organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(1,2,2-Tri­chloro­vin­yl)-10H-pheno­thia­zine 5,5-dioxide

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 9 July 2012; accepted 17 July 2012; online 21 July 2012)

The title compound, C14H8Cl3NO2S, forms a dimeric structure by inter­molecular Cl⋯O=S inter­actions. The dimers make a two-dimensional array parallel to (101) by other Cl⋯O=S inter­actions. The two-dimensional network is found to be kept unchanged, although the trichloro­vinyl group is disordered (relative occupancies 0.65:0.35).

Related literature

For related reviews of halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). For related structures of phenothia­zine 5,5-dioxide compounds, see: Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.]); Kamtekar et al. (2011[Kamtekar, K. T., Dahms, K., Batsanov, A. S., Jankus, V., Vaughan, H. L., Monkman, A. P. & Bryce, M. R. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 1129-1137.]); Siddegowda et al. (2011a[Siddegowda, M. S., Jasinski, J. P., Golen, J. A. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1702.],b[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o1875.]); Zhu et al. (2007[Zhu, D.-X., Sun, W., Yang, G.-F. & Ng, S. W. (2007). Acta Cryst. E63, o4830.]). For related structures with inter­molecular Cl⋯O=S contacts, see: Bandera et al. (2007[Bandera, Y. P., Kanishchev, O. S., Timoshenko, V. M., But, S. A., Nesterenko, A. M. & Shermolovich, Y. G. (2007). Chem. Heterocycl. Compd, 43, 1138-1147.]); Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o837.]); Douglas et al. (1993[Douglas, G., Frampton, C. S. & Muir, K. W. (1993). Acta Cryst. C49, 1197-1199.]); Jovanovic et al. (1986[Jovanovic, M. V., de Meester, P., Biehl, E. R. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 801-807.]). For the preparation of the title compound, see: Okuno et al. (2006[Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35-44.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Cl3NO2S

  • Mr = 360.64

  • Monoclinic, P 21 /n

  • a = 7.703 (3) Å

  • b = 12.766 (5) Å

  • c = 14.884 (6) Å

  • β = 93.028 (6)°

  • V = 1461.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 93 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.964, Tmax = 0.970

  • 11979 measured reflections

  • 3350 independent reflections

  • 2660 reflections with F2 > 2σ(F2)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.07

  • 3350 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
The geometry of inter­molecular Cl⋯O=S contacts (Å, °)

Atoms Cl⋯O C—Cl⋯O Cl⋯O=S
C13A—Cl1⋯O1i=S1 3.1571 (19) 167.60 (14) 101.82 (9)
C14B—Cl1⋯O1i=S1 3.1571 (19) 157.5 (3) 101.82 (9)
C14A—Cl2⋯O1ii=S1 3.0521 (19) 175.00 (15) 166.90 (10)
C13B—Cl2⋯O1ii=S1 3.0521 (19) 144.7 (3) 166.90 (10)
C14A—Cl3A⋯O2iii=S1 3.174 (5) 157.7 (3) 100.61 (13)
C14B—Cl3B⋯O2iii=S1 3.175 (9) 160.8 (5) 104.74 (18)
Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x, −y, −z + 1; (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Halogen bondings between halogen atoms and Lewis bases have been paid attention from the viewpoint of protein chemistry because of their use for the design of supramolecular assemblies (Auffinger et al. 2004; Politzer et al., 2007). However, Cl···O=S interactions in heterocycles such as thiophenes and phenothiazines have been reported only in two cases (Douglas et al., 1993; Jovanovic et al., 1986). This is the first report of Cl···O=S interactions in phenothiazine 5,5-dioxide compounds.

The trichlorovinyl group is disordered to give two orientations, which are represented by the form A (C13A/C14A/Cl3A) and the form B (C13B/C14B/Cl3B) (Figure 1). The occupancies of A and B are determined to 0.65 for A and 0.35 for B as both disordered forms have similar thermal parameters. Both trichlorovinyl groups have a planar structure (the N1/C13A/C14A/Cl1/Cl2/Cl3A plane: r.m.s. deviation = 0.0465 Å and the N1/C13B/C14B/Cl1/Cl2/Cl3B plane: r.m.s. deviation = 0.0521 Å). The structures around N1 are pyramidal in A and planar in B, where the distances of N1 to the C1/C12/C13A plane and the C1/C12/C13B plane are 0.212 (2) Å and 0.071 (2) Å, respectively.

The phenothiazine moiety has a butterfly structure, where the dihedral angle between two benzene rings (the C1—C6 plane: r.m.s. deviation = 0.0103 Å and the C7—C12 plane: r.m.s. deviation = 0.0114 Å) is 162.51 (9)°. The central six-membered ring (the N1/C1/C6/S1/C7/C12 ring) has a boat form. The length of the equatorial S1—O2 bond is in the range of the reported values (1.4293 (14) Å - 1.4421 (11) Å) of phenothiazine 5,5-dioxide compounds (Harrison et al., 2007; Kamtekar et al., 2011; Siddegowda et al., 2011a,b; Zhu et al., 2007), while the axial S1—O1 bond shows a longer bond length compared with that of the reported values (1.4294 (13) Å - 1.4495 (17) Å). This elongation may be caused by the intermolecular Cl···O=S interactions.

The molecules form a dimeric structure by the intermolecular Cl2ii···O1 interactions [Symmetry code: (ii) -x, -y, -z + 1]. The dimers make a two-dimensional array on the (101) plane by other Cl···O=S interactions (Figure 2). The intermolecular Cl···O=S distances are in the range of reported values (2.741 (3) Å - 3.267 (2) Å (Bandera et al., 2007; Choi et al., 2008)). Remarkable contacts cannot be observed between the arrays. The two-dimensional network is found to be kept unchanged, although the trichlorovinyl group is disordered.

Related literature top

For related reviews of halogen bonding, see: Auffinger et al. (2004); Politzer et al. (2007). For related structures of phenothiazine 5,5-dioxide compounds, see: Harrison et al. (2007); Kamtekar et al. (2011); Siddegowda et al. (2011a,b); Zhu et al. (2007). For related structures with intermolecular Cl···O=S contacts, see: Bandera et al. (2007); Choi et al. (2008); Douglas et al. (1993); Jovanovic et al. (1986). For the preparation of the title compound, see: Okuno et al. (2006).

Experimental top

The title compound was prepared according to a reported procedure (Okuno et al., 2006). The single crystals with sufficient quality for X-ray analysis were obtained by concentration of a dichloromethane solution.

Refinement top

The occupancies of disordered trichlorovinyl groups were determined to 0.65 for A and 0.35 for B as both disordered forms have similar thermal parameters. All H atoms were placed at ideal positions and were treated as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Structure description top

Halogen bondings between halogen atoms and Lewis bases have been paid attention from the viewpoint of protein chemistry because of their use for the design of supramolecular assemblies (Auffinger et al. 2004; Politzer et al., 2007). However, Cl···O=S interactions in heterocycles such as thiophenes and phenothiazines have been reported only in two cases (Douglas et al., 1993; Jovanovic et al., 1986). This is the first report of Cl···O=S interactions in phenothiazine 5,5-dioxide compounds.

The trichlorovinyl group is disordered to give two orientations, which are represented by the form A (C13A/C14A/Cl3A) and the form B (C13B/C14B/Cl3B) (Figure 1). The occupancies of A and B are determined to 0.65 for A and 0.35 for B as both disordered forms have similar thermal parameters. Both trichlorovinyl groups have a planar structure (the N1/C13A/C14A/Cl1/Cl2/Cl3A plane: r.m.s. deviation = 0.0465 Å and the N1/C13B/C14B/Cl1/Cl2/Cl3B plane: r.m.s. deviation = 0.0521 Å). The structures around N1 are pyramidal in A and planar in B, where the distances of N1 to the C1/C12/C13A plane and the C1/C12/C13B plane are 0.212 (2) Å and 0.071 (2) Å, respectively.

The phenothiazine moiety has a butterfly structure, where the dihedral angle between two benzene rings (the C1—C6 plane: r.m.s. deviation = 0.0103 Å and the C7—C12 plane: r.m.s. deviation = 0.0114 Å) is 162.51 (9)°. The central six-membered ring (the N1/C1/C6/S1/C7/C12 ring) has a boat form. The length of the equatorial S1—O2 bond is in the range of the reported values (1.4293 (14) Å - 1.4421 (11) Å) of phenothiazine 5,5-dioxide compounds (Harrison et al., 2007; Kamtekar et al., 2011; Siddegowda et al., 2011a,b; Zhu et al., 2007), while the axial S1—O1 bond shows a longer bond length compared with that of the reported values (1.4294 (13) Å - 1.4495 (17) Å). This elongation may be caused by the intermolecular Cl···O=S interactions.

The molecules form a dimeric structure by the intermolecular Cl2ii···O1 interactions [Symmetry code: (ii) -x, -y, -z + 1]. The dimers make a two-dimensional array on the (101) plane by other Cl···O=S interactions (Figure 2). The intermolecular Cl···O=S distances are in the range of reported values (2.741 (3) Å - 3.267 (2) Å (Bandera et al., 2007; Choi et al., 2008)). Remarkable contacts cannot be observed between the arrays. The two-dimensional network is found to be kept unchanged, although the trichlorovinyl group is disordered.

For related reviews of halogen bonding, see: Auffinger et al. (2004); Politzer et al. (2007). For related structures of phenothiazine 5,5-dioxide compounds, see: Harrison et al. (2007); Kamtekar et al. (2011); Siddegowda et al. (2011a,b); Zhu et al. (2007). For related structures with intermolecular Cl···O=S contacts, see: Bandera et al. (2007); Choi et al. (2008); Douglas et al. (1993); Jovanovic et al. (1986). For the preparation of the title compound, see: Okuno et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres. Disordered atoms are discriminated with A/B notation, and the minor disordered form is drawn as open bonds.
[Figure 2] Fig. 2. A view of the two-dimensional array on the (101) plane. Hydrogen atoms are omitted for clarity. The Cl···O=S interactions are shown as dashed lines. [Symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) -x, -y, -z + 1; (iii) -x + 1/2, y - 1/2, -z + 1/2].
10-(1,2,2-Trichlorovinyl)-10H-phenothiazine 5,5-dioxide top
Crystal data top
C14H8Cl3NO2SF(000) = 728.00
Mr = 360.64Dx = 1.639 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4473 reflections
a = 7.703 (3) Åθ = 2.1–31.1°
b = 12.766 (5) ŵ = 0.77 mm1
c = 14.884 (6) ÅT = 93 K
β = 93.028 (6)°Block, colourless
V = 1461.7 (10) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
2660 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.040
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 99
Tmin = 0.964, Tmax = 0.970k = 1616
11979 measured reflectionsl = 1619
3350 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.463P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H8Cl3NO2SV = 1461.7 (10) Å3
Mr = 360.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.703 (3) ŵ = 0.77 mm1
b = 12.766 (5) ÅT = 93 K
c = 14.884 (6) Å0.10 × 0.10 × 0.10 mm
β = 93.028 (6)°
Data collection top
Rigaku Saturn724+
diffractometer
3350 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
2660 reflections with F2 > 2σ(F2)
Tmin = 0.964, Tmax = 0.970Rint = 0.040
11979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
3350 reflectionsΔρmin = 0.34 e Å3
217 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.35886 (7)0.18970 (5)0.16632 (4)0.02359 (15)
Cl20.04748 (7)0.04673 (5)0.28388 (4)0.02550 (15)
Cl3A0.1475 (6)0.0132 (4)0.1010 (4)0.0266 (6)0.6500
Cl3B0.1789 (11)0.0075 (6)0.0902 (6)0.0245 (10)0.3500
S10.22085 (7)0.24593 (4)0.51836 (3)0.01767 (14)
O10.1318 (2)0.16939 (13)0.57137 (11)0.0228 (4)
O20.2795 (2)0.33968 (13)0.56464 (11)0.0249 (4)
N10.2211 (3)0.14499 (17)0.33098 (13)0.0280 (5)
C10.3743 (3)0.13499 (18)0.38622 (15)0.0215 (5)
C20.5134 (3)0.0742 (2)0.35768 (16)0.0280 (6)
C30.6655 (3)0.0672 (2)0.40926 (17)0.0284 (6)
C40.6877 (3)0.1205 (3)0.49020 (17)0.0292 (6)
C50.5510 (3)0.1783 (2)0.52011 (17)0.0278 (6)
C60.3943 (3)0.18481 (18)0.46904 (14)0.0188 (5)
C70.0856 (3)0.27768 (18)0.42469 (14)0.0177 (5)
C80.0368 (3)0.35745 (19)0.43520 (15)0.0226 (5)
C90.1597 (4)0.3786 (2)0.36668 (16)0.0277 (6)
C100.1595 (4)0.3195 (3)0.28853 (16)0.0303 (6)
C110.0370 (3)0.2424 (3)0.27715 (16)0.0296 (6)
C120.0911 (3)0.22094 (19)0.34472 (15)0.0220 (5)
C13A0.2397 (5)0.1139 (3)0.2389 (3)0.0173 (7)0.6500
C13B0.1713 (9)0.0641 (6)0.2626 (5)0.0179 (13)0.3500
C14A0.1559 (5)0.0287 (3)0.2101 (3)0.0195 (7)0.6500
C14B0.2264 (9)0.0852 (6)0.1815 (6)0.0189 (13)0.3500
H10.50170.03770.30210.0336*
H20.75740.02500.38920.0341*
H30.79520.11730.52440.0351*
H40.56360.21410.57600.0334*
H50.03520.39690.48940.0272*
H60.24280.43270.37300.0332*
H70.24570.33230.24180.0363*
H80.03970.20340.22270.0355*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (3)0.0239 (3)0.0204 (3)0.0051 (3)0.0049 (3)0.0012 (3)
Cl20.0266 (3)0.0235 (3)0.0266 (3)0.0077 (3)0.0025 (3)0.0016 (3)
Cl3A0.0265 (14)0.0306 (15)0.0225 (12)0.0019 (9)0.0008 (9)0.0111 (10)
Cl3B0.027 (3)0.030 (3)0.0172 (18)0.0011 (15)0.0001 (15)0.0085 (16)
S10.0181 (3)0.0219 (3)0.0130 (3)0.0017 (2)0.0001 (2)0.0001 (2)
O10.0223 (8)0.0271 (9)0.0195 (8)0.0016 (7)0.0046 (7)0.0054 (7)
O20.0280 (9)0.0260 (9)0.0203 (9)0.0004 (7)0.0038 (7)0.0062 (7)
N10.0294 (11)0.0345 (12)0.0189 (10)0.0166 (10)0.0087 (9)0.0110 (9)
C10.0207 (12)0.0249 (12)0.0186 (11)0.0061 (10)0.0016 (9)0.0001 (10)
C20.0289 (13)0.0355 (15)0.0196 (12)0.0152 (12)0.0007 (10)0.0018 (11)
C30.0245 (13)0.0330 (14)0.0280 (13)0.0108 (11)0.0045 (11)0.0066 (11)
C40.0171 (12)0.0405 (16)0.0297 (14)0.0038 (11)0.0028 (10)0.0041 (12)
C50.0207 (12)0.0398 (16)0.0226 (12)0.0012 (11)0.0019 (10)0.0028 (11)
C60.0177 (11)0.0219 (12)0.0166 (11)0.0006 (9)0.0009 (9)0.0020 (9)
C70.0175 (11)0.0223 (12)0.0132 (10)0.0006 (9)0.0012 (9)0.0014 (9)
C80.0257 (12)0.0244 (12)0.0181 (11)0.0054 (10)0.0043 (10)0.0009 (9)
C90.0273 (13)0.0331 (14)0.0227 (12)0.0148 (11)0.0006 (10)0.0004 (11)
C100.0280 (13)0.0413 (16)0.0210 (12)0.0129 (12)0.0047 (11)0.0012 (11)
C110.0278 (13)0.0416 (16)0.0187 (12)0.0138 (12)0.0049 (10)0.0056 (11)
C120.0237 (12)0.0251 (12)0.0168 (11)0.0077 (10)0.0020 (9)0.0016 (9)
C13A0.0180 (18)0.0191 (19)0.0148 (19)0.0027 (16)0.0002 (15)0.0002 (17)
C13B0.016 (4)0.012 (3)0.026 (4)0.000 (3)0.002 (3)0.002 (4)
C14A0.0204 (19)0.021 (2)0.0177 (19)0.0048 (16)0.0016 (15)0.0027 (17)
C14B0.016 (4)0.013 (3)0.027 (4)0.001 (3)0.002 (3)0.001 (3)
Geometric parameters (Å, º) top
Cl1—C13A1.747 (4)C4—C51.379 (4)
Cl1—C14B1.703 (7)C5—C61.394 (3)
Cl2—C13B1.745 (8)C7—C81.402 (4)
Cl2—C14A1.711 (4)C7—C121.396 (4)
Cl3A—C14A1.707 (7)C8—C91.381 (4)
Cl3B—C14B1.707 (11)C9—C101.387 (4)
S1—O11.4509 (18)C10—C111.380 (4)
S1—O21.4415 (18)C11—C121.399 (4)
S1—C61.743 (3)C13A—C14A1.324 (6)
S1—C71.743 (3)C13B—C14B1.328 (11)
N1—C11.408 (3)C2—H10.950
N1—C121.416 (4)C3—H20.950
N1—C13A1.441 (5)C4—H30.950
N1—C13B1.485 (8)C5—H40.950
C1—C21.407 (4)C8—H50.950
C1—C61.388 (4)C9—H60.950
C2—C31.369 (4)C10—H70.950
C3—C41.387 (4)C11—H80.950
O1—S1—O2116.39 (10)C7—C12—C11117.3 (3)
O1—S1—C6108.83 (11)Cl1—C13A—N1121.1 (3)
O1—S1—C7108.16 (11)Cl1—C13A—C14A121.2 (4)
O2—S1—C6110.19 (11)N1—C13A—C14A117.6 (4)
O2—S1—C7110.36 (11)Cl2—C13B—N1124.3 (5)
C6—S1—C7101.91 (11)Cl2—C13B—C14B122.2 (6)
C1—N1—C12123.7 (2)N1—C13B—C14B113.5 (6)
C1—N1—C13A114.1 (3)Cl2—C14A—Cl3A116.0 (3)
C1—N1—C13B121.0 (4)Cl2—C14A—C13A120.1 (4)
C12—N1—C13A115.6 (3)Cl3A—C14A—C13A123.9 (4)
C12—N1—C13B114.6 (3)Cl1—C14B—Cl3B117.0 (6)
N1—C1—C2120.1 (2)Cl1—C14B—C13B120.1 (6)
N1—C1—C6121.8 (2)Cl3B—C14B—C13B122.8 (7)
C2—C1—C6118.0 (2)C1—C2—H1119.668
C1—C2—C3120.7 (3)C3—C2—H1119.665
C2—C3—C4121.1 (3)C2—C3—H2119.434
C3—C4—C5118.8 (3)C4—C3—H2119.419
C4—C5—C6120.6 (3)C3—C4—H3120.585
S1—C6—C1121.81 (17)C5—C4—H3120.590
S1—C6—C5117.24 (18)C4—C5—H4119.689
C1—C6—C5120.6 (2)C6—C5—H4119.683
S1—C7—C8117.16 (17)C7—C8—H5120.053
S1—C7—C12121.16 (18)C9—C8—H5120.047
C8—C7—C12121.5 (2)C8—C9—H6120.592
C7—C8—C9119.9 (3)C10—C9—H6120.585
C8—C9—C10118.8 (3)C9—C10—H7119.271
C9—C10—C11121.5 (3)C11—C10—H7119.270
C10—C11—C12120.8 (3)C10—C11—H8119.575
N1—C12—C7122.1 (2)C12—C11—H8119.581
N1—C12—C11120.5 (2)
O1—S1—C6—C187.90 (18)C13B—N1—C12—C1124.3 (5)
O1—S1—C6—C585.66 (17)N1—C1—C2—C3177.5 (2)
O1—S1—C7—C886.33 (17)N1—C1—C6—S110.3 (4)
O1—S1—C7—C1289.26 (17)N1—C1—C6—C5176.39 (19)
O2—S1—C6—C1143.36 (16)C2—C1—C6—S1170.48 (19)
O2—S1—C6—C543.07 (18)C2—C1—C6—C52.9 (4)
O2—S1—C7—C842.04 (18)C6—C1—C2—C31.8 (4)
O2—S1—C7—C12142.37 (15)C1—C2—C3—C40.9 (4)
C6—S1—C7—C8159.07 (15)C2—C3—C4—C52.4 (4)
C6—S1—C7—C1225.34 (19)C3—C4—C5—C61.3 (4)
C7—S1—C6—C126.21 (19)C4—C5—C6—S1172.3 (2)
C7—S1—C6—C5160.23 (15)C4—C5—C6—C11.4 (4)
C1—N1—C12—C714.0 (4)S1—C7—C8—C9173.12 (15)
C1—N1—C12—C11165.5 (2)S1—C7—C12—N18.8 (3)
C12—N1—C1—C2166.01 (19)S1—C7—C12—C11171.66 (14)
C12—N1—C1—C613.2 (4)C8—C7—C12—N1175.7 (2)
C1—N1—C13A—Cl171.3 (4)C8—C7—C12—C113.7 (4)
C1—N1—C13A—C14A112.1 (3)C12—C7—C8—C92.5 (4)
C13A—N1—C1—C215.9 (4)C7—C8—C9—C100.3 (4)
C13A—N1—C1—C6163.4 (3)C8—C9—C10—C111.7 (4)
C1—N1—C13B—Cl288.4 (6)C9—C10—C11—C120.4 (4)
C1—N1—C13B—C14B93.3 (5)C10—C11—C12—N1177.2 (3)
C13B—N1—C1—C224.4 (5)C10—C11—C12—C72.3 (4)
C13B—N1—C1—C6156.4 (4)Cl1—C13A—C14A—Cl2177.4 (2)
C12—N1—C13A—Cl181.4 (3)Cl1—C13A—C14A—Cl3A2.6 (5)
C12—N1—C13A—C14A95.2 (4)N1—C13A—C14A—Cl26.0 (5)
C13A—N1—C12—C7163.7 (3)N1—C13A—C14A—Cl3A174.0 (3)
C13A—N1—C12—C1115.8 (4)Cl2—C13B—C14B—Cl1175.6 (4)
C12—N1—C13B—Cl282.2 (6)Cl2—C13B—C14B—Cl3B1.1 (9)
C12—N1—C13B—C14B96.1 (5)N1—C13B—C14B—Cl16.0 (8)
C13B—N1—C12—C7156.3 (4)N1—C13B—C14B—Cl3B177.2 (4)

Experimental details

Crystal data
Chemical formulaC14H8Cl3NO2S
Mr360.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.703 (3), 12.766 (5), 14.884 (6)
β (°) 93.028 (6)
V3)1461.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.964, 0.970
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
11979, 3350, 2660
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.07
No. of reflections3350
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku, 2010).

The geometry of intermolecular Cl···O=S contacts (Å, °). top
AtomsCl···OC-Cl···OCl···O=S
C13A-Cl1···O1i=S13.1571 (19)167.60 (14)101.82 (9)
C14B-Cl1···O1i=S13.1571 (19)157.5 (3)101.82 (9)
C14A-Cl2···O1ii=S13.0521 (19)175.00 (15)166.90 (10)
C13B-Cl2···O1ii=S13.0521 (19)144.7 (3)166.90 (10)
C14A-Cl3A···O2iii=S13.174 (5)157.7 (3)100.61 (13)
C14B-Cl3B···O2iii=S13.175 (9)160.8 (5)104.74 (18)
Symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) -x, -y, -z + 1; (iii) -x + 1/2, y - 1/2, -z + 1/2.
 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBandera, Y. P., Kanishchev, O. S., Timoshenko, V. M., But, S. A., Nesterenko, A. M. & Shermolovich, Y. G. (2007). Chem. Heterocycl. Compd, 43, 1138–1147.  CrossRef CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDouglas, G., Frampton, C. S. & Muir, K. W. (1993). Acta Cryst. C49, 1197–1199.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3277.  CSD CrossRef IUCr Journals Google Scholar
First citationJovanovic, M. V., de Meester, P., Biehl, E. R. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 801–807.  CrossRef CAS Google Scholar
First citationKamtekar, K. T., Dahms, K., Batsanov, A. S., Jankus, V., Vaughan, H. L., Monkman, A. P. & Bryce, M. R. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 1129–1137.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, D.-X., Sun, W., Yang, G.-F. & Ng, S. W. (2007). Acta Cryst. E63, o4830.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds