organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

syn-3-(4-Chloro­benz­yl)-1,5-di­methyl-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-ol

aDepartment of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prospekt 31, Moscow 119991, Russian Federation
*Correspondence e-mail: kudr@org.chem.msu.ru

(Received 2 July 2012; accepted 3 July 2012; online 7 July 2012)

In the title compound, C16H23ClN2O, both six-membered rings adopt chair conformations, thus allowing the formation of an intra­molecular N—H⋯N hydrogen bond. In the crystal, adjacent mol­ecules are combined into chains running along the ac diagonal via O—H⋯N hydrogen bonds.

Related literature

For general background to chemistry affording syn-3,7-diaza­bicyclo­[3.3.1]nonan-9-ols, see: Vatsadze et al. (2006[Vatsadze, S. Z., Tyurin, V. S., Zatsman, A. I., Manaenkova, M. A., Semashko, V. S., Krut'ko, D. P., Zyk, N. V., Churakov, A. V. & Kuz'mina, L. G. (2006). Russ. J. Org. Chem. 42, 1225-1233.]). 3,5,6,7-Tetra­substituted 3,6-diaza­bicyclo­[3.2.1]octa­nes, their biological activity as enzyme inhibitors and their X-ray structures have been reported by: Kudryavtsev (2010[Kudryavtsev, K. V. (2010). Russ. J. Org. Chem. 46, 372-379.]); Kudryavtsev & Churakov (2012[Kudryavtsev, K. V. & Churakov, A. V. (2012). Acta Cryst. E68, o1718.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23ClN2O

  • Mr = 294.81

  • Monoclinic, P 21 /n

  • a = 7.9739 (4) Å

  • b = 16.8120 (9) Å

  • c = 12.1103 (6) Å

  • β = 107.520 (1)°

  • V = 1548.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.953

  • 10450 measured reflections

  • 3747 independent reflections

  • 2976 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.02

  • 3747 reflections

  • 273 parameters

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.870 (19) 2.287 (19) 2.8327 (18) 120.8 (16)
O1—H1⋯N2i 0.87 (2) 1.86 (2) 2.7242 (17) 172 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, both six-membered cycles adopt chair conformation (Fig. 1). The latter allows the formation of intramolecular N—H···N hydrogen bond. The hydroxyl group at the 9th position of the heterocyclic scaffold is situated closer to the tertiary N-atom. In crystal, the adjacent molecules are combined in chains running along ac-diagonal via O—H···N hydrogen bonds (Fig. 2).

syn-3,7-Diazabicyclo[3.3.1]nonan-9-ols are of interest as a structural motif for enzymes inhibitors. Inhibition of thrombin by substituted 3,6-diazabicyclo[3.2.1]octanes is reported (Kudryavtsev (2010)).

Related literature top

For general background to chemistry affording syn-3,7-diazabicyclo[3.3.1]nonan-9-ols, see: Vatsadze et al. (2006). 3,5,6,7-Tetrasubstituted 3,6-diazabicyclo[3.2.1]octanes, their biological activity as enzyme inhibitors [Added text OK?] and their X-ray structures have been reported by: Kudryavtsev (2010); Kudryavtsev & Churakov (2012).

Experimental top

The solution of 2.23 g (6.9 mmol) of anti-5-(4-chlorobenzyl)-3-formyl- 1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol (Vatsadze et al.(2006)) in conc. HCl (molar ratio ca 1:120) was refluxed for 21 h. The cooled solution was neutralized with NaOH to the pH 9–10. The precipitate formed was filtered off, washed with water to neutral pH of mother liquor, then once with ether, recrystallized from EtOH. syn-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol. Yield 1.50 g (74%), colourless crystals, sublimated at 473 K. 1H NMR (dmso-d6): δ 0.63 (s, 6H, 2CH3); 2.26–2.41 (m, 6H, H-6a, H-8a, H-4 e, H-4a, H-2 e, H-2a); 2.72 (d, 2H, H-6 e, H-8 e, J 13.3); 2.98 (d, 1H, H-9, J 4.5); 3.27 (s, 2H, CH2Ar); 4.74 (d, 1H, OH, J 5.0); 7.28, 7.38 (both d, both 2H, CH(3,5)(Ar), CH(2,6)(Ar), J 8.3). 1H NMR (dmso-d6 + CF3COOH): δ 0.77 (s, 6H, 2CH3); 2.36 (d, 2H, H-2a, H-4a, J 10.6); 2.48 (d, 2H, H-2 e, H-4 e, J 12.4); 2.86 (d, 2H, H-6a, H-8a, J 11.9); 3.21 (d, 2H, H-6 e, H-8 e, J 12.6); 3.24 (s, 1H, H-9); 3.43 (s, 2H, CH2Ar); 7.34–7.43 (m, 4H, H(Ar)). 13C NMR (dmso-d6 + CF3COOH): δ 20.3 (2CH3); 35.4 (C-1, C-5); 53.7 (C-6, C-8); 56.5 (C-2, C-4); 61.2 (CH2Ar); 73.4 (C-9); 117.4, 128.7, 131.7, 136.0 (C(Ph)). Anal. Calcd. for C16H23ClN2O: C, 65.20; H, 7.81; N, 9.51. Found: C, 65.52; H, 7.98; N, 9.35.

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined isotropically.

Structure description top

In the title compound, both six-membered cycles adopt chair conformation (Fig. 1). The latter allows the formation of intramolecular N—H···N hydrogen bond. The hydroxyl group at the 9th position of the heterocyclic scaffold is situated closer to the tertiary N-atom. In crystal, the adjacent molecules are combined in chains running along ac-diagonal via O—H···N hydrogen bonds (Fig. 2).

syn-3,7-Diazabicyclo[3.3.1]nonan-9-ols are of interest as a structural motif for enzymes inhibitors. Inhibition of thrombin by substituted 3,6-diazabicyclo[3.2.1]octanes is reported (Kudryavtsev (2010)).

For general background to chemistry affording syn-3,7-diazabicyclo[3.3.1]nonan-9-ols, see: Vatsadze et al. (2006). 3,5,6,7-Tetrasubstituted 3,6-diazabicyclo[3.2.1]octanes, their biological activity as enzyme inhibitors [Added text OK?] and their X-ray structures have been reported by: Kudryavtsev (2010); Kudryavtsev & Churakov (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. Intramolecular hydrogen bond is drawn as dashed line.
[Figure 2] Fig. 2. Hydrogen bonded chains spreads along ac-diagonal. Hydrogen bonds are drawn as dashed lines.
syn-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol top
Crystal data top
C16H23ClN2OF(000) = 632
Mr = 294.81Dx = 1.265 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4857 reflections
a = 7.9739 (4) Åθ = 2.7–30.0°
b = 16.8120 (9) ŵ = 0.25 mm1
c = 12.1103 (6) ÅT = 120 K
β = 107.520 (1)°Prism, colourless
V = 1548.16 (14) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K [or APEXII?]
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube2976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.941, Tmax = 0.953k = 2214
10450 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4862P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H23ClN2OV = 1548.16 (14) Å3
Mr = 294.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9739 (4) ŵ = 0.25 mm1
b = 16.8120 (9) ÅT = 120 K
c = 12.1103 (6) Å0.25 × 0.20 × 0.20 mm
β = 107.520 (1)°
Data collection top
Bruker SMART 1K [or APEXII?]
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2976 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.953Rint = 0.034
10450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.02Δρmax = 0.39 e Å3
3747 reflectionsΔρmin = 0.35 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97589 (5)1.10266 (3)0.39054 (4)0.03592 (14)
O10.15380 (14)0.82506 (6)0.00656 (9)0.0220 (2)
N10.16827 (16)0.92965 (7)0.19544 (10)0.0176 (3)
N20.22587 (17)0.78671 (8)0.32531 (11)0.0211 (3)
C10.01659 (19)0.92287 (8)0.19298 (13)0.0180 (3)
C20.20407 (19)0.88120 (9)0.10373 (13)0.0176 (3)
C30.0379 (2)0.79594 (9)0.31288 (13)0.0216 (3)
C40.2528 (2)0.75254 (9)0.22011 (13)0.0204 (3)
C50.07319 (18)0.83646 (8)0.20054 (12)0.0173 (3)
C60.14948 (19)0.79358 (8)0.10650 (12)0.0168 (3)
C70.2661 (2)0.83514 (11)0.19815 (17)0.0265 (3)
C80.1851 (2)0.74991 (10)0.00522 (14)0.0244 (3)
C90.04692 (19)0.79066 (8)0.09780 (12)0.0173 (3)
C110.2140 (2)1.01297 (9)0.18344 (15)0.0224 (3)
C120.4088 (2)1.02924 (8)0.23069 (14)0.0212 (3)
C130.4991 (2)1.01062 (12)0.34495 (15)0.0332 (4)
C140.6739 (2)1.03189 (12)0.39435 (16)0.0350 (4)
C150.7590 (2)1.07151 (9)0.32730 (15)0.0249 (3)
C160.6764 (2)1.08801 (10)0.21243 (16)0.0284 (4)
C170.5000 (2)1.06683 (10)0.16459 (15)0.0267 (4)
H10.185 (3)0.7863 (13)0.056 (2)0.047 (6)*
H20.275 (2)0.8334 (12)0.3320 (17)0.029 (5)*
H90.082 (2)0.7325 (11)0.1019 (15)0.024 (5)*
H110.029 (2)0.9525 (9)0.2591 (14)0.014 (4)*
H120.097 (2)0.9484 (10)0.1210 (15)0.022 (4)*
H210.328 (2)0.8846 (10)0.1130 (14)0.017 (4)*
H220.144 (2)0.9043 (10)0.0278 (15)0.018 (4)*
H310.013 (2)0.7404 (11)0.3163 (16)0.027 (5)*
H320.032 (2)0.8250 (10)0.3794 (16)0.021 (4)*
H410.219 (2)0.6942 (10)0.2163 (14)0.017 (4)*
H420.382 (2)0.7540 (10)0.2280 (14)0.018 (4)*
H130.438 (3)0.9822 (12)0.3919 (18)0.041 (6)*
H140.737 (3)1.0203 (13)0.4736 (19)0.043 (6)*
H160.736 (3)1.1168 (14)0.168 (2)0.054 (7)*
H170.438 (3)1.0795 (12)0.0842 (19)0.043 (6)*
H710.343 (3)0.8633 (12)0.1288 (18)0.040 (6)*
H720.309 (3)0.7796 (13)0.1971 (19)0.046 (6)*
H730.279 (3)0.8637 (13)0.2655 (19)0.046 (6)*
H810.309 (3)0.7521 (12)0.0095 (17)0.036 (5)*
H820.116 (2)0.7740 (11)0.0672 (17)0.029 (5)*
H830.151 (2)0.6936 (12)0.0048 (15)0.027 (5)*
H1110.153 (2)1.0450 (11)0.2285 (16)0.029 (5)*
H1120.172 (2)1.0293 (11)0.1034 (17)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0236 (2)0.0411 (3)0.0449 (3)0.01249 (17)0.01322 (18)0.0198 (2)
O10.0232 (6)0.0192 (5)0.0174 (5)0.0022 (4)0.0034 (4)0.0017 (4)
N10.0177 (6)0.0145 (6)0.0201 (6)0.0009 (4)0.0047 (5)0.0012 (5)
N20.0240 (7)0.0205 (6)0.0159 (6)0.0001 (5)0.0017 (5)0.0010 (5)
C10.0180 (7)0.0165 (7)0.0196 (7)0.0016 (5)0.0059 (6)0.0023 (6)
C20.0162 (7)0.0189 (7)0.0177 (7)0.0014 (5)0.0051 (6)0.0010 (5)
C30.0262 (8)0.0226 (8)0.0167 (7)0.0007 (6)0.0074 (6)0.0013 (6)
C40.0203 (7)0.0194 (7)0.0191 (7)0.0041 (6)0.0026 (6)0.0026 (6)
C50.0162 (7)0.0168 (7)0.0184 (7)0.0009 (5)0.0046 (6)0.0012 (5)
C60.0192 (7)0.0157 (7)0.0152 (7)0.0023 (5)0.0045 (6)0.0001 (5)
C70.0201 (8)0.0281 (9)0.0335 (9)0.0020 (6)0.0115 (7)0.0024 (7)
C80.0279 (9)0.0247 (8)0.0215 (8)0.0045 (6)0.0086 (7)0.0019 (6)
C90.0185 (7)0.0146 (7)0.0159 (7)0.0008 (5)0.0007 (5)0.0003 (5)
C110.0230 (8)0.0158 (7)0.0267 (8)0.0008 (6)0.0048 (6)0.0015 (6)
C120.0239 (8)0.0152 (7)0.0253 (8)0.0020 (6)0.0084 (6)0.0038 (6)
C130.0274 (9)0.0496 (11)0.0237 (9)0.0135 (8)0.0093 (7)0.0002 (8)
C140.0277 (9)0.0543 (12)0.0217 (9)0.0116 (8)0.0053 (7)0.0041 (8)
C150.0203 (7)0.0236 (8)0.0329 (9)0.0061 (6)0.0108 (7)0.0114 (7)
C160.0287 (9)0.0229 (8)0.0379 (9)0.0015 (6)0.0166 (8)0.0046 (7)
C170.0271 (8)0.0238 (8)0.0294 (9)0.0018 (6)0.0087 (7)0.0064 (7)
Geometric parameters (Å, º) top
Cl1—C151.7476 (16)C6—C81.528 (2)
O1—C91.4175 (17)C6—C91.538 (2)
O1—H10.87 (2)C7—H711.00 (2)
N1—C111.4656 (19)C7—H720.99 (2)
N1—C11.4698 (19)C7—H730.98 (2)
N1—C21.4729 (19)C8—H810.97 (2)
N2—C31.469 (2)C8—H820.971 (19)
N2—C41.471 (2)C8—H830.984 (19)
N2—H20.870 (19)C9—H91.021 (18)
C1—C51.532 (2)C11—C121.510 (2)
C1—H110.972 (16)C11—H1110.993 (19)
C1—H121.010 (18)C11—H1120.97 (2)
C2—C61.539 (2)C12—C171.386 (2)
C2—H210.962 (17)C12—C131.390 (2)
C2—H220.980 (17)C13—C141.388 (2)
C3—C51.541 (2)C13—H130.98 (2)
C3—H311.026 (19)C14—C151.377 (2)
C3—H320.955 (18)C14—H140.96 (2)
C4—C61.5381 (19)C15—C161.376 (3)
C4—H411.014 (17)C16—C171.397 (2)
C4—H421.005 (17)C16—H160.95 (2)
C5—C71.530 (2)C17—H170.97 (2)
C5—C91.530 (2)
C9—O1—H1106.2 (15)C5—C7—H71111.5 (12)
C11—N1—C1110.47 (11)C5—C7—H72110.7 (12)
C11—N1—C2110.08 (12)H71—C7—H72108.4 (17)
C1—N1—C2111.27 (11)C5—C7—H73109.4 (12)
C3—N2—C4111.30 (12)H71—C7—H73106.2 (17)
C3—N2—H2109.3 (13)H72—C7—H73110.6 (18)
C4—N2—H2104.8 (13)C6—C8—H81111.8 (12)
N1—C1—C5112.58 (11)C6—C8—H82109.5 (11)
N1—C1—H11106.9 (9)H81—C8—H82108.6 (16)
C5—C1—H11109.4 (9)C6—C8—H83110.5 (11)
N1—C1—H12111.0 (10)H81—C8—H83108.0 (16)
C5—C1—H12109.4 (10)H82—C8—H83108.5 (15)
H11—C1—H12107.3 (13)O1—C9—C5109.08 (11)
N1—C2—C6113.11 (12)O1—C9—C6111.99 (12)
N1—C2—H21107.7 (10)C5—C9—C6108.29 (11)
C6—C2—H21110.0 (10)O1—C9—H9109.6 (10)
N1—C2—H22109.7 (10)C5—C9—H9109.6 (10)
C6—C2—H22109.8 (10)C6—C9—H9108.2 (10)
H21—C2—H22106.2 (14)N1—C11—C12113.18 (12)
N2—C3—C5115.77 (12)N1—C11—H111106.7 (11)
N2—C3—H31107.9 (10)C12—C11—H111108.2 (11)
C5—C3—H31107.9 (10)N1—C11—H112110.5 (11)
N2—C3—H32106.1 (11)C12—C11—H112109.6 (11)
C5—C3—H32110.9 (10)H111—C11—H112108.5 (15)
H31—C3—H32108.0 (15)C17—C12—C13118.22 (15)
N2—C4—C6114.89 (12)C17—C12—C11121.53 (15)
N2—C4—H41108.1 (9)C13—C12—C11120.16 (14)
C6—C4—H41109.2 (9)C14—C13—C12121.57 (16)
N2—C4—H42108.7 (10)C14—C13—H13119.2 (12)
C6—C4—H42109.4 (10)C12—C13—H13119.2 (12)
H41—C4—H42106.2 (13)C15—C14—C13118.67 (17)
C7—C5—C9111.12 (12)C15—C14—H14118.9 (13)
C7—C5—C1108.97 (12)C13—C14—H14122.4 (13)
C9—C5—C1108.28 (12)C16—C15—C14121.53 (16)
C7—C5—C3108.52 (13)C16—C15—Cl1119.45 (13)
C9—C5—C3108.21 (12)C14—C15—Cl1119.01 (14)
C1—C5—C3111.76 (12)C15—C16—C17118.92 (16)
C8—C6—C4108.87 (12)C15—C16—H16120.4 (15)
C8—C6—C9111.18 (12)C17—C16—H16120.5 (14)
C4—C6—C9107.90 (12)C12—C17—C16121.00 (16)
C8—C6—C2108.67 (12)C12—C17—H17118.8 (13)
C4—C6—C2111.71 (12)C16—C17—H17120.2 (13)
C9—C6—C2108.54 (11)
C11—N1—C1—C5177.79 (12)C3—C5—C9—C660.28 (14)
C2—N1—C1—C555.20 (16)C8—C6—C9—O158.82 (15)
C11—N1—C2—C6176.75 (12)C4—C6—C9—O1178.14 (11)
C1—N1—C2—C653.93 (15)C2—C6—C9—O160.65 (15)
C4—N2—C3—C548.59 (17)C8—C6—C9—C5179.14 (12)
C3—N2—C4—C649.63 (17)C4—C6—C9—C561.55 (14)
N1—C1—C5—C7179.66 (13)C2—C6—C9—C559.66 (14)
N1—C1—C5—C959.36 (15)C1—N1—C11—C12157.40 (13)
N1—C1—C5—C359.73 (16)C2—N1—C11—C1279.32 (16)
N2—C3—C5—C7175.66 (13)N1—C11—C12—C17127.48 (16)
N2—C3—C5—C954.98 (16)N1—C11—C12—C1356.2 (2)
N2—C3—C5—C164.15 (16)C17—C12—C13—C142.9 (3)
N2—C4—C6—C8177.88 (13)C11—C12—C13—C14173.55 (17)
N2—C4—C6—C957.11 (16)C12—C13—C14—C150.8 (3)
N2—C4—C6—C262.10 (17)C13—C14—C15—C162.1 (3)
N1—C2—C6—C8177.65 (12)C13—C14—C15—Cl1177.03 (15)
N1—C2—C6—C462.22 (16)C14—C15—C16—C172.7 (3)
N1—C2—C6—C956.62 (15)Cl1—C15—C16—C17176.40 (13)
C7—C5—C9—O158.55 (16)C13—C12—C17—C162.2 (2)
C1—C5—C9—O161.09 (15)C11—C12—C17—C16174.16 (15)
C3—C5—C9—O1177.60 (12)C15—C16—C17—C120.5 (3)
C7—C5—C9—C6179.33 (12)C5—C9—O1—H1147.5 (15)
C1—C5—C9—C661.02 (14)C6—C9—O1—H192.6 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.870 (19)2.287 (19)2.8327 (18)120.8 (16)
O1—H1···N2i0.87 (2)1.86 (2)2.7242 (17)172 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H23ClN2O
Mr294.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.9739 (4), 16.8120 (9), 12.1103 (6)
β (°) 107.520 (1)
V3)1548.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1K [or APEXII?]
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.941, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
10450, 3747, 2976
Rint0.034
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.02
No. of reflections3747
No. of parameters273
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.35

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.870 (19)2.287 (19)2.8327 (18)120.8 (16)
O1—H1···N2i0.87 (2)1.86 (2)2.7242 (17)172 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11-03-00630_a, 11-03-91375-ST_a and 11-03-12101-ofi-m-2011) and RAS Programme OXHM 9 `Medicinal Chemistry'. The authors thank Professor J. A. K. Howard (Durham University) for access to X-ray facilities.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKudryavtsev, K. V. (2010). Russ. J. Org. Chem. 46, 372–379.  Web of Science CrossRef CAS Google Scholar
First citationKudryavtsev, K. V. & Churakov, A. V. (2012). Acta Cryst. E68, o1718.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVatsadze, S. Z., Tyurin, V. S., Zatsman, A. I., Manaenkova, M. A., Semashko, V. S., Krut'ko, D. P., Zyk, N. V., Churakov, A. V. & Kuz'mina, L. G. (2006). Russ. J. Org. Chem. 42, 1225–1233.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds