organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R)-1-[(E)-(Thio­phen-2-yl­methyl­­idene)amino]­indan-2-ol

aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: Leespy@chonnam.ac.kr

(Received 18 July 2012; accepted 19 July 2012; online 28 July 2012)

In the title compound, C14H13NOS, the dihedral angle formed by the mean planes through the indane ring system and the thio­phene ring is 85.04 (11)°. The imine bond is located in the thio­phene plane [the S—C—C—N torsion angle is 0.00 (3)°] and an intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For metal complexes containing amino­indanol ligands, see: Lee et al. (2007[Lee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701-7703.]); Flores-Lopes et al. (2000[Flores-Lopes, L. Z., Parra-Hake, M., Somanathan, R. & Walsh, P. J. (2000). Organometallics, 19, 2153-2160.]). For metal comlexes with thio­phene-type ligands, see: Jeong et al. (2011[Jeong, Y.-C., Ahn, D.-J., Lee, W.-S., Lee, S.-H. & Ahn, K.-H. (2011). Bull. Korean Chem. Soc. 32, 1063-1066.]); Dong et al. (2006[Dong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447-462.]); Lee et al. (1999[Lee, C., Kang, Y., Kang, S. O., Ko, J., Yoo, J. W. & Cho, M. H. (1999). J. Organomet. Chem. 582, 165-175.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NOS

  • Mr = 243.31

  • Monoclinic, P 21

  • a = 5.8640 (2) Å

  • b = 13.4454 (5) Å

  • c = 8.0118 (3) Å

  • β = 92.258 (2)°

  • V = 631.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.965

  • 7148 measured reflections

  • 3182 independent reflections

  • 2848 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.03

  • 3182 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1201 Friedel pairs

  • Flack parameter: 0.06 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H1⋯N 0.82 2.22 2.682 (3) 116

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate ligands having thiophene groups have received a great attention due to their unique binding abilities (Jeong et al., 2011; Dong et al., 2006; Lee et al., 1999). Aminoindaol type ligands have been also extensively used as chiral chelating ligands (Lee et al., 2007; Flores-Lopes et al., 2000). As a part of our ongoing project on the synthesis of new ONS-type tridentate monoanionic chelating ligands, the title compound was synthesized by the reaction of 2-thiophene carboxaldehyde with (1S,2R)-(-)-cis-amino-2-indanol and its crystal structure is reported herein.

In the title compound (Fig. 1), the C7 carbon atom is displaced by 0.450 (2) Å from the mean plane defined by the C6/C8–C14 atoms of the indane ring system. The dihedral angle formed by the mean planes through the indane ring system and the thiophene is 85.04 (11) °. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). The absolute configuration is assigned on the basis of the Flack parameter, which is consistent with the known configuration of the indanol employed in the synthesis.

Related literature top

For metal complexes containing aminoindanol ligands, see: Lee et al. (2007); Flores-Lopes et al. (2000). For metal comlexes with thiophene-type ligands, see: Jeong et al. (2011); Dong et al. (20061999); Lee et al. (1999).

Experimental top

A mixture of (1S,2R)-(-)-amino-2-indanol (0.149 g,1 mmol) and 2-thiophene carboxaldehyde (0.112 g,1 mmol) was stirred in ethanol for 24 h. The residue, obtained by removing the solvent under vacuum, was recrystallized in dichloromethane. The desired product was isolated as white crystals after the solution remained at -20 °C in a refrigerator for a few days (yield 80%, 0.195 g).

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: Uiso(H) = 1.2Ueq(parent C-atom),Uiso(H) = 1.5Ueq(parent O-atom).

Structure description top

Multidentate ligands having thiophene groups have received a great attention due to their unique binding abilities (Jeong et al., 2011; Dong et al., 2006; Lee et al., 1999). Aminoindaol type ligands have been also extensively used as chiral chelating ligands (Lee et al., 2007; Flores-Lopes et al., 2000). As a part of our ongoing project on the synthesis of new ONS-type tridentate monoanionic chelating ligands, the title compound was synthesized by the reaction of 2-thiophene carboxaldehyde with (1S,2R)-(-)-cis-amino-2-indanol and its crystal structure is reported herein.

In the title compound (Fig. 1), the C7 carbon atom is displaced by 0.450 (2) Å from the mean plane defined by the C6/C8–C14 atoms of the indane ring system. The dihedral angle formed by the mean planes through the indane ring system and the thiophene is 85.04 (11) °. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). The absolute configuration is assigned on the basis of the Flack parameter, which is consistent with the known configuration of the indanol employed in the synthesis.

For metal complexes containing aminoindanol ligands, see: Lee et al. (2007); Flores-Lopes et al. (2000). For metal comlexes with thiophene-type ligands, see: Jeong et al. (2011); Dong et al. (20061999); Lee et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius. Hydrogen bonds are drawn as dashed lines.
(1S,2R)-1-[(E)-(Thiophen-2-ylmethylidene)amino]indan-2-ol top
Crystal data top
C14H13NOSF(000) = 256
Mr = 243.31Dx = 1.280 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5424 reflections
a = 5.8640 (2) Åθ = 2.5–30.4°
b = 13.4454 (5) ŵ = 0.24 mm1
c = 8.0118 (3) ÅT = 296 K
β = 92.258 (2)°Block, white
V = 631.19 (4) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3182 independent reflections
Radiation source: fine-focus sealed tube2848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 30.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 87
Tmin = 0.943, Tmax = 0.965k = 1518
7148 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3182 reflectionsΔρmax = 0.25 e Å3
155 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 1201 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (8)
Crystal data top
C14H13NOSV = 631.19 (4) Å3
Mr = 243.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8640 (2) ŵ = 0.24 mm1
b = 13.4454 (5) ÅT = 296 K
c = 8.0118 (3) Å0.25 × 0.20 × 0.15 mm
β = 92.258 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2848 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.965Rint = 0.024
7148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.27 e Å3
3182 reflectionsAbsolute structure: Flack (1983), 1201 Friedel pairs
155 parametersAbsolute structure parameter: 0.06 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.3762 (3)0.41344 (15)0.6763 (2)0.0694 (4)
H10.39620.47360.68450.104*
S0.84192 (7)0.69970 (5)0.55448 (6)0.05798 (16)
C90.3596 (3)0.40337 (14)1.0537 (2)0.0437 (4)
C140.5379 (3)0.46986 (12)1.0333 (2)0.0431 (3)
C41.0148 (3)0.64078 (15)0.7010 (2)0.0473 (4)
C130.5668 (4)0.55083 (16)1.1369 (3)0.0602 (5)
H130.68660.59501.12320.072*
C31.2263 (3)0.68631 (19)0.7167 (3)0.0552 (5)
H31.34330.66570.79040.066*
C11.0474 (3)0.78383 (18)0.5133 (3)0.0567 (5)
H1A1.02860.83490.43560.068*
C50.9397 (3)0.55622 (17)0.7985 (3)0.0524 (4)
H51.04160.52740.87610.063*
C60.6804 (3)0.43819 (15)0.8891 (3)0.0508 (4)
H60.81900.40430.93120.061*
C21.2422 (3)0.76835 (17)0.6062 (3)0.0573 (5)
H21.37240.80730.59850.069*
C80.3710 (4)0.32062 (16)0.9292 (3)0.0570 (5)
H8A0.22040.30410.88300.068*
H8B0.43950.26160.97940.068*
C70.5206 (4)0.36346 (16)0.7957 (3)0.0574 (5)
H70.60850.31100.74280.069*
C120.4134 (6)0.5654 (2)1.2626 (3)0.0789 (8)
H120.43140.61941.33450.095*
C100.2064 (4)0.4177 (2)1.1781 (3)0.0594 (5)
H100.08740.37321.19250.071*
C110.2347 (5)0.5002 (3)1.2812 (3)0.0742 (7)
H110.13130.51171.36410.089*
N0.7401 (3)0.52068 (15)0.7810 (2)0.0549 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0800 (10)0.0776 (11)0.0494 (8)0.0161 (9)0.0110 (7)0.0048 (8)
S0.0389 (2)0.0805 (3)0.0542 (3)0.0031 (2)0.00272 (16)0.0050 (3)
C90.0500 (8)0.0434 (8)0.0370 (8)0.0001 (6)0.0051 (6)0.0072 (6)
C140.0453 (8)0.0416 (8)0.0418 (8)0.0025 (6)0.0075 (6)0.0049 (7)
C40.0335 (7)0.0623 (10)0.0462 (9)0.0047 (6)0.0029 (6)0.0021 (8)
C130.0775 (14)0.0474 (10)0.0549 (12)0.0071 (9)0.0102 (10)0.0007 (9)
C30.0331 (6)0.0706 (13)0.0619 (11)0.0030 (8)0.0003 (6)0.0081 (10)
C10.0487 (9)0.0717 (12)0.0505 (11)0.0071 (9)0.0133 (8)0.0074 (9)
C50.0376 (7)0.0647 (12)0.0548 (10)0.0089 (7)0.0015 (7)0.0091 (9)
C60.0395 (8)0.0552 (10)0.0576 (11)0.0098 (7)0.0010 (7)0.0069 (8)
C20.0385 (8)0.0706 (13)0.0634 (12)0.0013 (8)0.0105 (8)0.0034 (10)
C80.0693 (12)0.0416 (9)0.0596 (13)0.0063 (8)0.0029 (9)0.0023 (8)
C70.0661 (12)0.0512 (10)0.0552 (11)0.0080 (8)0.0043 (9)0.0086 (9)
C120.125 (2)0.0626 (15)0.0490 (13)0.0113 (14)0.0034 (13)0.0128 (11)
C100.0629 (12)0.0736 (14)0.0417 (10)0.0035 (9)0.0018 (8)0.0130 (9)
C110.0851 (17)0.0953 (19)0.0427 (11)0.0132 (14)0.0091 (10)0.0013 (12)
N0.0383 (7)0.0697 (11)0.0569 (10)0.0033 (7)0.0031 (6)0.0104 (8)
Geometric parameters (Å, º) top
O—C71.421 (3)C1—H1A0.9300
O—H10.8200C5—N1.267 (3)
S—C11.695 (2)C5—H50.9300
S—C41.7143 (19)C6—N1.458 (3)
C9—C101.381 (3)C6—C71.546 (3)
C9—C141.390 (2)C6—H60.9800
C9—C81.498 (3)C2—H20.9300
C14—C131.376 (3)C8—C71.523 (3)
C14—C61.513 (3)C8—H8A0.9700
C4—C31.384 (3)C8—H8B0.9700
C4—C51.457 (3)C7—H70.9800
C13—C121.390 (4)C12—C111.379 (5)
C13—H130.9300C12—H120.9300
C3—C21.420 (3)C10—C111.390 (4)
C3—H30.9300C10—H100.9300
C1—C21.355 (3)C11—H110.9300
C7—O—H1109.5C14—C6—H6110.1
C1—S—C492.06 (10)C7—C6—H6110.1
C10—C9—C14120.60 (19)C1—C2—C3112.79 (18)
C10—C9—C8129.15 (19)C1—C2—H2123.6
C14—C9—C8110.23 (16)C3—C2—H2123.6
C13—C14—C9120.86 (19)C9—C8—C7103.23 (16)
C13—C14—C6128.70 (18)C9—C8—H8A111.1
C9—C14—C6110.44 (16)C7—C8—H8A111.1
C3—C4—C5125.80 (18)C9—C8—H8B111.1
C3—C4—S111.18 (15)C7—C8—H8B111.1
C5—C4—S122.99 (14)H8A—C8—H8B109.1
C14—C13—C12118.8 (2)O—C7—C8107.87 (19)
C14—C13—H13120.6O—C7—C6110.60 (17)
C12—C13—H13120.6C8—C7—C6105.13 (18)
C4—C3—C2111.57 (17)O—C7—H7111.0
C4—C3—H3124.2C8—C7—H7111.0
C2—C3—H3124.2C6—C7—H7111.0
C2—C1—S112.40 (17)C11—C12—C13120.3 (2)
C2—C1—H1A123.8C11—C12—H12119.8
S—C1—H1A123.8C13—C12—H12119.8
N—C5—C4122.17 (19)C9—C10—C11118.3 (2)
N—C5—H5118.9C9—C10—H10120.9
C4—C5—H5118.9C11—C10—H10120.9
N—C6—C14113.08 (16)C12—C11—C10121.1 (2)
N—C6—C7111.23 (18)C12—C11—H11119.4
C14—C6—C7102.12 (15)C10—C11—H11119.4
N—C6—H6110.1C5—N—C6117.62 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1···N0.822.222.682 (3)116

Experimental details

Crystal data
Chemical formulaC14H13NOS
Mr243.31
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.8640 (2), 13.4454 (5), 8.0118 (3)
β (°) 92.258 (2)
V3)631.19 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.943, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7148, 3182, 2848
Rint0.024
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.03
No. of reflections3182
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27
Absolute structureFlack (1983), 1201 Friedel pairs
Absolute structure parameter0.06 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H1···N0.81962.22312.682 (3)115.71
 

Acknowledgements

This work was supported by a research grant from Chonnam National University in 2011.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y.-B., Geng, Y., Ma, J.-P. & Huang, R.-Q. (2006). Organometallics, 25, 447–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlores-Lopes, L. Z., Parra-Hake, M., Somanathan, R. & Walsh, P. J. (2000). Organometallics, 19, 2153–2160.  Google Scholar
First citationJeong, Y.-C., Ahn, D.-J., Lee, W.-S., Lee, S.-H. & Ahn, K.-H. (2011). Bull. Korean Chem. Soc. 32, 1063–1066.  CrossRef CAS Google Scholar
First citationLee, C., Kang, Y., Kang, S. O., Ko, J., Yoo, J. W. & Cho, M. H. (1999). J. Organomet. Chem. 582, 165–175.  Web of Science CSD CrossRef Google Scholar
First citationLee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701–7703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds