax = 0.681k = 76
8473 measured reflectionsl = 2026
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.2617P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3929 reflectionsΔρmax = 0.66 e Å3
249 parametersΔρmin = 0.89 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
72 constraintsExtinction coefficient: 0.0042 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H19F2IN4OV = 3921 (3) Å3
Mr = 484.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 34.398 (14) ŵ = 1.67 mm1
b = 5.812 (2) ÅT = 293 K
c = 21.619 (9) Å0.30 × 0.25 × 0.25 mm
β = 114.895 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3441 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.681Rint = 0.035
8473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.66 e Å3
3929 reflectionsΔρmin = 0.89 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.039478 (7)0.71329 (5)1.084656 (12)0.05727 (14)
O10.14979 (9)0.4892 (4)0.86484 (13)0.0526 (6)
H10.1635 (13)0.562 (7)0.8990 (16)0.079*
F10.12653 (7)1.0421 (3)0.72386 (10)0.0579 (5)
F20.21734 (8)0.6966 (5)0.64091 (13)0.0730 (7)
N10.18407 (7)0.8775 (4)0.92893 (12)0.0381 (5)
N20.06131 (9)0.6265 (5)0.81152 (15)0.0512 (7)
N30.02469 (12)0.4885 (7)0.8643 (2)0.0786 (11)
N40.04556 (10)0.8147 (6)0.8307 (2)0.0631 (9)
C10.08547 (10)0.8148 (6)1.04983 (16)0.0428 (7)
C20.11877 (10)0.6647 (5)1.05788 (17)0.0432 (7)
H2A0.12020.52071.07750.052*
C30.14984 (11)0.7318 (5)1.03632 (17)0.0423 (7)
H3A0.17220.63191.04210.051*
C40.14813 (9)0.9441 (5)1.00639 (15)0.0388 (6)
C50.11418 (11)1.0879 (5)0.99801 (16)0.0451 (7)
H5A0.11221.22980.97690.054*
C60.08326 (10)1.0275 (6)1.01995 (17)0.0486 (7)
H6A0.06121.12881.01470.058*
C70.18278 (10)1.0181 (5)0.98510 (15)0.0432 (7)
H7A0.17821.17780.97080.052*
H7B0.21031.00781.02420.052*
C80.22209 (10)0.9452 (7)0.91844 (18)0.0532 (8)
H8A0.22390.85280.88290.080*
H8B0.24740.92260.95990.080*
H8C0.21981.10450.90560.080*
C90.14435 (9)0.9017 (5)0.86661 (15)0.0383 (6)
H9A0.14641.03590.84150.046*
H9B0.12050.92480.87870.046*
C100.13590 (9)0.6840 (5)0.82054 (16)0.0378 (6)
C110.15886 (9)0.6898 (5)0.77369 (15)0.0375 (6)
C120.18560 (10)0.5119 (5)0.77230 (17)0.0471 (7)
H12A0.19030.38850.80200.056*
C130.20542 (11)0.5125 (6)0.72800 (19)0.0535 (8)
H13A0.22320.39170.72800.064*
C140.19842 (11)0.6929 (6)0.68468 (18)0.0490 (8)
C150.17194 (11)0.8736 (6)0.68202 (16)0.0473 (7)
H15A0.16710.99490.65160.057*
C160.15292 (9)0.8656 (5)0.72667 (15)0.0392 (6)
C170.08801 (11)0.6515 (6)0.77506 (18)0.0499 (8)
H17A0.07790.78280.74480.060*
H17B0.08450.51600.74700.060*
C180.02440 (14)0.7188 (9)0.8626 (3)0.0735 (13)
H18A0.01010.80590.88270.088*
C190.04840 (13)0.4356 (8)0.8317 (2)0.0675 (11)
H19A0.05510.28660.82390.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04130 (16)0.0808 (2)0.05347 (18)0.01084 (10)0.02357 (12)0.00551 (11)
O10.0739 (16)0.0366 (11)0.0525 (14)0.0017 (11)0.0318 (13)0.0096 (10)
F10.0711 (12)0.0534 (11)0.0545 (11)0.0266 (10)0.0318 (10)0.0207 (9)
F20.0674 (15)0.1079 (19)0.0620 (14)0.0039 (13)0.0450 (13)0.0128 (13)
N10.0346 (12)0.0465 (13)0.0348 (12)0.0034 (10)0.0161 (10)0.0018 (10)
N20.0443 (15)0.0601 (16)0.0555 (17)0.0121 (13)0.0270 (14)0.0102 (14)
N30.069 (2)0.095 (3)0.092 (3)0.020 (2)0.054 (2)0.009 (2)
N40.0486 (17)0.067 (2)0.078 (2)0.0083 (14)0.0309 (17)0.0192 (17)
C10.0370 (15)0.0553 (18)0.0365 (15)0.0055 (13)0.0159 (13)0.0072 (13)
C20.0497 (17)0.0382 (15)0.0451 (17)0.0023 (12)0.0232 (15)0.0025 (12)
C30.0460 (17)0.0410 (15)0.0448 (17)0.0051 (12)0.0241 (15)0.0024 (13)
C40.0432 (15)0.0389 (15)0.0341 (14)0.0047 (12)0.0160 (12)0.0046 (11)
C50.0547 (17)0.0373 (15)0.0426 (17)0.0024 (13)0.0198 (14)0.0048 (13)
C60.0446 (16)0.0522 (18)0.0471 (18)0.0099 (14)0.0174 (14)0.0009 (14)
C70.0460 (15)0.0450 (16)0.0392 (16)0.0108 (13)0.0184 (13)0.0038 (13)
C80.0389 (15)0.074 (2)0.0492 (19)0.0104 (15)0.0214 (14)0.0001 (17)
C90.0384 (14)0.0405 (15)0.0380 (15)0.0016 (12)0.0179 (12)0.0011 (12)
C100.0399 (15)0.0367 (14)0.0394 (16)0.0013 (11)0.0192 (13)0.0020 (12)
C110.0396 (15)0.0373 (14)0.0350 (15)0.0014 (11)0.0152 (13)0.0002 (11)
C120.0521 (17)0.0379 (15)0.0497 (18)0.0068 (13)0.0200 (15)0.0032 (13)
C130.0469 (17)0.0555 (19)0.060 (2)0.0086 (14)0.0242 (16)0.0091 (16)
C140.0409 (17)0.069 (2)0.0398 (17)0.0059 (15)0.0197 (14)0.0122 (15)
C150.0487 (17)0.0569 (18)0.0345 (16)0.0043 (15)0.0157 (14)0.0051 (14)
C160.0407 (15)0.0408 (15)0.0366 (15)0.0042 (12)0.0167 (13)0.0015 (12)
C170.0450 (17)0.064 (2)0.0450 (18)0.0134 (15)0.0234 (15)0.0101 (15)
C180.049 (2)0.104 (4)0.081 (3)0.012 (2)0.040 (2)0.025 (3)
C190.061 (2)0.068 (2)0.087 (3)0.0139 (19)0.044 (2)0.007 (2)
Geometric parameters (Å, º) top
I1—C12.103 (3)C6—H6A0.9300
O1—C101.429 (4)C7—H7A0.9700
O1—H10.810 (19)C7—H7B0.9700
F1—C161.354 (3)C8—H8A0.9600
F2—C141.356 (4)C8—H8B0.9600
N1—C91.467 (4)C8—H8C0.9600
N1—C81.472 (4)C9—C101.560 (4)
N1—C71.480 (4)C9—H9A0.9700
N2—C191.335 (5)C9—H9B0.9700
N2—N41.360 (4)C10—C111.525 (4)
N2—C171.448 (4)C10—C171.534 (4)
N3—C191.320 (5)C11—C121.393 (4)
N3—C181.339 (6)C11—C161.394 (4)
N4—C181.319 (6)C12—C131.390 (5)
C1—C61.382 (5)C12—H12A0.9300
C1—C21.391 (5)C13—C141.358 (5)
C2—C31.390 (5)C13—H13A0.9300
C2—H2A0.9300C14—C151.375 (5)
C3—C41.383 (4)C15—C161.376 (4)
C3—H3A0.9300C15—H15A0.9300
C4—C51.385 (4)C17—H17A0.9700
C4—C71.510 (4)C17—H17B0.9700
C5—C61.380 (5)C18—H18A0.9300
C5—H5A0.9300C19—H19A0.9300
C10—O1—H196 (3)C10—C9—H9A109.4
C9—N1—C8112.2 (2)N1—C9—H9B109.4
C9—N1—C7111.3 (2)C10—C9—H9B109.4
C8—N1—C7108.3 (2)H9A—C9—H9B108.0
C19—N2—N4109.8 (3)O1—C10—C11110.0 (2)
C19—N2—C17129.5 (3)O1—C10—C17107.3 (3)
N4—N2—C17120.7 (3)C11—C10—C17107.1 (2)
C19—N3—C18102.5 (4)O1—C10—C9107.2 (2)
C18—N4—N2101.4 (3)C11—C10—C9113.4 (2)
C6—C1—C2120.0 (3)C17—C10—C9111.7 (3)
C6—C1—I1121.1 (2)C12—C11—C16115.1 (3)
C2—C1—I1118.9 (2)C12—C11—C10122.0 (3)
C3—C2—C1119.4 (3)C16—C11—C10122.9 (3)
C3—C2—H2A120.3C13—C12—C11122.2 (3)
C1—C2—H2A120.3C13—C12—H12A118.9
C4—C3—C2121.3 (3)C11—C12—H12A118.9
C4—C3—H3A119.3C14—C13—C12118.8 (3)
C2—C3—H3A119.3C14—C13—H13A120.6
C3—C4—C5117.9 (3)C12—C13—H13A120.6
C3—C4—C7120.9 (3)F2—C14—C13119.7 (3)
C5—C4—C7121.2 (3)F2—C14—C15117.6 (3)
C6—C5—C4122.0 (3)C13—C14—C15122.7 (3)
C6—C5—H5A119.0C14—C15—C16116.5 (3)
C4—C5—H5A119.0C14—C15—H15A121.7
C5—C6—C1119.3 (3)C16—C15—H15A121.7
C5—C6—H6A120.3F1—C16—C15116.8 (3)
C1—C6—H6A120.3F1—C16—C11118.5 (3)
N1—C7—C4113.2 (2)C15—C16—C11124.7 (3)
N1—C7—H7A108.9N2—C17—C10114.8 (3)
C4—C7—H7A108.9N2—C17—H17A108.6
N1—C7—H7B108.9C10—C17—H17A108.6
C4—C7—H7B108.9N2—C17—H17B108.6
H7A—C7—H7B107.8C10—C17—H17B108.6
N1—C8—H8A109.5H17A—C17—H17B107.5
N1—C8—H8B109.5N4—C18—N3116.0 (4)
H8A—C8—H8B109.5N4—C18—H18A122.0
N1—C8—H8C109.5N3—C18—H18A122.0
H8A—C8—H8C109.5N3—C19—N2110.3 (4)
H8B—C8—H8C109.5N3—C19—H19A124.9
N1—C9—C10111.1 (2)N2—C19—H19A124.9
N1—C9—H9A109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N20.972.603.045 (4)108
C9—H9B···N40.972.423.191 (4)136
C12—H12A···O10.932.392.759 (4)103
C17—H17A···F10.972.433.061 (4)122
O1—H1···N10.81 (2)1.97 (3)2.651 (4)141 (4)

Experimental details

Crystal data
Chemical formulaC19H19F2IN4O
Mr484.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)34.398 (14), 5.812 (2), 21.619 (9)
β (°) 114.895 (5)
V3)3921 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.635, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
8473, 3929, 3441
Rint0.035
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.07
No. of reflections3929
No. of parameters249
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.89

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N20.972.603.045 (4)108.0
C9—H9B···N40.972.423.191 (4)135.7
C12—H12A···O10.932.392.759 (4)103.2
C17—H17A···F10.972.433.061 (4)122.3
O1—H1···N10.810 (19)1.97 (3)2.651 (4)141 (4)
 

Acknowledgements

The authors thank Dr Zhen-Xia Chen (Department of Chemistry, Fudan University, Shanghai) for the structure analysis.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFromtling, R. A. (1988). Clin. Microbiol. Rev. 1, 187–217.  CAS PubMed Google Scholar
First citationGallagher, J. G., Dodds Ashley, E. S., Drew, R. H. & Perfect, J. R. (2003). Expert Opin. Pharmacother. 4, 147–164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, S. H., Tao, X., Sun, L. N., Sheng, C. Q., Zhang, W. N., Yun, Y. L., Li, J. X., Miao, H. J. & Chen, W. S. (2009). J. Chromatogr. B, 877, 382–386.  Web of Science CrossRef CAS Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory, p. 61. International Union of Crystallography Book Series. Oxford, New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, C. Q., Zhang, W. N., Ji, H. T., Zhou, Y. J., Song, Y. L., Zhou, J., Lu, J. G. & Yang, S. (2002). J. Chin. Pharm. Sci. 11, 5–10.  CAS Google Scholar
First citationSun, N., Wen, J., Lu, G., Hong, Z. Y., Fan, G. R., Wu, Y. T., Sheng, C. Q. & Zhang, W. N. (2010). J. Pharm. Biomed. Anal. 51, 248–251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, J., Fan, G. R., Hong, Z. Y., Chai, Y. F., Yin, Y. T., Sheng, C. Q. & Zhang, W. N. (2007). J. Pharm. Biomed. Anal. 50, 580–586.  Google Scholar
First citationZhang, W. N., Ji, H. T., Zhou, Y. J., Lu, J. G., Zhou, J., Liu, X. L., Zhang, L. & Zhu, J. (2001). Chin. Patent No. CN1292378A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds