inorganic compounds
Dilithium disodium nickel(II) cyclohexaphosphate dodecahydrate, Li2Na2NiP6O18·12H2O
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn
The 2Na2NiP6O18·12H2O is characterized by the presence of six-membered P6O186− phosphate ring anions (internal symmetry -1) having a chair conformation and three different cations, viz. Li+, Na+ and Ni2+, to counterbalance the anionic charge. All atoms are in general positions except for nickel, which lies on a special position with 2. Lithium has a tetrahedral environment (LiO4), and sodium and nickel have octahedral environments [NaO6 and Ni(H2O)6, respectively]. The P6O18 rings are linked via corner sharing by NaO6 octahedra and LiO4 tetrahedra to form a three-dimensional framework presenting tunnels running along [010] in which the six-coordinated Ni2+ cations are located. The structure is stabilized by a network of O—H⋯O hydrogen bonds.
of LiRelated literature
For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996). For related structures containing cyclohexaphosphate rings, see: Abid et al. (2011); Amri et al. (2009); Marouani et al. (2010). For hydrogen bonding, see: Blessing (1986). For the synthesis, see: Schülke & Kayser (1985).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812029960/ff2073sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029960/ff2073Isup2.hkl
Li2Na2NiP6O18.12H2O was prepared by mixing Li6P6O18.6H2O (0.5 g, 5 mmol), NiCl2.6H2O (0.71 g, 3 mmol), and NaNO3 (0.03 g, 0.4 mmol) in 50 ml of distillated water and stirring for 30 min at temperature room. The obtained solution was allowed to stand in air until formation of good greenish single crystals of the title compound. Its chemical formula was determined by X-ray diffraction. The used Li6P6O18.6H2O was prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985)
Hydrogen atoms were placed in geometrically idealized positions (O—H =0.85 Å) and treated as riding with Uiso(H) = 1.2 Ueq of their parent atoms.
Cyclophosphohates, corresponding to the anionic formula [PnO3n]n-, constitute the second important family of condensed phosphates after the polyphosphates. The identified cyclic anions, built by n corner-sharing PO4 tetrahedra, correspond to n = 3, 4, 5, 6, 8, 9, 10 and 12. The phosphoric ring anion corresponding to n = 6, called cyclohexaphosphate, has been associated to numerous organic and/or inorganic cations (Averbuch-Pouchot & Durif, 1996). But its association to three mixed cations is still very limited. In this work, we report the preparation and the structural investigation of a novel dilithium disodium nickel cyclohexaphosphate dodecahydrate, Li2Na2NiP6O18.12H2O (I). To our knowledge, there is no cyclohexaphosphate with a mixture of two alkalines and bivalent cations. The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra and the phosphoric ring in the
of the title compound. Among the 21 atoms included in the of this structure, only the Ni atom is in a special position ((Wyckoff position 4 e, 2)). The Li, Na and Ni atoms are coordinated to four, for the first one, and to six, for the last two, oxygen atoms. The NaO6 and P6O18 entities are linked in an alternating manner to generate a two-dimensional open framework, forming so layers parallel to the (a,b) plane (Fig. 2). Adjacent layers are connected by the LiO4 tetrahedra to generate a three dimensional structure exhibiting channels running along the b axis (Fig. 3). Inside these channels, the Ni2+ cation is coordinated by six water molecules. The [Ni(H2O)6]2+ octahedron is almost regular with Ni–O distances ranging from 2.0462 (16) to 2.0691 (18) Å. The smallest distance between two octahedral centers is 9.069 Å. The cyclic anion (P6O18)6- has a chair conformation with geometrical characteristics that show no significant difference deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Abid et al. 2011,Amri et al.2009; Marouani et al.2010). In addition to its interactions with the metallic cations, the phosphoric anion establish with the water molecules an important hydrogen-bonding scheme. The examination of this latter shows the existence of strong hydrogen bonds with distances O···O ranging from 2.643 (3) to 2.677 (3) Å and other weaker ones, with O···O distances falling from 2.741 (3) to 3.304 (3) Å (Blessing, 1986).For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996). For related structures containing cyclohexaphosphate rings, see: Abid et al. (2011); Amri et al. (2009); Marouani et al. (2010). For hydrogen bonding, see: Blessing (1986). For the synthesis, see: Schülke & Kayser (1985).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) 0.5-x, 1.5-y, -z; (ii) 0.5-x, -0.5+y, 0.5-z; (iii) 1-x, y, 0.5-z; (iv) 0.5-x, 0.5+y, 0.5-z; (v) 0.5+x, 1.5-y, 0.5+z] | |
Fig. 2. View of [Na2(P6O18)]n4n- developed along the c axis. | |
Fig. 3. Projection of the structure of Li2Na2NiP6O18.12H2O along the b axis |
Li2Na2NiP6O18·12H2O | F(000) = 1640 |
Mr = 808.58 | Dx = 2.162 Mg m−3 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 17.728 (9) Å | θ = 8.3–10.8° |
b = 10.213 (2) Å | µ = 0.69 mm−1 |
c = 14.801 (7) Å | T = 298 K |
β = 112.04 (4)° | Prism, green |
V = 2484.0 (18) Å3 | 0.40 × 0.35 × 0.30 mm |
Z = 4 |
Nonius MACH-3 diffractometer | 4296 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 28.0°, θmin = 2.3° |
non–profiled ω scans | h = −29→27 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = −1→17 |
Tmin = 0.769, Tmax = 0.819 | l = −1→24 |
7168 measured reflections | 2 standard reflections every 120 min |
6076 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0389P)2 + 4.028P] where P = (Fo2 + 2Fc2)/3 |
6076 reflections | (Δ/σ)max = 0.003 |
186 parameters | Δρmax = 0.80 e Å−3 |
2 restraints | Δρmin = −0.60 e Å−3 |
Li2Na2NiP6O18·12H2O | V = 2484.0 (18) Å3 |
Mr = 808.58 | Z = 4 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56085 Å |
a = 17.728 (9) Å | µ = 0.69 mm−1 |
b = 10.213 (2) Å | T = 298 K |
c = 14.801 (7) Å | 0.40 × 0.35 × 0.30 mm |
β = 112.04 (4)° |
Nonius MACH-3 diffractometer | 4296 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.035 |
Tmin = 0.769, Tmax = 0.819 | 2 standard reflections every 120 min |
7168 measured reflections | intensity decay: 2% |
6076 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 2 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.80 e Å−3 |
6076 reflections | Δρmin = −0.60 e Å−3 |
186 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.38942 (6) | 0.74638 (9) | 0.40089 (7) | 0.02302 (18) | |
Li | 0.2602 (3) | 0.4883 (4) | 0.2527 (3) | 0.0258 (8) | |
O8 | 0.28521 (9) | 0.47433 (15) | 0.13696 (11) | 0.0182 (3) | |
O9 | 0.16879 (9) | 0.61570 (15) | 0.04655 (11) | 0.0209 (3) | |
O10 | 0.14882 (10) | 0.42811 (17) | 0.22717 (13) | 0.0249 (3) | |
H110 | 0.1134 | 0.4875 | 0.2021 | 0.030* | |
H210 | 0.1389 | 0.4015 | 0.2772 | 0.030* | |
O11 | 0.25138 (10) | 0.67633 (16) | 0.27740 (13) | 0.0260 (3) | |
H111 | 0.2134 | 0.6824 | 0.2962 | 0.031* | |
H211 | 0.2414 | 0.7291 | 0.2287 | 0.031* | |
O12 | 0.42660 (15) | 0.6531 (2) | 0.28051 (17) | 0.0437 (5) | |
H112 | 0.4775 | 0.6725 | 0.3012 | 0.052* | |
H212 | 0.4065 | 0.6762 | 0.2205 | 0.052* | |
P1 | 0.15702 (3) | 0.94221 (5) | 0.03614 (4) | 0.01251 (9) | |
P3 | 0.21812 (3) | 0.48781 (5) | 0.04013 (4) | 0.01248 (9) | |
P2 | 0.09260 (3) | 0.68397 (5) | −0.03712 (4) | 0.01298 (9) | |
O4 | 0.07807 (9) | 0.62089 (15) | −0.13208 (11) | 0.0196 (3) | |
O2 | 0.16821 (9) | 0.89346 (15) | 0.13535 (10) | 0.0177 (3) | |
O7 | 0.16162 (10) | 0.37702 (15) | 0.00214 (12) | 0.0216 (3) | |
O5 | 0.02574 (9) | 0.69398 (17) | −0.00121 (12) | 0.0227 (3) | |
O6 | 0.24650 (8) | 0.97174 (17) | 0.04034 (11) | 0.0208 (3) | |
O1 | 0.10493 (10) | 1.05743 (15) | −0.00194 (12) | 0.0243 (3) | |
O3 | 0.12913 (10) | 0.82657 (15) | −0.04140 (11) | 0.0216 (3) | |
Ni1 | 0.5000 | 0.24488 (3) | 0.2500 | 0.01249 (7) | |
O15 | 0.48362 (9) | 0.09969 (14) | 0.33724 (11) | 0.0172 (3) | |
H115 | 0.5184 | 0.0349 | 0.3502 | 0.021* | |
H215 | 0.4838 | 0.1271 | 0.3902 | 0.021* | |
O14 | 0.37693 (8) | 0.24893 (14) | 0.16516 (11) | 0.0172 (3) | |
H114 | 0.3569 | 0.3256 | 0.1540 | 0.021* | |
H214 | 0.3616 | 0.2121 | 0.1087 | 0.021* | |
O13 | 0.47785 (9) | 0.38693 (15) | 0.33445 (11) | 0.0197 (3) | |
H113 | 0.4355 | 0.3760 | 0.3454 | 0.024* | |
H213 | 0.5162 | 0.4089 | 0.3860 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0231 (4) | 0.0223 (4) | 0.0243 (4) | −0.0004 (3) | 0.0097 (3) | −0.0018 (4) |
Li | 0.0293 (19) | 0.029 (2) | 0.0183 (18) | 0.0059 (17) | 0.0085 (15) | 0.0022 (16) |
O8 | 0.0169 (6) | 0.0231 (7) | 0.0128 (6) | 0.0045 (5) | 0.0036 (5) | 0.0027 (5) |
O9 | 0.0216 (6) | 0.0225 (7) | 0.0143 (6) | 0.0095 (5) | 0.0019 (5) | −0.0022 (6) |
O10 | 0.0241 (7) | 0.0267 (8) | 0.0248 (8) | 0.0044 (6) | 0.0104 (6) | 0.0044 (7) |
O11 | 0.0289 (8) | 0.0247 (7) | 0.0284 (9) | −0.0001 (6) | 0.0155 (7) | 0.0001 (7) |
O12 | 0.0520 (13) | 0.0494 (12) | 0.0371 (11) | 0.0085 (10) | 0.0251 (10) | 0.0033 (10) |
P1 | 0.01273 (18) | 0.01321 (18) | 0.0114 (2) | −0.00086 (15) | 0.00431 (15) | 0.00013 (16) |
P3 | 0.01266 (18) | 0.01344 (19) | 0.0114 (2) | −0.00034 (15) | 0.00457 (15) | 0.00006 (16) |
P2 | 0.01426 (19) | 0.01291 (18) | 0.0112 (2) | −0.00007 (15) | 0.00409 (16) | −0.00088 (16) |
O4 | 0.0237 (7) | 0.0195 (6) | 0.0145 (6) | −0.0021 (5) | 0.0059 (5) | −0.0057 (5) |
O2 | 0.0196 (6) | 0.0219 (6) | 0.0131 (6) | −0.0040 (5) | 0.0078 (5) | 0.0001 (5) |
O7 | 0.0271 (7) | 0.0190 (6) | 0.0192 (7) | −0.0097 (6) | 0.0094 (6) | −0.0030 (6) |
O5 | 0.0182 (6) | 0.0324 (8) | 0.0196 (7) | 0.0028 (6) | 0.0096 (6) | 0.0047 (6) |
O6 | 0.0143 (5) | 0.0354 (8) | 0.0134 (6) | −0.0041 (6) | 0.0061 (5) | 0.0029 (6) |
O1 | 0.0257 (7) | 0.0206 (7) | 0.0226 (8) | 0.0085 (6) | 0.0045 (6) | 0.0000 (6) |
O3 | 0.0344 (8) | 0.0162 (6) | 0.0148 (6) | −0.0090 (6) | 0.0100 (6) | −0.0035 (5) |
Ni1 | 0.01256 (13) | 0.01290 (14) | 0.01169 (14) | 0.000 | 0.00419 (11) | 0.000 |
O15 | 0.0206 (6) | 0.0162 (6) | 0.0149 (6) | 0.0014 (5) | 0.0069 (5) | 0.0012 (5) |
O14 | 0.0160 (5) | 0.0176 (6) | 0.0159 (6) | 0.0017 (5) | 0.0035 (5) | −0.0010 (5) |
O13 | 0.0193 (6) | 0.0220 (7) | 0.0186 (7) | −0.0005 (5) | 0.0080 (5) | −0.0051 (6) |
Na1—O1i | 2.4205 (19) | P3—O7 | 1.4754 (16) |
Na1—O5ii | 2.384 (2) | P3—O6iv | 1.5948 (17) |
Na1—O7iii | 2.3737 (19) | P2—O5 | 1.4735 (17) |
Na1—O10iii | 2.556 (2) | P2—O4 | 1.4782 (17) |
Na1—O11 | 2.546 (2) | P2—O3 | 1.6047 (16) |
Na1—O12 | 2.323 (2) | O2—Liiii | 1.927 (4) |
Li—O2i | 1.927 (4) | O7—Na1i | 2.3737 (19) |
Li—O8 | 1.930 (5) | O5—Na1v | 2.384 (2) |
Li—O10 | 1.964 (5) | O6—P3iv | 1.5948 (17) |
Li—O11 | 1.972 (5) | O1—Na1iii | 2.4205 (19) |
O8—P3 | 1.4860 (17) | Ni1—O13 | 2.0469 (16) |
O9—P3 | 1.5944 (16) | Ni1—O13vi | 2.0469 (16) |
O9—P2 | 1.6088 (17) | Ni1—O15vi | 2.0572 (15) |
P1—O1 | 1.4712 (16) | Ni1—O15 | 2.0572 (15) |
P1—O2 | 1.4917 (17) | Ni1—O14vi | 2.0693 (18) |
P1—O3 | 1.5908 (16) | Ni1—O14 | 2.0693 (18) |
P1—O6 | 1.5929 (17) | ||
O12—Na1—O7iii | 167.54 (8) | O7—P3—O9 | 110.00 (10) |
O12—Na1—O5ii | 93.23 (9) | O8—P3—O9 | 106.07 (9) |
O7iii—Na1—O5ii | 91.05 (7) | O7—P3—O6iv | 108.36 (9) |
O12—Na1—O1i | 100.91 (8) | O8—P3—O6iv | 110.34 (9) |
O7iii—Na1—O1i | 90.64 (7) | O9—P3—O6iv | 102.15 (9) |
O5ii—Na1—O1i | 91.76 (7) | O5—P2—O4 | 119.77 (10) |
O12—Na1—O11 | 78.89 (9) | O5—P2—O3 | 110.02 (10) |
O7iii—Na1—O11 | 96.33 (7) | O4—P2—O3 | 106.67 (9) |
O5ii—Na1—O11 | 171.92 (7) | O5—P2—O9 | 108.00 (10) |
O1i—Na1—O11 | 91.45 (7) | O4—P2—O9 | 109.84 (9) |
O12—Na1—O10iii | 78.55 (8) | O3—P2—O9 | 100.90 (9) |
O7iii—Na1—O10iii | 89.14 (7) | P1—O2—Liiii | 118.66 (16) |
O5ii—Na1—O10iii | 101.04 (7) | P3—O7—Na1i | 123.98 (10) |
O1i—Na1—O10iii | 167.20 (7) | P2—O5—Na1v | 124.59 (10) |
O11—Na1—O10iii | 75.86 (7) | P1—O6—P3iv | 133.24 (10) |
O2i—Li—O8 | 115.4 (2) | P1—O1—Na1iii | 121.77 (10) |
O2i—Li—O10 | 107.4 (2) | P1—O3—P2 | 131.77 (10) |
O8—Li—O10 | 110.8 (2) | O13—Ni1—O13vi | 89.73 (9) |
O2i—Li—O11 | 113.7 (2) | O13—Ni1—O15vi | 177.22 (6) |
O8—Li—O11 | 107.3 (2) | O13vi—Ni1—O15vi | 91.32 (7) |
O10—Li—O11 | 101.3 (2) | O13—Ni1—O15 | 91.32 (7) |
P3—O8—Li | 118.83 (15) | O13vi—Ni1—O15 | 177.22 (6) |
P3—O9—P2 | 129.04 (10) | O15vi—Ni1—O15 | 87.76 (9) |
Li—O10—Na1i | 109.74 (15) | O13—Ni1—O14vi | 90.89 (7) |
Li—O11—Na1 | 106.55 (15) | O13vi—Ni1—O14vi | 87.49 (7) |
O1—P1—O2 | 118.46 (10) | O15vi—Ni1—O14vi | 91.73 (6) |
O1—P1—O3 | 109.69 (10) | O15—Ni1—O14vi | 89.92 (6) |
O2—P1—O3 | 110.66 (9) | O13—Ni1—O14 | 87.49 (7) |
O1—P1—O6 | 109.65 (10) | O13vi—Ni1—O14 | 90.89 (7) |
O2—P1—O6 | 105.21 (9) | O15vi—Ni1—O14 | 89.92 (6) |
O3—P1—O6 | 101.78 (9) | O15—Ni1—O14 | 91.73 (6) |
O7—P3—O8 | 118.66 (10) | O14vi—Ni1—O14 | 177.71 (8) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, −y+3/2, −z; (v) x−1/2, −y+3/2, z−1/2; (vi) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H110···O15iii | 0.85 | 1.96 | 2.795 (3) | 165 |
O10—H210···O4vii | 0.87 | 2.03 | 2.851 (3) | 159 |
O11—H111···O14iii | 0.82 | 2.01 | 2.811 (3) | 164 |
O11—H211···O2 | 0.86 | 2.25 | 3.031 (3) | 150 |
O12—H112···O12vi | 0.86 | 2.44 | 3.058 (4) | 130 |
O12—H212···O3iv | 0.86 | 2.48 | 3.304 (3) | 161 |
O12—H212···O4iv | 0.86 | 2.52 | 3.166 (3) | 133 |
O15—H115···O4viii | 0.88 | 1.87 | 2.741 (3) | 171 |
O15—H215···O5i | 0.83 | 1.85 | 2.673 (3) | 174 |
O14—H114···O8 | 0.85 | 1.94 | 2.758 (3) | 163 |
O14—H214···O7ix | 0.86 | 1.78 | 2.643 (3) | 174 |
O13—H113···O2i | 0.83 | 1.97 | 2.789 (3) | 167 |
O13—H213···O1ii | 0.84 | 1.84 | 2.677 (3) | 174 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, −y+3/2, −z; (vi) −x+1, y, −z+1/2; (vii) x, −y+1, z+1/2; (viii) x+1/2, −y+1/2, z+1/2; (ix) −x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | Li2Na2NiP6O18·12H2O |
Mr | 808.58 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 17.728 (9), 10.213 (2), 14.801 (7) |
β (°) | 112.04 (4) |
V (Å3) | 2484.0 (18) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.69 |
Crystal size (mm) | 0.40 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Nonius MACH-3 |
Absorption correction | Part of the refinement model (ΔF) (Walker & Stuart, 1983) |
Tmin, Tmax | 0.769, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7168, 6076, 4296 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.102, 1.07 |
No. of reflections | 6076 |
No. of parameters | 186 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −0.60 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Na1—O1i | 2.4205 (19) | Li—O8 | 1.930 (5) |
Na1—O5ii | 2.384 (2) | Li—O10 | 1.964 (5) |
Na1—O7iii | 2.3737 (19) | Li—O11 | 1.972 (5) |
Na1—O10iii | 2.556 (2) | Ni1—O13 | 2.0469 (16) |
Na1—O11 | 2.546 (2) | Ni1—O15 | 2.0572 (15) |
Na1—O12 | 2.323 (2) | Ni1—O14 | 2.0693 (18) |
Li—O2i | 1.927 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H110···O15iii | 0.85 | 1.96 | 2.795 (3) | 165 |
O10—H210···O4iv | 0.87 | 2.03 | 2.851 (3) | 159 |
O11—H111···O14iii | 0.82 | 2.01 | 2.811 (3) | 164 |
O11—H211···O2 | 0.86 | 2.25 | 3.031 (3) | 150 |
O12—H112···O12v | 0.86 | 2.44 | 3.058 (4) | 130 |
O12—H212···O3vi | 0.86 | 2.48 | 3.304 (3) | 161 |
O12—H212···O4vi | 0.86 | 2.52 | 3.166 (3) | 133 |
O15—H115···O4vii | 0.88 | 1.87 | 2.741 (3) | 171 |
O15—H215···O5i | 0.83 | 1.85 | 2.673 (3) | 174 |
O14—H114···O8 | 0.85 | 1.94 | 2.758 (3) | 163 |
O14—H214···O7viii | 0.86 | 1.78 | 2.643 (3) | 174 |
O13—H113···O2i | 0.83 | 1.97 | 2.789 (3) | 167 |
O13—H213···O1ii | 0.84 | 1.84 | 2.677 (3) | 174 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) −x+1, y, −z+1/2; (vi) −x+1/2, −y+3/2, −z; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x+1/2, −y+1/2, −z. |
Acknowledgements
This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).
References
Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Averbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific. Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclophosphohates, corresponding to the anionic formula [PnO3n]n-, constitute the second important family of condensed phosphates after the polyphosphates. The identified cyclic anions, built by n corner-sharing PO4 tetrahedra, correspond to n = 3, 4, 5, 6, 8, 9, 10 and 12. The phosphoric ring anion corresponding to n = 6, called cyclohexaphosphate, has been associated to numerous organic and/or inorganic cations (Averbuch-Pouchot & Durif, 1996). But its association to three mixed cations is still very limited. In this work, we report the preparation and the structural investigation of a novel dilithium disodium nickel cyclohexaphosphate dodecahydrate, Li2Na2NiP6O18.12H2O (I). To our knowledge, there is no cyclohexaphosphate with a mixture of two alkalines and bivalent cations. The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra and the phosphoric ring in the crystal structure of the title compound. Among the 21 atoms included in the asymmetric unit of this structure, only the Ni atom is in a special position ((Wyckoff position 4 e, site symmetry 2)). The Li, Na and Ni atoms are coordinated to four, for the first one, and to six, for the last two, oxygen atoms. The NaO6 and P6O18 entities are linked in an alternating manner to generate a two-dimensional open framework, forming so layers parallel to the (a,b) plane (Fig. 2). Adjacent layers are connected by the LiO4 tetrahedra to generate a three dimensional structure exhibiting channels running along the b axis (Fig. 3). Inside these channels, the Ni2+ cation is coordinated by six water molecules. The [Ni(H2O)6]2+ octahedron is almost regular with Ni–O distances ranging from 2.0462 (16) to 2.0691 (18) Å. The smallest distance between two octahedral centers is 9.069 Å. The cyclic anion (P6O18)6- has a chair conformation with geometrical characteristics that show no significant difference deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Abid et al. 2011,Amri et al.2009; Marouani et al.2010). In addition to its interactions with the metallic cations, the phosphoric anion establish with the water molecules an important hydrogen-bonding scheme. The examination of this latter shows the existence of strong hydrogen bonds with distances O···O ranging from 2.643 (3) to 2.677 (3) Å and other weaker ones, with O···O distances falling from 2.741 (3) to 3.304 (3) Å (Blessing, 1986).