metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-acetato-κ4O:O-bis­­({N′-[(E)-phen­yl­(pyridin-2-yl-κN)methyl­­idene]benzo­hydrazidato-κ2N′,O}copper(II))

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 22 June 2012; accepted 10 July 2012; online 18 July 2012)

The binuclear molecule of the title compound, [Cu2(C19H14N3O)2(CH3COO)2], resides on a crystallographic inversion centre. It has an E conformation with respect to the azomethine double bond and a Z conformation about the amide C=N bond. The CuII atom has a slightly distorted square-pyramidal coordination geometry. The crystal packing involves inter­molecular C—H⋯O, C—H⋯N and C—H⋯π and two types of ππ inter­actions, with centroid–centroid distances of 3.9958 (10) and 3.7016 (13) Å.

Related literature

For the applications of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Bakir & Brown (2002[Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.]). For similar structures, see: Mangalam & Kurup (2011[Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22-28.]). For the synthesis of related compounds, see: Mangalam et al. (2010[Mangalam, N. A., Sivakumar, S., Kurup, M. R. P. & Suresh, E. (2010). Spectrochim. Acta Part A, 75, 686-692.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C19H14N3O)2(C2H3O2)2]

  • Mr = 845.85

  • Monoclinic, P 21 /n

  • a = 9.5758 (3) Å

  • b = 13.1009 (4) Å

  • c = 15.2124 (5) Å

  • β = 100.718 (1)°

  • V = 1875.13 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.706, Tmax = 0.788

  • 14426 measured reflections

  • 3300 independent reflections

  • 2981 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.06

  • 3300 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg5, Cg8 and Cg9 are the centroids of the Cu1/O1/C13/N3/N2, Cu1/O3/Cu1A/O3A, Cu1/N1/C5/C6/N2, C7–C12 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N3 0.93 2.43 2.752 (3) 101
C8—H8⋯O1i 0.93 2.51 3.416 (2) 166
C15—H15⋯O2i 0.93 2.37 3.116 (4) 137
C1—H1⋯Cg3 0.93 2.85 3.1701 102
C3—H3⋯Cg8ii 0.93 2.86 3.5543 132
C12—H12⋯Cg9ii 0.93 3.12 3.8426 136
C21—H21ACg5iii 0.96 3.14 3.5809 110
C21—H21BCg2iii 0.96 2.96 3.6761 133
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of benzohydrazides and their metal complexes possess pronounced biological activities. They also have versatile binding properties and show inhibitory activity against ovine COX-2 (El-Sayed et al., 2011). Derivatives of benzohydrazides and their metal complexes have received considerable attention during the last decade because of their versatile applications in nonlinear optics and molecular sensing (Bakir & Brown, 2002).The present report is an extension of our earlier studies in this area (Mangalam & Kurup, 2011).

The compound crystallizes in monoclinic space group P21/n. The labeled diagrams of the asymmetric unit and the dimeric molecule are shown in Figs. 1 and 2 respectively. This molecule adopts an E configuration with respect to C6—N2 bond and it exists in enolate form with C13—O1 bond length of 1.276 (2) Å which is very close to a formal C—O bond length [1.31 Å]. The dihedral angle between pyridine and the phenyl (comprising atoms C14—C19) rings is 4.78 (11)°. O1 and N2 are in Z configuration with respect to C13—N3 bond having a torsional angle of 1.6 (3)°.

A non-conventional intermolecular hydrogen bond (Fig. 3) is present in the molecular system between the H atoms attached to the C8, C15 atoms and O1, O2 aoms of another molecule with D···A distances of 3.416 (2) and 3.116 (3) Å respectively (Table 1). Moreover, there are C–H···π interactions between the H atoms attached at the C1, C3, C12 and C21 atoms and the corresponding aromatic and metal chelate rings of the same or another molecule (Fig. 4) with the minimum distance of 3.170 (2) Å between the carbon atoms and the corresponding rings involving interactions. There are two types of ππ interactions within the dimeric molecule (T-shaped arrangement) and also between the adjacent molecules (slipped arrangement) with the centroid-centroid distances of 3.9958 (10) and 3.7016 (13) Å respectively between the rings involving interactions as shown in Fig. 5.

Packing of molecules (Fig. 6) is predominantly favored by two types of non-classical intermolecular hydrogen bonding and C–H···π interactions involving the H atoms from C3 and C12 atoms and a ππ interaction between the adjacent molecules in slipped arrangement.

Related literature top

For the applications of benzohydrazide compounds, see: El-Sayed et al. (2011); Bakir & Brown (2002). For similar structures, see: Mangalam & Kurup (2011). For the synthesis of related compounds, see: Mangalam et al. (2010).

Experimental top

The title complex was prepared by adapting a reported procedure (Mangalam et al., 2010) by refluxing a mixture of methanolic solutions of N'-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide (0.301 g, 1 mmol) and Cu(OAc)2.H2O (0.199 g, 1 mmol) for three hours. After two days, green colored crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title complex suitable for X-ray analysis were obtained after two days from the mother liquor by slow evaporation.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distance of 0.93–0.96 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me).

Structure description top

Derivatives of benzohydrazides and their metal complexes possess pronounced biological activities. They also have versatile binding properties and show inhibitory activity against ovine COX-2 (El-Sayed et al., 2011). Derivatives of benzohydrazides and their metal complexes have received considerable attention during the last decade because of their versatile applications in nonlinear optics and molecular sensing (Bakir & Brown, 2002).The present report is an extension of our earlier studies in this area (Mangalam & Kurup, 2011).

The compound crystallizes in monoclinic space group P21/n. The labeled diagrams of the asymmetric unit and the dimeric molecule are shown in Figs. 1 and 2 respectively. This molecule adopts an E configuration with respect to C6—N2 bond and it exists in enolate form with C13—O1 bond length of 1.276 (2) Å which is very close to a formal C—O bond length [1.31 Å]. The dihedral angle between pyridine and the phenyl (comprising atoms C14—C19) rings is 4.78 (11)°. O1 and N2 are in Z configuration with respect to C13—N3 bond having a torsional angle of 1.6 (3)°.

A non-conventional intermolecular hydrogen bond (Fig. 3) is present in the molecular system between the H atoms attached to the C8, C15 atoms and O1, O2 aoms of another molecule with D···A distances of 3.416 (2) and 3.116 (3) Å respectively (Table 1). Moreover, there are C–H···π interactions between the H atoms attached at the C1, C3, C12 and C21 atoms and the corresponding aromatic and metal chelate rings of the same or another molecule (Fig. 4) with the minimum distance of 3.170 (2) Å between the carbon atoms and the corresponding rings involving interactions. There are two types of ππ interactions within the dimeric molecule (T-shaped arrangement) and also between the adjacent molecules (slipped arrangement) with the centroid-centroid distances of 3.9958 (10) and 3.7016 (13) Å respectively between the rings involving interactions as shown in Fig. 5.

Packing of molecules (Fig. 6) is predominantly favored by two types of non-classical intermolecular hydrogen bonding and C–H···π interactions involving the H atoms from C3 and C12 atoms and a ππ interaction between the adjacent molecules in slipped arrangement.

For the applications of benzohydrazide compounds, see: El-Sayed et al. (2011); Bakir & Brown (2002). For similar structures, see: Mangalam & Kurup (2011). For the synthesis of related compounds, see: Mangalam et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the unique part of the Cu complex, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Molecular structure of the title compound.
[Figure 3] Fig. 3. Hydrogen-bonding interactions showing an infinite chain in the crystal structure of [Cu2N6O6C42H34].
[Figure 4] Fig. 4. C—H···π interactions found in the title compound.
[Figure 5] Fig. 5. ππ interactions present in the crystal structure of [Cu2N6O6C42H34].
[Figure 6] Fig. 6. Packing diagram of the compound [Cu2N6O6C42H34] along a axis.
Di-µ-acetato-κ4O:O-bis({N'-[(E)- phenyl(pyridin-2-ylκN)methylidene]benzohydrazidato- κ2N',O}copper(II)) top
Crystal data top
[Cu2(C19H14N3O)2(C2H3O2)2]F(000) = 868.0
Mr = 845.85Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9946 reflections
a = 9.5758 (3) Åθ = 2.7–28.3°
b = 13.1009 (4) ŵ = 1.19 mm1
c = 15.2124 (5) ÅT = 296 K
β = 100.718 (1)°Block, green
V = 1875.13 (10) Å30.35 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3300 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scanθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.706, Tmax = 0.788k = 1514
14426 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.9597P]
where P = (Fo2 + 2Fc2)/3
3300 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu2(C19H14N3O)2(C2H3O2)2]V = 1875.13 (10) Å3
Mr = 845.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5758 (3) ŵ = 1.19 mm1
b = 13.1009 (4) ÅT = 296 K
c = 15.2124 (5) Å0.35 × 0.25 × 0.20 mm
β = 100.718 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3300 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2981 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.788Rint = 0.022
14426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
3300 reflectionsΔρmin = 0.34 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.83940 (2)0.033872 (17)0.018513 (14)0.03149 (10)
O10.72812 (15)0.09187 (11)0.01867 (9)0.0371 (3)
O20.7660 (2)0.1008 (2)0.17172 (15)0.1028 (9)
N10.90507 (17)0.16141 (13)0.08915 (11)0.0357 (4)
N20.71446 (17)0.03165 (11)0.10470 (11)0.0308 (3)
N30.62458 (18)0.04952 (12)0.10243 (11)0.0345 (4)
O30.95034 (15)0.05070 (11)0.07436 (9)0.0379 (3)
C11.0076 (2)0.22526 (17)0.07683 (15)0.0463 (5)
H11.05870.21150.03180.056*
C21.0406 (3)0.31125 (19)0.12869 (17)0.0547 (6)
H21.11340.35440.11910.066*
C30.9649 (3)0.33231 (18)0.19451 (16)0.0524 (6)
H30.98480.39050.22960.063*
C40.8588 (2)0.26633 (16)0.20825 (14)0.0428 (5)
H40.80610.27970.25250.051*
C50.8318 (2)0.18018 (15)0.15558 (12)0.0334 (4)
C60.7253 (2)0.10156 (14)0.16553 (12)0.0312 (4)
C70.6441 (2)0.10292 (14)0.23916 (12)0.0322 (4)
C80.4970 (2)0.09464 (15)0.22120 (13)0.0370 (4)
H80.44890.08840.16250.044*
C90.4224 (2)0.09563 (18)0.29038 (15)0.0476 (5)
H90.32370.09160.27790.057*
C100.4924 (3)0.1025 (2)0.37747 (16)0.0533 (6)
H100.44150.10250.42390.064*
C110.6387 (3)0.1093 (2)0.39599 (14)0.0519 (6)
H110.68630.11320.45500.062*
C120.7147 (2)0.11039 (18)0.32757 (14)0.0428 (5)
H120.81320.11610.34040.051*
C130.6408 (2)0.10829 (15)0.03375 (12)0.0323 (4)
C140.5487 (2)0.20007 (15)0.01984 (13)0.0346 (4)
C150.4417 (2)0.21282 (19)0.06900 (15)0.0476 (5)
H150.42690.16300.10980.057*
C160.3573 (3)0.2982 (2)0.05801 (19)0.0638 (7)
H160.28630.30620.09160.077*
C170.3777 (3)0.3715 (2)0.00235 (19)0.0698 (8)
H170.32100.42960.00950.084*
C180.4814 (3)0.3593 (2)0.05222 (17)0.0637 (7)
H180.49420.40900.09360.076*
C190.5674 (3)0.27385 (17)0.04190 (14)0.0463 (5)
H190.63740.26600.07630.056*
C200.8914 (2)0.08509 (18)0.15067 (14)0.0455 (5)
C210.9882 (4)0.1050 (3)0.2152 (2)0.0952 (13)
H21A1.00580.04230.24390.143*
H21B1.07640.13230.18360.143*
H21C0.94450.15310.25940.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03334 (16)0.03564 (16)0.02741 (15)0.00451 (9)0.01064 (10)0.00404 (9)
O10.0369 (8)0.0436 (8)0.0331 (7)0.0076 (6)0.0121 (6)0.0094 (6)
O20.0589 (13)0.175 (3)0.0736 (14)0.0407 (15)0.0096 (11)0.0382 (16)
N10.0380 (9)0.0349 (9)0.0361 (9)0.0038 (7)0.0123 (7)0.0028 (7)
N20.0294 (8)0.0340 (9)0.0298 (8)0.0039 (6)0.0076 (6)0.0032 (6)
N30.0346 (9)0.0362 (9)0.0342 (9)0.0071 (7)0.0103 (7)0.0055 (7)
O30.0364 (8)0.0505 (8)0.0283 (7)0.0005 (6)0.0098 (6)0.0041 (6)
C10.0494 (13)0.0432 (12)0.0513 (13)0.0107 (10)0.0222 (10)0.0059 (10)
C20.0600 (15)0.0459 (13)0.0623 (15)0.0207 (11)0.0217 (12)0.0094 (11)
C30.0677 (16)0.0393 (12)0.0511 (13)0.0145 (11)0.0137 (12)0.0130 (10)
C40.0517 (13)0.0404 (11)0.0385 (11)0.0031 (10)0.0140 (9)0.0087 (9)
C50.0363 (10)0.0333 (10)0.0309 (9)0.0010 (8)0.0067 (8)0.0010 (8)
C60.0322 (10)0.0334 (10)0.0284 (9)0.0017 (8)0.0066 (7)0.0019 (8)
C70.0369 (10)0.0311 (10)0.0297 (9)0.0013 (8)0.0090 (8)0.0020 (8)
C80.0366 (10)0.0388 (11)0.0355 (10)0.0026 (8)0.0062 (8)0.0025 (8)
C90.0370 (11)0.0556 (14)0.0529 (13)0.0042 (10)0.0156 (10)0.0066 (11)
C100.0554 (14)0.0681 (16)0.0430 (12)0.0039 (12)0.0265 (11)0.0073 (11)
C110.0568 (14)0.0702 (16)0.0288 (10)0.0038 (12)0.0082 (10)0.0053 (10)
C120.0365 (11)0.0575 (13)0.0344 (11)0.0018 (10)0.0066 (9)0.0043 (10)
C130.0298 (9)0.0375 (10)0.0284 (9)0.0009 (8)0.0021 (7)0.0005 (8)
C140.0340 (10)0.0360 (10)0.0312 (9)0.0028 (8)0.0005 (8)0.0013 (8)
C150.0419 (12)0.0531 (13)0.0479 (12)0.0103 (10)0.0087 (10)0.0026 (10)
C160.0564 (15)0.0699 (18)0.0658 (17)0.0264 (13)0.0132 (13)0.0007 (14)
C170.081 (2)0.0578 (16)0.0663 (17)0.0349 (15)0.0025 (15)0.0036 (14)
C180.094 (2)0.0429 (13)0.0508 (14)0.0153 (13)0.0047 (14)0.0101 (11)
C190.0582 (14)0.0409 (12)0.0388 (11)0.0057 (10)0.0062 (10)0.0021 (9)
C200.0477 (13)0.0539 (13)0.0363 (11)0.0141 (11)0.0119 (10)0.0058 (10)
C210.100 (2)0.138 (3)0.0595 (18)0.051 (2)0.0444 (17)0.054 (2)
Geometric parameters (Å, º) top
Cu1—O31.9318 (14)C8—C91.378 (3)
Cu1—N21.9325 (16)C8—H80.9300
Cu1—O11.9862 (14)C9—C101.372 (3)
Cu1—N12.0225 (16)C9—H90.9300
Cu1—O3i2.3167 (15)C10—C111.379 (3)
O1—C131.276 (2)C10—H100.9300
O2—C201.202 (3)C11—C121.376 (3)
N1—C11.330 (3)C11—H110.9300
N1—C51.356 (2)C12—H120.9300
N2—C61.292 (2)C13—C141.483 (3)
N2—N31.364 (2)C14—C191.382 (3)
N3—C131.330 (2)C14—C151.386 (3)
O3—C201.275 (3)C15—C161.371 (3)
O3—Cu1i2.3167 (15)C15—H150.9300
C1—C21.378 (3)C16—C171.367 (4)
C1—H10.9300C16—H160.9300
C2—C31.369 (3)C17—C181.366 (4)
C2—H20.9300C17—H170.9300
C3—C41.379 (3)C18—C191.381 (3)
C3—H30.9300C18—H180.9300
C4—C51.381 (3)C19—H190.9300
C4—H40.9300C20—C211.492 (3)
C5—C61.476 (3)C21—H21A0.9600
C6—C71.478 (3)C21—H21B0.9600
C7—C81.388 (3)C21—H21C0.9600
C7—C121.392 (3)
O3—Cu1—N2172.74 (6)C7—C8—H8120.0
O3—Cu1—O1103.02 (6)C10—C9—C8120.5 (2)
N2—Cu1—O179.26 (6)C10—C9—H9119.7
O3—Cu1—N197.78 (6)C8—C9—H9119.7
N2—Cu1—N179.78 (6)C9—C10—C11119.8 (2)
O1—Cu1—N1159.04 (6)C9—C10—H10120.1
O3—Cu1—O3i76.36 (6)C11—C10—H10120.1
N2—Cu1—O3i110.45 (6)C12—C11—C10120.4 (2)
O1—Cu1—O3i95.24 (6)C12—C11—H11119.8
N1—Cu1—O3i92.13 (6)C10—C11—H11119.8
C13—O1—Cu1109.93 (12)C11—C12—C7120.0 (2)
C1—N1—C5119.29 (17)C11—C12—H12120.0
C1—N1—Cu1127.57 (14)C7—C12—H12120.0
C5—N1—Cu1113.14 (13)O1—C13—N3125.39 (18)
C6—N2—N3122.48 (16)O1—C13—C14119.27 (17)
C6—N2—Cu1119.83 (13)N3—C13—C14115.34 (17)
N3—N2—Cu1117.50 (12)C19—C14—C15119.0 (2)
C13—N3—N2107.80 (15)C19—C14—C13121.00 (18)
C20—O3—Cu1119.72 (14)C15—C14—C13120.04 (18)
C20—O3—Cu1i135.26 (13)C16—C15—C14120.7 (2)
Cu1—O3—Cu1i103.64 (6)C16—C15—H15119.7
N1—C1—C2122.0 (2)C14—C15—H15119.7
N1—C1—H1119.0C17—C16—C15120.0 (3)
C2—C1—H1119.0C17—C16—H16120.0
C3—C2—C1119.2 (2)C15—C16—H16120.0
C3—C2—H2120.4C18—C17—C16120.0 (2)
C1—C2—H2120.4C18—C17—H17120.0
C2—C3—C4119.3 (2)C16—C17—H17120.0
C2—C3—H3120.3C17—C18—C19120.8 (2)
C4—C3—H3120.3C17—C18—H18119.6
C3—C4—C5119.2 (2)C19—C18—H18119.6
C3—C4—H4120.4C18—C19—C14119.6 (2)
C5—C4—H4120.4C18—C19—H19120.2
N1—C5—C4120.91 (18)C14—C19—H19120.2
N1—C5—C6114.38 (16)O2—C20—O3123.7 (2)
C4—C5—C6124.71 (18)O2—C20—C21120.5 (2)
N2—C6—C5112.72 (16)O3—C20—C21115.9 (2)
N2—C6—C7124.57 (17)C20—C21—H21A109.5
C5—C6—C7122.69 (16)C20—C21—H21B109.5
C8—C7—C12119.23 (18)H21A—C21—H21B109.5
C8—C7—C6120.52 (17)C20—C21—H21C109.5
C12—C7—C6120.24 (18)H21A—C21—H21C109.5
C9—C8—C7120.04 (19)H21B—C21—H21C109.5
C9—C8—H8120.0
O3—Cu1—O1—C13175.12 (12)N3—N2—C6—C70.1 (3)
N2—Cu1—O1—C132.16 (13)Cu1—N2—C6—C7174.73 (14)
N1—Cu1—O1—C132.4 (3)N1—C5—C6—N24.3 (2)
O3i—Cu1—O1—C13107.70 (13)C4—C5—C6—N2176.11 (19)
O3—Cu1—N1—C17.55 (19)N1—C5—C6—C7174.16 (17)
N2—Cu1—N1—C1179.4 (2)C4—C5—C6—C75.4 (3)
O1—Cu1—N1—C1179.61 (18)N2—C6—C7—C852.9 (3)
O3i—Cu1—N1—C168.97 (19)C5—C6—C7—C8128.8 (2)
O3—Cu1—N1—C5172.18 (13)N2—C6—C7—C12125.8 (2)
N2—Cu1—N1—C50.90 (13)C5—C6—C7—C1252.5 (3)
O1—Cu1—N1—C50.7 (3)C12—C7—C8—C91.1 (3)
O3i—Cu1—N1—C5111.30 (14)C6—C7—C8—C9179.77 (19)
O1—Cu1—N2—C6178.37 (16)C7—C8—C9—C101.5 (3)
N1—Cu1—N2—C61.72 (15)C8—C9—C10—C110.6 (4)
O3i—Cu1—N2—C686.73 (15)C9—C10—C11—C120.7 (4)
O1—Cu1—N2—N33.27 (13)C10—C11—C12—C71.0 (4)
N1—Cu1—N2—N3176.82 (15)C8—C7—C12—C110.1 (3)
O3i—Cu1—N2—N388.37 (14)C6—C7—C12—C11178.5 (2)
C6—N2—N3—C13178.48 (18)Cu1—O1—C13—N30.9 (2)
Cu1—N2—N3—C133.5 (2)Cu1—O1—C13—C14178.53 (13)
O1—Cu1—O3—C2076.25 (17)N2—N3—C13—O11.6 (3)
N1—Cu1—O3—C20101.13 (17)N2—N3—C13—C14178.92 (15)
O3i—Cu1—O3—C20168.6 (2)O1—C13—C14—C197.6 (3)
O1—Cu1—O3—Cu1i92.32 (6)N3—C13—C14—C19171.86 (19)
N1—Cu1—O3—Cu1i90.31 (7)O1—C13—C14—C15172.24 (19)
O3i—Cu1—O3—Cu1i0.0N3—C13—C14—C158.3 (3)
C5—N1—C1—C21.1 (3)C19—C14—C15—C161.3 (3)
Cu1—N1—C1—C2178.66 (18)C13—C14—C15—C16178.8 (2)
N1—C1—C2—C30.5 (4)C14—C15—C16—C170.5 (4)
C1—C2—C3—C40.9 (4)C15—C16—C17—C180.5 (5)
C2—C3—C4—C50.3 (4)C16—C17—C18—C190.6 (4)
C1—N1—C5—C42.3 (3)C17—C18—C19—C140.3 (4)
Cu1—N1—C5—C4177.43 (16)C15—C14—C19—C181.2 (3)
C1—N1—C5—C6177.25 (18)C13—C14—C19—C18178.9 (2)
Cu1—N1—C5—C63.0 (2)Cu1—O3—C20—O26.1 (4)
C3—C4—C5—N12.0 (3)Cu1i—O3—C20—O2158.0 (2)
C3—C4—C5—C6177.6 (2)Cu1—O3—C20—C21174.3 (2)
N3—N2—C6—C5178.56 (16)Cu1i—O3—C20—C2121.6 (4)
Cu1—N2—C6—C53.7 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg5, Cg8 and Cg9 are the centroids of the Cu1/O1/C13/N3/N2, Cu1/O3/Cu1A/O3A, Cu1/N1/C5/C6/N2, C7–C12 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N30.932.432.752 (3)101
C8—H8···O1ii0.932.513.416 (2)166
C15—H15···O2ii0.932.373.116 (4)137
C1—H1···Cg30.932.853.1701102
C3—H3···Cg8iii0.932.863.5543132
C12—H12···Cg9iii0.933.123.8426136
C21—H21A···Cg5i0.963.143.5809110
C21—H21B···Cg2i0.962.963.6761133
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C19H14N3O)2(C2H3O2)2]
Mr845.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.5758 (3), 13.1009 (4), 15.2124 (5)
β (°) 100.718 (1)
V3)1875.13 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.706, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
14426, 3300, 2981
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.06
No. of reflections3300
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg5, Cg8 and Cg9 are the centroids of the Cu1/O1/C13/N3/N2, Cu1/O3/Cu1A/O3A, Cu1/N1/C5/C6/N2, C7–C12 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N30.932.432.752 (3)101
C8—H8···O1i0.932.513.416 (2)166
C15—H15···O2i0.932.373.116 (4)137
C1—H1···Cg30.932.85023.1701102
C3—H3···Cg8ii0.932.86443.5543132
C12—H12···Cg9ii0.933.11733.8426136
C21—H21A···Cg5iii0.963.13703.5809110
C21—H21B···Cg2iii0.962.95693.6761133
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+2, y, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instument Facility, Cochin University of Science and Technology, Kochi-22, for providing single-crystal XRD data. MCV and JMJ thank the Council of Scientific and Industrial Research, New Delhi, India, for awarding a Junior Research Fellowship and Senior Research Fellowship, respectively.

References

First citationBakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.   Google Scholar
First citationEl-Sayed, M. A.-A., Abdel-Aziz, N. I., Abdel-Aziz, A. A.-M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.  Google Scholar
First citationMangalam, N. A., Sivakumar, S., Kurup, M. R. P. & Suresh, E. (2010). Spectrochim. Acta Part A, 75, 686–692.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds