organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[(2,2′:6′,2′′-terpyridin-4′-yl)­­oxy]ethane

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
*Correspondence e-mail: 207513620@stu.ukzn.ac.za

(Received 26 June 2012; accepted 3 July 2012; online 7 July 2012)

The title compound, C32H24N6O2, has an inversion centre located at the mid-point of the central C—C bond of the diether bridging unit. The terminal pyridine rings are canted relative to the central pyridine ring, with dihedral angles of 12.98 (6) and 26.80 (6)°. The maximum deviation from the eight-atom mean plane, defined by the two bridging O and C atoms and the central pyridine ring, is 0.0383 (10)° for the N atom.

Related literature

For the structure of the un-substituted 2,2′:6′,2′′-terpyridine compound, see: Bessel et al. (1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]). For the structure of the precursor to the title compound, 4′-chloro-2,2′:6′,2′′-ter­pyridine, see: Beves et al. (2006[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497-o2498.]). For the structure of 1,4-bis­[(2,2′:6′,2′′-terpyridin-4′-yl)­oxy]butane, see: Akerman et al. (2011[Akerman, M. P., Grimmer, C. D., Nikolayenko, V. I. & Reddy, D. (2011). Acta Cryst. E67, o3478-o3479.]). For the structure of 1,6-bis­[(2,2′:6′,2′′-terpyridin-4′-yl)­­oxy]hexane, see: Nikolayenko et al. (2012[Nikolayenko, V. I., Akerman, M. P., Grimmer, C. D. & Reddy, D. (2012). Acta Cryst. E68, o2272-o2273.]). For a full review of functionalized 2,2′:6′,2′′-terpyridine complexes, see: Fallahpour (2003[Fallahpour, R. A. (2003). Synthesis, 2, 155-184.]); Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. 6, 947-961.]). For a comprehensive summary of platinum(II) terpyridines, see: Newkome et al. (2008[Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834-1895.]). For the structure of bis­(2,2′:6′,2′′-terpyrid­yl) ether, see: Constable et al. (1995[Constable, E. C., Thompson, A. M., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.]). For the syntheses and structures of related bis­(terpyridine) structures linked by an alk­oxy spacer, see: Constable et al. (2006[Constable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831-1843.]). For the syntheses of diol-bridged terpyridines, see: Constable et al. (2005[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259-2267.]); Van der Schilden (2006[Van der Schilden, K. (2006). PhD Thesis, Leiden University, The Netherlands.]).

[Scheme 1]

Experimental

Crystal data
  • C32H24N6O2

  • Mr = 524.58

  • Triclinic, [P \overline 1]

  • a = 6.2576 (6) Å

  • b = 10.0851 (9) Å

  • c = 10.2388 (9) Å

  • α = 93.850 (6)°

  • β = 98.760 (6)°

  • γ = 102.468 (5)°

  • V = 620.20 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.996

  • 8371 measured reflections

  • 4459 independent reflections

  • 3364 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.182

  • S = 1.04

  • 4459 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is the last in a series of ligands developed in an effort to boost multifunctional activity. Coordination of these ligands to platinum(II) should enable covalent binding of DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the triclinic space group P1, with a half molecule in the asymmetric unit and Z = 1. Crystallographically imposed inversion symmetry relates the two halves of the ligand to one another. The inversion centre is located at the mid-point of the diol linkage unit. The three pyridine rings adopt a trans, trans conformation. The same configuration is observed in the other ligands of this series with butyl and hexyl diol linkages (Akerman et al., 2011; Nikolayenko et al., 2012). The parent compound 4'-chloro-2,2':6',2''-terpyridine (Beves et al. 2006), and uncoordinated terpyridine ligands in general show the same configuration.

The central pyridine ring of the terpyridine moeity is in the same plane as the bridging diol chain. The terminal pyridine rings of the terpyridine ligand are, however, canted relative to the central pyridine ring. The C7—C6—C5—N1 torsion angle is 25.9 (2)° while the C9—C10—C11—N3 torsion angle is 11.9 (2)° (refer to Fig. 1 for the atom numbering scheme). The large torsion angle of the pyridine ring containing N1 is seemingly to allow for hydrogen bonding between the pyridine nitrogen atom N1 and the pyridine hydrogen atom H3 of an adjacent molecule. This hydrogen bond links the molecules into an infinite, one-dimensional chain (Fig. 2). The hydrogen bonded chain is co-linear with the a-axis. The hydrogen bond lengths and bond angles are summarized in Table 1. Although the hydrogen bond length does not necessarily correlate linearly with bond strength, due to packing constraints, the interaction is relatively long and it is therefore likely to be a weak interaction. There is no indication of meaningful ππ or C—H···π interactions in the lattice, which are often observed in terpyridine structures (Beves et al. 2006).

Related literature top

For the structure of the un-substituted 2,2':6',2''-terpyridine compound, see: Bessel et al. (1992). For the structure of the precursor to the title compound, 4'-chloro-2,2':6',2''-terpyridine, see: Beves et al. (2006). For the structure of the 1,4-bis[(2,2':6',2''-terpyridin-4'-yl)oxy]-butane, see: Akerman et al. (2011). For the structure of 1,6-bis[(2,2':6',2''-terpyridin-4'-yl)oxy]-hexane, see: Nikolayenko et al. (2012). For a full review of functionalized 2,2':6',2''-terpyridine complexes, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive summary of platinum(II) terpyridines, see: Newkome et al. (2008). For the structure of bis(2,2':6',2''-terpyridyl)ether, see: Constable et al. (1995). For the syntheses and structures of related bis(terpyridine) structures linked by an alkoxy spacer, see: Constable et al. (2006). For the syntheses of diol-bridged terpyridines, see: Constable et al. (2005); Van der Schilden (2006).

Experimental top

The title compound was prepared by an adaptation of a previously described method (Van der Schilden, 2006; Constable et al., 2005). Ethanediol (1.13 mmol) was added to a suspension of ground potassium hydroxide (6.69 mmol) in DMSO (30 ml). The solution was heated to reflux for 1 h after which 4'-chloro-2,2':6'2''-terpyridine (2.23 mmol) was added. The mixture was again brought to reflux for an additional 24 h. After cooling to room temperature, the brown mixture was added to cold water (100 ml). The resulting off-white precipitate was collected, rinsed with cold ethanol and air dried. Single crystals were grown by slow liquid diffusion of n-hexane into a chloroform solution of the compound.

Refinement top

All non-hydrogen atoms were located in the difference Fourier map and refined anistropically. The positions of all hydrogen atoms were calculated using the standard riding model of SHELX97. with C—H(aromatic) and C—H(methylene) distances of 0.93 Å and Uiso = 1.2Ueq.

Structure description top

The title compound is the last in a series of ligands developed in an effort to boost multifunctional activity. Coordination of these ligands to platinum(II) should enable covalent binding of DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the triclinic space group P1, with a half molecule in the asymmetric unit and Z = 1. Crystallographically imposed inversion symmetry relates the two halves of the ligand to one another. The inversion centre is located at the mid-point of the diol linkage unit. The three pyridine rings adopt a trans, trans conformation. The same configuration is observed in the other ligands of this series with butyl and hexyl diol linkages (Akerman et al., 2011; Nikolayenko et al., 2012). The parent compound 4'-chloro-2,2':6',2''-terpyridine (Beves et al. 2006), and uncoordinated terpyridine ligands in general show the same configuration.

The central pyridine ring of the terpyridine moeity is in the same plane as the bridging diol chain. The terminal pyridine rings of the terpyridine ligand are, however, canted relative to the central pyridine ring. The C7—C6—C5—N1 torsion angle is 25.9 (2)° while the C9—C10—C11—N3 torsion angle is 11.9 (2)° (refer to Fig. 1 for the atom numbering scheme). The large torsion angle of the pyridine ring containing N1 is seemingly to allow for hydrogen bonding between the pyridine nitrogen atom N1 and the pyridine hydrogen atom H3 of an adjacent molecule. This hydrogen bond links the molecules into an infinite, one-dimensional chain (Fig. 2). The hydrogen bonded chain is co-linear with the a-axis. The hydrogen bond lengths and bond angles are summarized in Table 1. Although the hydrogen bond length does not necessarily correlate linearly with bond strength, due to packing constraints, the interaction is relatively long and it is therefore likely to be a weak interaction. There is no indication of meaningful ππ or C—H···π interactions in the lattice, which are often observed in terpyridine structures (Beves et al. 2006).

For the structure of the un-substituted 2,2':6',2''-terpyridine compound, see: Bessel et al. (1992). For the structure of the precursor to the title compound, 4'-chloro-2,2':6',2''-terpyridine, see: Beves et al. (2006). For the structure of the 1,4-bis[(2,2':6',2''-terpyridin-4'-yl)oxy]-butane, see: Akerman et al. (2011). For the structure of 1,6-bis[(2,2':6',2''-terpyridin-4'-yl)oxy]-hexane, see: Nikolayenko et al. (2012). For a full review of functionalized 2,2':6',2''-terpyridine complexes, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive summary of platinum(II) terpyridines, see: Newkome et al. (2008). For the structure of bis(2,2':6',2''-terpyridyl)ether, see: Constable et al. (1995). For the syntheses and structures of related bis(terpyridine) structures linked by an alkoxy spacer, see: Constable et al. (2006). For the syntheses of diol-bridged terpyridines, see: Constable et al. (2005); Van der Schilden (2006).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2010); data reduction: SAINT-Plus (Bruker, 2010); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. A view of packing of the title compound.
1,2-Bis[(2,2':6',2''-terpyridin-4'-yl)oxy]ethane top
Crystal data top
C32H24N6O2Z = 1
Mr = 524.58F(000) = 274
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2576 (6) ÅCell parameters from 3364 reflections
b = 10.0851 (9) Åθ = 2.0–32.8°
c = 10.2388 (9) ŵ = 0.09 mm1
α = 93.850 (6)°T = 100 K
β = 98.760 (6)°Needle, colourless
γ = 102.468 (5)°0.20 × 0.10 × 0.05 mm
V = 620.20 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4459 independent reflections
Radiation source: fine-focus sealed tube3364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 32.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 98
Tmin = 0.982, Tmax = 0.996k = 1515
8371 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1018P)2 + 0.0609P]
where P = (Fo2 + 2Fc2)/3
4459 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C32H24N6O2γ = 102.468 (5)°
Mr = 524.58V = 620.20 (10) Å3
Triclinic, P1Z = 1
a = 6.2576 (6) ÅMo Kα radiation
b = 10.0851 (9) ŵ = 0.09 mm1
c = 10.2388 (9) ÅT = 100 K
α = 93.850 (6)°0.20 × 0.10 × 0.05 mm
β = 98.760 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
3364 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.996Rint = 0.041
8371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.04Δρmax = 0.77 e Å3
4459 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8540 (2)0.33313 (15)0.60520 (14)0.0283 (3)
H10.79630.34990.68370.034*
C21.0660 (2)0.30976 (14)0.61813 (14)0.0269 (3)
H21.15080.31000.70340.032*
C31.1514 (2)0.28615 (14)0.50440 (14)0.0250 (3)
H31.29770.27210.51010.030*
C41.0195 (2)0.28323 (13)0.38123 (13)0.0208 (3)
H41.07240.26480.30130.025*
C50.80907 (19)0.30792 (12)0.37783 (12)0.0166 (2)
C60.66344 (19)0.30803 (12)0.24834 (11)0.0162 (2)
C70.5019 (2)0.38379 (12)0.24126 (12)0.0174 (2)
H70.48450.43710.31730.021*
C80.36599 (19)0.37913 (11)0.11862 (12)0.0164 (2)
C90.3930 (2)0.29829 (12)0.01032 (12)0.0175 (2)
H90.29930.29130.07330.021*
C100.56189 (19)0.22744 (11)0.02768 (12)0.0163 (2)
C110.5964 (2)0.14184 (12)0.08808 (12)0.0176 (2)
C120.7865 (2)0.09098 (13)0.08388 (13)0.0216 (3)
H120.89590.10770.00570.026*
C130.8136 (2)0.01537 (14)0.19586 (14)0.0263 (3)
H130.94400.01830.19660.032*
C140.6474 (3)0.01030 (14)0.30669 (14)0.0286 (3)
H140.66050.06270.38450.034*
C150.4620 (3)0.04248 (14)0.30107 (14)0.0277 (3)
H150.34710.02340.37650.033*
C160.07750 (19)0.45488 (12)0.01226 (11)0.0167 (2)
H16A0.00690.36100.04610.020*
H16B0.17030.49090.07780.020*
N10.72577 (19)0.33330 (12)0.48743 (11)0.0235 (2)
N20.69872 (17)0.23327 (10)0.14323 (10)0.0170 (2)
N30.4356 (2)0.11876 (11)0.19559 (11)0.0231 (2)
O10.21257 (15)0.45611 (9)0.11416 (8)0.0196 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (7)0.0380 (7)0.0155 (6)0.0149 (6)0.0030 (5)0.0009 (5)
C20.0312 (7)0.0294 (6)0.0178 (6)0.0113 (5)0.0085 (5)0.0004 (5)
C30.0227 (6)0.0284 (6)0.0231 (6)0.0116 (5)0.0060 (5)0.0004 (5)
C40.0200 (5)0.0256 (6)0.0177 (6)0.0111 (4)0.0015 (4)0.0004 (4)
C50.0185 (5)0.0175 (5)0.0138 (5)0.0074 (4)0.0016 (4)0.0011 (4)
C60.0174 (5)0.0184 (5)0.0135 (5)0.0077 (4)0.0004 (4)0.0020 (4)
C70.0195 (5)0.0191 (5)0.0145 (5)0.0095 (4)0.0006 (4)0.0007 (4)
C80.0170 (5)0.0170 (5)0.0164 (5)0.0085 (4)0.0004 (4)0.0025 (4)
C90.0199 (5)0.0192 (5)0.0141 (5)0.0092 (4)0.0015 (4)0.0012 (4)
C100.0181 (5)0.0166 (5)0.0148 (5)0.0075 (4)0.0001 (4)0.0007 (4)
C110.0218 (5)0.0166 (5)0.0150 (5)0.0080 (4)0.0003 (4)0.0005 (4)
C120.0251 (6)0.0205 (5)0.0201 (6)0.0110 (4)0.0005 (4)0.0003 (4)
C130.0348 (7)0.0236 (6)0.0247 (7)0.0154 (5)0.0060 (5)0.0007 (5)
C140.0449 (8)0.0234 (6)0.0188 (6)0.0127 (6)0.0046 (5)0.0028 (5)
C150.0399 (8)0.0247 (6)0.0162 (6)0.0103 (5)0.0044 (5)0.0037 (5)
C160.0175 (5)0.0184 (5)0.0148 (5)0.0089 (4)0.0022 (4)0.0015 (4)
N10.0245 (5)0.0319 (6)0.0155 (5)0.0141 (4)0.0016 (4)0.0004 (4)
N20.0190 (5)0.0179 (4)0.0146 (5)0.0081 (4)0.0007 (3)0.0007 (3)
N30.0292 (6)0.0233 (5)0.0158 (5)0.0103 (4)0.0034 (4)0.0019 (4)
O10.0219 (4)0.0248 (4)0.0145 (4)0.0155 (3)0.0033 (3)0.0008 (3)
Geometric parameters (Å, º) top
C1—N11.3431 (16)C9—H90.9500
C1—C21.385 (2)C10—N21.3404 (14)
C1—H10.9500C10—C111.4891 (16)
C2—C31.381 (2)C11—N31.3437 (14)
C2—H20.9500C11—C121.3895 (17)
C3—C41.3928 (16)C12—C131.3865 (18)
C3—H30.9500C12—H120.9500
C4—C51.3879 (16)C13—C141.3859 (19)
C4—H40.9500C13—H130.9500
C5—N11.3393 (17)C14—C151.384 (2)
C5—C61.4902 (15)C14—H140.9500
C6—N21.3457 (15)C15—N31.3354 (17)
C6—C71.3889 (15)C15—H150.9500
C7—C81.3972 (15)C16—O11.4318 (13)
C7—H70.9500C16—C16i1.502 (2)
C8—O11.3564 (13)C16—H16A0.9900
C8—C91.3849 (16)C16—H16B0.9900
C9—C101.3945 (15)
N1—C1—C2123.44 (13)N2—C10—C11117.52 (10)
N1—C1—H1118.3C9—C10—C11118.88 (10)
C2—C1—H1118.3N3—C11—C12122.67 (11)
C3—C2—C1118.57 (11)N3—C11—C10116.21 (10)
C3—C2—H2120.7C12—C11—C10121.12 (10)
C1—C2—H2120.7C13—C12—C11118.78 (11)
C2—C3—C4118.90 (12)C13—C12—H12120.6
C2—C3—H3120.6C11—C12—H12120.6
C4—C3—H3120.6C14—C13—C12118.95 (12)
C5—C4—C3118.52 (12)C14—C13—H13120.5
C5—C4—H4120.7C12—C13—H13120.5
C3—C4—H4120.7C15—C14—C13118.25 (12)
N1—C5—C4123.13 (10)C15—C14—H14120.9
N1—C5—C6116.44 (10)C13—C14—H14120.9
C4—C5—C6120.42 (11)N3—C15—C14123.72 (12)
N2—C6—C7123.58 (10)N3—C15—H15118.1
N2—C6—C5116.82 (9)C14—C15—H15118.1
C7—C6—C5119.60 (10)O1—C16—C16i105.29 (11)
C6—C7—C8117.85 (10)O1—C16—H16A110.7
C6—C7—H7121.1C16i—C16—H16A110.7
C8—C7—H7121.1O1—C16—H16B110.7
O1—C8—C9123.90 (10)C16i—C16—H16B110.7
O1—C8—C7116.52 (10)H16A—C16—H16B108.8
C9—C8—C7119.58 (10)C5—N1—C1117.40 (11)
C8—C9—C10118.00 (10)C10—N2—C6117.30 (9)
C8—C9—H9121.0C15—N3—C11117.59 (11)
C10—C9—H9121.0C8—O1—C16116.69 (9)
N2—C10—C9123.59 (10)
N1—C1—C2—C30.4 (2)C9—C10—C11—C12167.31 (12)
C1—C2—C3—C41.6 (2)N3—C11—C12—C131.2 (2)
C2—C3—C4—C51.72 (19)C10—C11—C12—C13178.02 (12)
C3—C4—C5—N10.60 (19)C11—C12—C13—C141.9 (2)
C3—C4—C5—C6179.03 (11)C12—C13—C14—C150.8 (2)
N1—C5—C6—N2154.39 (12)C13—C14—C15—N31.2 (2)
C4—C5—C6—N225.96 (17)C4—C5—N1—C10.62 (19)
N1—C5—C6—C725.91 (17)C6—C5—N1—C1179.74 (12)
C4—C5—C6—C7153.74 (12)C2—C1—N1—C50.7 (2)
N2—C6—C7—C81.52 (19)C9—C10—N2—C62.55 (18)
C5—C6—C7—C8178.80 (11)C11—C10—N2—C6178.40 (11)
C6—C7—C8—O1178.82 (11)C7—C6—N2—C103.38 (18)
C6—C7—C8—C91.27 (18)C5—C6—N2—C10176.93 (10)
O1—C8—C9—C10178.08 (11)C14—C15—N3—C111.9 (2)
C7—C8—C9—C102.02 (18)C12—C11—N3—C150.7 (2)
C8—C9—C10—N20.09 (19)C10—C11—N3—C15179.90 (13)
C8—C9—C10—C11178.94 (11)C9—C8—O1—C161.95 (18)
N2—C10—C11—N3168.96 (11)C7—C8—O1—C16178.14 (10)
C9—C10—C11—N311.94 (18)C16i—C16—O1—C8178.97 (12)
N2—C10—C11—C1211.79 (18)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H24N6O2
Mr524.58
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.2576 (6), 10.0851 (9), 10.2388 (9)
α, β, γ (°)93.850 (6), 98.760 (6), 102.468 (5)
V3)620.20 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.982, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
8371, 4459, 3364
Rint0.041
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.182, 1.04
No. of reflections4459
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.27

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2010), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Univeristy of Kwazulu-Natal for supporting this research by providing both funding and facilities.

References

First citationAkerman, M. P., Grimmer, C. D., Nikolayenko, V. I. & Reddy, D. (2011). Acta Cryst. E67, o3478–o3479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831–1843.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259–2267.  Web of Science CSD CrossRef Google Scholar
First citationConstable, E. C., Thompson, A. M., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.  CrossRef CAS Web of Science Google Scholar
First citationFallahpour, R. A. (2003). Synthesis, 2, 155–184.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. 6, 947–961.  CrossRef Google Scholar
First citationNewkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895.  Web of Science PubMed Google Scholar
First citationNikolayenko, V. I., Akerman, M. P., Grimmer, C. D. & Reddy, D. (2012). Acta Cryst. E68, o2272–o2273.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Schilden, K. (2006). PhD Thesis, Leiden University, The Netherlands.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds