inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dilithium disodium nickel(II) cyclo­hexa­phosphate dodeca­hydrate, Li2Na2NiP6O18·12H2O

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 14 June 2012; accepted 1 July 2012; online 7 July 2012)

The crystal structure of Li2Na2NiP6O18·12H2O is characterized by the presence of six-membered P6O186− phosphate ring anions (inter­nal symmetry -1) having a chair conformation and three different cations, viz. Li+, Na+ and Ni2+, to counterbalance the anionic charge. All atoms are in general positions except for nickel, which lies on a special position with site symmetry 2. Lithium has a tetra­hedral environment (LiO4), and sodium and nickel have octa­hedral environments [NaO6 and Ni(H2O)6, respectively]. The P6O18 rings are linked via corner sharing by NaO6 octa­hedra and LiO4 tetra­hedra to form a three-dimensional framework presenting tunnels running along [010] in which the six-coordinated Ni2+ cations are located. The structure is stabilized by a network of O—H⋯O hydrogen bonds.

Related literature

For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996[Averbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific.]). For related structures containing cyclo­hexa­phosphate rings, see: Abid et al. (2011[Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549-m1550.]); Amri et al. (2009[Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.]); Marouani et al. (2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702.]). For hydrogen bonding, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]). For the synthesis, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

Experimental

Crystal data
  • Li2Na2NiP6O18·12H2O

  • Mr = 808.58

  • Monoclinic, C 2/c

  • a = 17.728 (9) Å

  • b = 10.213 (2) Å

  • c = 14.801 (7) Å

  • β = 112.04 (4)°

  • V = 2484.0 (18) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.769, Tmax = 0.819

  • 7168 measured reflections

  • 6076 independent reflections

  • 4296 reflections with I > 2σ(I)

  • Rint = 0.035

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.07

  • 6076 reflections

  • 186 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O1i 2.4205 (19)
Na1—O5ii 2.384 (2)
Na1—O7iii 2.3737 (19)
Na1—O10iii 2.556 (2)
Na1—O11 2.546 (2)
Na1—O12 2.323 (2)
Li—O2i 1.927 (4)
Li—O8 1.930 (5)
Li—O10 1.964 (5)
Li—O11 1.972 (5)
Ni1—O13 2.0469 (16)
Ni1—O15 2.0572 (15)
Ni1—O14 2.0693 (18)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H110⋯O15iii 0.85 1.96 2.795 (3) 165
O10—H210⋯O4iv 0.87 2.03 2.851 (3) 159
O11—H111⋯O14iii 0.82 2.01 2.811 (3) 164
O11—H211⋯O2 0.86 2.25 3.031 (3) 150
O12—H112⋯O12v 0.86 2.44 3.058 (4) 130
O12—H212⋯O3vi 0.86 2.48 3.304 (3) 161
O12—H212⋯O4vi 0.86 2.52 3.166 (3) 133
O15—H115⋯O4vii 0.88 1.87 2.741 (3) 171
O15—H215⋯O5i 0.83 1.85 2.673 (3) 174
O14—H114⋯O8 0.85 1.94 2.758 (3) 163
O14—H214⋯O7viii 0.86 1.78 2.643 (3) 174
O13—H113⋯O2i 0.83 1.97 2.789 (3) 167
O13—H213⋯O1ii 0.84 1.84 2.677 (3) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cyclophosphohates, corresponding to the anionic formula [PnO3n]n-, constitute the second important family of condensed phosphates after the polyphosphates. The identified cyclic anions, built by n corner-sharing PO4 tetrahedra, correspond to n = 3, 4, 5, 6, 8, 9, 10 and 12. The phosphoric ring anion corresponding to n = 6, called cyclohexaphosphate, has been associated to numerous organic and/or inorganic cations (Averbuch-Pouchot & Durif, 1996). But its association to three mixed cations is still very limited. In this work, we report the preparation and the structural investigation of a novel dilithium disodium nickel cyclohexaphosphate dodecahydrate, Li2Na2NiP6O18.12H2O (I). To our knowledge, there is no cyclohexaphosphate with a mixture of two alkalines and bivalent cations. The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra and the phosphoric ring in the crystal structure of the title compound. Among the 21 atoms included in the asymmetric unit of this structure, only the Ni atom is in a special position ((Wyckoff position 4 e, site symmetry 2)). The Li, Na and Ni atoms are coordinated to four, for the first one, and to six, for the last two, oxygen atoms. The NaO6 and P6O18 entities are linked in an alternating manner to generate a two-dimensional open framework, forming so layers parallel to the (a,b) plane (Fig. 2). Adjacent layers are connected by the LiO4 tetrahedra to generate a three dimensional structure exhibiting channels running along the b axis (Fig. 3). Inside these channels, the Ni2+ cation is coordinated by six water molecules. The [Ni(H2O)6]2+ octahedron is almost regular with Ni–O distances ranging from 2.0462 (16) to 2.0691 (18) Å. The smallest distance between two octahedral centers is 9.069 Å. The cyclic anion (P6O18)6- has a chair conformation with geometrical characteristics that show no significant difference deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Abid et al. 2011,Amri et al.2009; Marouani et al.2010). In addition to its interactions with the metallic cations, the phosphoric anion establish with the water molecules an important hydrogen-bonding scheme. The examination of this latter shows the existence of strong hydrogen bonds with distances O···O ranging from 2.643 (3) to 2.677 (3) Å and other weaker ones, with O···O distances falling from 2.741 (3) to 3.304 (3) Å (Blessing, 1986).

Related literature top

For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996). For related structures containing cyclohexaphosphate rings, see: Abid et al. (2011); Amri et al. (2009); Marouani et al. (2010). For hydrogen bonding, see: Blessing (1986). For the synthesis, see: Schülke & Kayser (1985).

Experimental top

Li2Na2NiP6O18.12H2O was prepared by mixing Li6P6O18.6H2O (0.5 g, 5 mmol), NiCl2.6H2O (0.71 g, 3 mmol), and NaNO3 (0.03 g, 0.4 mmol) in 50 ml of distillated water and stirring for 30 min at temperature room. The obtained solution was allowed to stand in air until formation of good greenish single crystals of the title compound. Its chemical formula was determined by X-ray diffraction. The used Li6P6O18.6H2O was prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985)

Refinement top

Hydrogen atoms were placed in geometrically idealized positions (O—H =0.85 Å) and treated as riding with Uiso(H) = 1.2 Ueq of their parent atoms.

Structure description top

Cyclophosphohates, corresponding to the anionic formula [PnO3n]n-, constitute the second important family of condensed phosphates after the polyphosphates. The identified cyclic anions, built by n corner-sharing PO4 tetrahedra, correspond to n = 3, 4, 5, 6, 8, 9, 10 and 12. The phosphoric ring anion corresponding to n = 6, called cyclohexaphosphate, has been associated to numerous organic and/or inorganic cations (Averbuch-Pouchot & Durif, 1996). But its association to three mixed cations is still very limited. In this work, we report the preparation and the structural investigation of a novel dilithium disodium nickel cyclohexaphosphate dodecahydrate, Li2Na2NiP6O18.12H2O (I). To our knowledge, there is no cyclohexaphosphate with a mixture of two alkalines and bivalent cations. The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra and the phosphoric ring in the crystal structure of the title compound. Among the 21 atoms included in the asymmetric unit of this structure, only the Ni atom is in a special position ((Wyckoff position 4 e, site symmetry 2)). The Li, Na and Ni atoms are coordinated to four, for the first one, and to six, for the last two, oxygen atoms. The NaO6 and P6O18 entities are linked in an alternating manner to generate a two-dimensional open framework, forming so layers parallel to the (a,b) plane (Fig. 2). Adjacent layers are connected by the LiO4 tetrahedra to generate a three dimensional structure exhibiting channels running along the b axis (Fig. 3). Inside these channels, the Ni2+ cation is coordinated by six water molecules. The [Ni(H2O)6]2+ octahedron is almost regular with Ni–O distances ranging from 2.0462 (16) to 2.0691 (18) Å. The smallest distance between two octahedral centers is 9.069 Å. The cyclic anion (P6O18)6- has a chair conformation with geometrical characteristics that show no significant difference deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Abid et al. 2011,Amri et al.2009; Marouani et al.2010). In addition to its interactions with the metallic cations, the phosphoric anion establish with the water molecules an important hydrogen-bonding scheme. The examination of this latter shows the existence of strong hydrogen bonds with distances O···O ranging from 2.643 (3) to 2.677 (3) Å and other weaker ones, with O···O distances falling from 2.741 (3) to 3.304 (3) Å (Blessing, 1986).

For the crystal chemistry of cyclic phosphates, see: Averbuch-Pouchot & Durif (1996). For related structures containing cyclohexaphosphate rings, see: Abid et al. (2011); Amri et al. (2009); Marouani et al. (2010). For hydrogen bonding, see: Blessing (1986). For the synthesis, see: Schülke & Kayser (1985).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. [Symmetry codes: (i) 0.5-x, 1.5-y, -z; (ii) 0.5-x, -0.5+y, 0.5-z; (iii) 1-x, y, 0.5-z; (iv) 0.5-x, 0.5+y, 0.5-z; (v) 0.5+x, 1.5-y, 0.5+z]
[Figure 2] Fig. 2. View of [Na2(P6O18)]n4n- developed along the c axis.
[Figure 3] Fig. 3. Projection of the structure of Li2Na2NiP6O18.12H2O along the b axis
Dilithium disodium nickel(II) cyclohexaphosphate dodecahydrate top
Crystal data top
Li2Na2NiP6O18·12H2OF(000) = 1640
Mr = 808.58Dx = 2.162 Mg m3
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 17.728 (9) Åθ = 8.3–10.8°
b = 10.213 (2) ŵ = 0.69 mm1
c = 14.801 (7) ÅT = 298 K
β = 112.04 (4)°Prism, green
V = 2484.0 (18) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Nonius MACH-3
diffractometer
4296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
non–profiled ω scansh = 2927
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 117
Tmin = 0.769, Tmax = 0.819l = 124
7168 measured reflections2 standard reflections every 120 min
6076 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0389P)2 + 4.028P]
where P = (Fo2 + 2Fc2)/3
6076 reflections(Δ/σ)max = 0.003
186 parametersΔρmax = 0.80 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
Li2Na2NiP6O18·12H2OV = 2484.0 (18) Å3
Mr = 808.58Z = 4
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
a = 17.728 (9) ŵ = 0.69 mm1
b = 10.213 (2) ÅT = 298 K
c = 14.801 (7) Å0.40 × 0.35 × 0.30 mm
β = 112.04 (4)°
Data collection top
Nonius MACH-3
diffractometer
4296 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.035
Tmin = 0.769, Tmax = 0.8192 standard reflections every 120 min
7168 measured reflections intensity decay: 2%
6076 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
6076 reflectionsΔρmin = 0.60 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.38942 (6)0.74638 (9)0.40089 (7)0.02302 (18)
Li0.2602 (3)0.4883 (4)0.2527 (3)0.0258 (8)
O80.28521 (9)0.47433 (15)0.13696 (11)0.0182 (3)
O90.16879 (9)0.61570 (15)0.04655 (11)0.0209 (3)
O100.14882 (10)0.42811 (17)0.22717 (13)0.0249 (3)
H1100.11340.48750.20210.030*
H2100.13890.40150.27720.030*
O110.25138 (10)0.67633 (16)0.27740 (13)0.0260 (3)
H1110.21340.68240.29620.031*
H2110.24140.72910.22870.031*
O120.42660 (15)0.6531 (2)0.28051 (17)0.0437 (5)
H1120.47750.67250.30120.052*
H2120.40650.67620.22050.052*
P10.15702 (3)0.94221 (5)0.03614 (4)0.01251 (9)
P30.21812 (3)0.48781 (5)0.04013 (4)0.01248 (9)
P20.09260 (3)0.68397 (5)0.03712 (4)0.01298 (9)
O40.07807 (9)0.62089 (15)0.13208 (11)0.0196 (3)
O20.16821 (9)0.89346 (15)0.13535 (10)0.0177 (3)
O70.16162 (10)0.37702 (15)0.00214 (12)0.0216 (3)
O50.02574 (9)0.69398 (17)0.00121 (12)0.0227 (3)
O60.24650 (8)0.97174 (17)0.04034 (11)0.0208 (3)
O10.10493 (10)1.05743 (15)0.00194 (12)0.0243 (3)
O30.12913 (10)0.82657 (15)0.04140 (11)0.0216 (3)
Ni10.50000.24488 (3)0.25000.01249 (7)
O150.48362 (9)0.09969 (14)0.33724 (11)0.0172 (3)
H1150.51840.03490.35020.021*
H2150.48380.12710.39020.021*
O140.37693 (8)0.24893 (14)0.16516 (11)0.0172 (3)
H1140.35690.32560.15400.021*
H2140.36160.21210.10870.021*
O130.47785 (9)0.38693 (15)0.33445 (11)0.0197 (3)
H1130.43550.37600.34540.024*
H2130.51620.40890.38600.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0231 (4)0.0223 (4)0.0243 (4)0.0004 (3)0.0097 (3)0.0018 (4)
Li0.0293 (19)0.029 (2)0.0183 (18)0.0059 (17)0.0085 (15)0.0022 (16)
O80.0169 (6)0.0231 (7)0.0128 (6)0.0045 (5)0.0036 (5)0.0027 (5)
O90.0216 (6)0.0225 (7)0.0143 (6)0.0095 (5)0.0019 (5)0.0022 (6)
O100.0241 (7)0.0267 (8)0.0248 (8)0.0044 (6)0.0104 (6)0.0044 (7)
O110.0289 (8)0.0247 (7)0.0284 (9)0.0001 (6)0.0155 (7)0.0001 (7)
O120.0520 (13)0.0494 (12)0.0371 (11)0.0085 (10)0.0251 (10)0.0033 (10)
P10.01273 (18)0.01321 (18)0.0114 (2)0.00086 (15)0.00431 (15)0.00013 (16)
P30.01266 (18)0.01344 (19)0.0114 (2)0.00034 (15)0.00457 (15)0.00006 (16)
P20.01426 (19)0.01291 (18)0.0112 (2)0.00007 (15)0.00409 (16)0.00088 (16)
O40.0237 (7)0.0195 (6)0.0145 (6)0.0021 (5)0.0059 (5)0.0057 (5)
O20.0196 (6)0.0219 (6)0.0131 (6)0.0040 (5)0.0078 (5)0.0001 (5)
O70.0271 (7)0.0190 (6)0.0192 (7)0.0097 (6)0.0094 (6)0.0030 (6)
O50.0182 (6)0.0324 (8)0.0196 (7)0.0028 (6)0.0096 (6)0.0047 (6)
O60.0143 (5)0.0354 (8)0.0134 (6)0.0041 (6)0.0061 (5)0.0029 (6)
O10.0257 (7)0.0206 (7)0.0226 (8)0.0085 (6)0.0045 (6)0.0000 (6)
O30.0344 (8)0.0162 (6)0.0148 (6)0.0090 (6)0.0100 (6)0.0035 (5)
Ni10.01256 (13)0.01290 (14)0.01169 (14)0.0000.00419 (11)0.000
O150.0206 (6)0.0162 (6)0.0149 (6)0.0014 (5)0.0069 (5)0.0012 (5)
O140.0160 (5)0.0176 (6)0.0159 (6)0.0017 (5)0.0035 (5)0.0010 (5)
O130.0193 (6)0.0220 (7)0.0186 (7)0.0005 (5)0.0080 (5)0.0051 (6)
Geometric parameters (Å, º) top
Na1—O1i2.4205 (19)P3—O71.4754 (16)
Na1—O5ii2.384 (2)P3—O6iv1.5948 (17)
Na1—O7iii2.3737 (19)P2—O51.4735 (17)
Na1—O10iii2.556 (2)P2—O41.4782 (17)
Na1—O112.546 (2)P2—O31.6047 (16)
Na1—O122.323 (2)O2—Liiii1.927 (4)
Li—O2i1.927 (4)O7—Na1i2.3737 (19)
Li—O81.930 (5)O5—Na1v2.384 (2)
Li—O101.964 (5)O6—P3iv1.5948 (17)
Li—O111.972 (5)O1—Na1iii2.4205 (19)
O8—P31.4860 (17)Ni1—O132.0469 (16)
O9—P31.5944 (16)Ni1—O13vi2.0469 (16)
O9—P21.6088 (17)Ni1—O15vi2.0572 (15)
P1—O11.4712 (16)Ni1—O152.0572 (15)
P1—O21.4917 (17)Ni1—O14vi2.0693 (18)
P1—O31.5908 (16)Ni1—O142.0693 (18)
P1—O61.5929 (17)
O12—Na1—O7iii167.54 (8)O7—P3—O9110.00 (10)
O12—Na1—O5ii93.23 (9)O8—P3—O9106.07 (9)
O7iii—Na1—O5ii91.05 (7)O7—P3—O6iv108.36 (9)
O12—Na1—O1i100.91 (8)O8—P3—O6iv110.34 (9)
O7iii—Na1—O1i90.64 (7)O9—P3—O6iv102.15 (9)
O5ii—Na1—O1i91.76 (7)O5—P2—O4119.77 (10)
O12—Na1—O1178.89 (9)O5—P2—O3110.02 (10)
O7iii—Na1—O1196.33 (7)O4—P2—O3106.67 (9)
O5ii—Na1—O11171.92 (7)O5—P2—O9108.00 (10)
O1i—Na1—O1191.45 (7)O4—P2—O9109.84 (9)
O12—Na1—O10iii78.55 (8)O3—P2—O9100.90 (9)
O7iii—Na1—O10iii89.14 (7)P1—O2—Liiii118.66 (16)
O5ii—Na1—O10iii101.04 (7)P3—O7—Na1i123.98 (10)
O1i—Na1—O10iii167.20 (7)P2—O5—Na1v124.59 (10)
O11—Na1—O10iii75.86 (7)P1—O6—P3iv133.24 (10)
O2i—Li—O8115.4 (2)P1—O1—Na1iii121.77 (10)
O2i—Li—O10107.4 (2)P1—O3—P2131.77 (10)
O8—Li—O10110.8 (2)O13—Ni1—O13vi89.73 (9)
O2i—Li—O11113.7 (2)O13—Ni1—O15vi177.22 (6)
O8—Li—O11107.3 (2)O13vi—Ni1—O15vi91.32 (7)
O10—Li—O11101.3 (2)O13—Ni1—O1591.32 (7)
P3—O8—Li118.83 (15)O13vi—Ni1—O15177.22 (6)
P3—O9—P2129.04 (10)O15vi—Ni1—O1587.76 (9)
Li—O10—Na1i109.74 (15)O13—Ni1—O14vi90.89 (7)
Li—O11—Na1106.55 (15)O13vi—Ni1—O14vi87.49 (7)
O1—P1—O2118.46 (10)O15vi—Ni1—O14vi91.73 (6)
O1—P1—O3109.69 (10)O15—Ni1—O14vi89.92 (6)
O2—P1—O3110.66 (9)O13—Ni1—O1487.49 (7)
O1—P1—O6109.65 (10)O13vi—Ni1—O1490.89 (7)
O2—P1—O6105.21 (9)O15vi—Ni1—O1489.92 (6)
O3—P1—O6101.78 (9)O15—Ni1—O1491.73 (6)
O7—P3—O8118.66 (10)O14vi—Ni1—O14177.71 (8)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y+3/2, z1/2; (vi) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H110···O15iii0.851.962.795 (3)165
O10—H210···O4vii0.872.032.851 (3)159
O11—H111···O14iii0.822.012.811 (3)164
O11—H211···O20.862.253.031 (3)150
O12—H112···O12vi0.862.443.058 (4)130
O12—H212···O3iv0.862.483.304 (3)161
O12—H212···O4iv0.862.523.166 (3)133
O15—H115···O4viii0.881.872.741 (3)171
O15—H215···O5i0.831.852.673 (3)174
O14—H114···O80.851.942.758 (3)163
O14—H214···O7ix0.861.782.643 (3)174
O13—H113···O2i0.831.972.789 (3)167
O13—H213···O1ii0.841.842.677 (3)174
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z; (vi) x+1, y, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaLi2Na2NiP6O18·12H2O
Mr808.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.728 (9), 10.213 (2), 14.801 (7)
β (°) 112.04 (4)
V3)2484.0 (18)
Z4
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.69
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerNonius MACH-3
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.769, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
7168, 6076, 4296
Rint0.035
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.07
No. of reflections6076
No. of parameters186
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.60

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Na1—O1i2.4205 (19)Li—O81.930 (5)
Na1—O5ii2.384 (2)Li—O101.964 (5)
Na1—O7iii2.3737 (19)Li—O111.972 (5)
Na1—O10iii2.556 (2)Ni1—O132.0469 (16)
Na1—O112.546 (2)Ni1—O152.0572 (15)
Na1—O122.323 (2)Ni1—O142.0693 (18)
Li—O2i1.927 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H110···O15iii0.851.962.795 (3)165
O10—H210···O4iv0.872.032.851 (3)159
O11—H111···O14iii0.822.012.811 (3)164
O11—H211···O20.862.253.031 (3)150
O12—H112···O12v0.862.443.058 (4)130
O12—H212···O3vi0.862.483.304 (3)161
O12—H212···O4vi0.862.523.166 (3)133
O15—H115···O4vii0.881.872.741 (3)171
O15—H215···O5i0.831.852.673 (3)174
O14—H114···O80.851.942.758 (3)163
O14—H214···O7viii0.861.782.643 (3)174
O13—H113···O2i0.831.972.789 (3)167
O13—H213···O1ii0.841.842.677 (3)174
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x+1, y, z+1/2; (vi) x+1/2, y+3/2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

References

First citationAbid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific.  Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds