organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Eth­­oxy-6-({2-[(3-eth­­oxy-2-hy­dr­oxy­benzyl­­idene)amino]­benz­yl}imino­meth­yl)phenol

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 27 June 2012; accepted 10 July 2012; online 18 July 2012)

The title compound, C25H26N2O4, exists in an E conformation with respect to each azomethine link. The two phenol-substituted benzene rings are twisted away from the plane of the diimine benzene ring by dihedral angles of 27.25 (5) and 56.67 (5)°. The mol­ecular structure is stabilized by intra­molecular O—H⋯N hydrogen bonds.

Related literature

For the applications of salen Schiff bases, see: Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]). For the synthesis of Schiff bases, see: Tümer (2000[Tümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139-1158.]). For a related structure, see: Aslantaş et al. (2007[Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644-o645.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2O4

  • Mr = 418.48

  • Monoclinic, P 21 /c

  • a = 4.8315 (4) Å

  • b = 17.5414 (14) Å

  • c = 25.828 (2) Å

  • β = 94.356 (3)°

  • V = 2182.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 32150 measured reflections

  • 3833 independent reflections

  • 2543 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.05

  • 3833 reflections

  • 291 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N1 0.85 (1) 1.79 (1) 2.5711 (19) 151 (2)
O3—H3O⋯N2 0.85 (1) 1.80 (1) 2.5844 (19) 152 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chelating structure, moderate electron donation and easy tunable electronic and steric effects make dicompartmental salen type Schiff bases to act as versatile ligands. They are able to stabilize different metals in various oxidation states and control the performance of the metals in various catalytic transformations (Cozzi, 2004). Schiff bases are very selective in the sense that they provide geometrical cavity control for host guest interaction and modulate its lipophilicity to stabilize a specific metal ion. Moreover, it has been suggested that the azomethine linkage in Schiff bases is responsible for their biological activities such as antimicrobial, antifungal and antitumor and also to be used as herbicides (Hodnett & Dunn, 1970).

The E conformation of the compound is evidenced from the torsion angles, 176.94 (14)° and 179.38 (15)° made by the C10—N1—C9—C7 and C16—N2—C17—C18 linkages respectively. The bond lengths and bond angles are in normal ranges and agree with the related structure (Aslantaş, et al., 2007). The crystal involves two intramolecular O—H···N hydrogen bonds and C—H···π interactions which make the molecule stable.

Related literature top

For the applications of salen Schiff bases, see: Cozzi (2004); Hodnett & Dunn (1970). For the synthesis of Schiff bases, see: Tümer (2000). For a related structure, see: Aslantaş et al. (2007).

Experimental top

The title compound was prepared according to the reported procedure (Tümer, 2000) by the condensation of the ethanolic solution of 3-ethoxy-2-hydroxybenzaldehyde (1 mmol, 0.166 g) with an ethanolic solution of 2-aminobenzylamine (0.5 mmol, 0.061 g). The reaction mixture was heated to reflux for 6 h and kept for cooling at room temperature. The slow evaporation yielded orange-yellow crystals of N,N'-bis(3-ethoxy-2-hydroxybenzylidene)-2-aminobenzylamine.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). O(2)—H(2o) and O(3)—H(3o) H atoms were located from difference maps and restrained using DFIX instructions.

Structure description top

The chelating structure, moderate electron donation and easy tunable electronic and steric effects make dicompartmental salen type Schiff bases to act as versatile ligands. They are able to stabilize different metals in various oxidation states and control the performance of the metals in various catalytic transformations (Cozzi, 2004). Schiff bases are very selective in the sense that they provide geometrical cavity control for host guest interaction and modulate its lipophilicity to stabilize a specific metal ion. Moreover, it has been suggested that the azomethine linkage in Schiff bases is responsible for their biological activities such as antimicrobial, antifungal and antitumor and also to be used as herbicides (Hodnett & Dunn, 1970).

The E conformation of the compound is evidenced from the torsion angles, 176.94 (14)° and 179.38 (15)° made by the C10—N1—C9—C7 and C16—N2—C17—C18 linkages respectively. The bond lengths and bond angles are in normal ranges and agree with the related structure (Aslantaş, et al., 2007). The crystal involves two intramolecular O—H···N hydrogen bonds and C—H···π interactions which make the molecule stable.

For the applications of salen Schiff bases, see: Cozzi (2004); Hodnett & Dunn (1970). For the synthesis of Schiff bases, see: Tümer (2000). For a related structure, see: Aslantaş et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Packing diagram of the compound viewed along a axis.
2-Ethoxy-6-({2-[(3-ethoxy-2-hydroxybenzylidene)amino]benzyl}iminomethyl)phenol top
Crystal data top
C25H26N2O4F(000) = 888
Mr = 418.48Dx = 1.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5446 reflections
a = 4.8315 (4) Åθ = 2.3–22.4°
b = 17.5414 (14) ŵ = 0.09 mm1
c = 25.828 (2) ÅT = 296 K
β = 94.356 (3)°Needle-like, orange
V = 2182.6 (3) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3833 independent reflections
Radiation source: fine-focus sealed tube2543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 55
Tmin = 0.979, Tmax = 0.983k = 2020
32150 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.3451P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3833 reflectionsΔρmax = 0.13 e Å3
291 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (9)
Crystal data top
C25H26N2O4V = 2182.6 (3) Å3
Mr = 418.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8315 (4) ŵ = 0.09 mm1
b = 17.5414 (14) ÅT = 296 K
c = 25.828 (2) Å0.40 × 0.20 × 0.20 mm
β = 94.356 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2543 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.044
32150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
3833 reflectionsΔρmin = 0.13 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.5523 (3)1.08404 (8)0.43051 (5)0.0645 (4)
O21.1570 (3)1.09379 (8)0.35604 (5)0.0598 (4)
O30.0532 (3)0.93676 (8)0.17006 (5)0.0543 (4)
O40.3152 (3)0.82995 (8)0.15297 (5)0.0659 (4)
N10.8660 (3)1.03221 (9)0.27970 (5)0.0466 (4)
N20.4050 (3)1.03122 (8)0.13518 (5)0.0445 (4)
C11.8136 (6)1.16138 (15)0.48999 (10)0.0968 (9)
H1A1.85771.19600.46300.145*
H1B1.96021.16200.51720.145*
H1C1.64291.17680.50370.145*
C21.7824 (4)1.08294 (13)0.46832 (8)0.0634 (6)
H2A1.94971.06790.45240.076*
H2B1.74961.04690.49570.076*
C31.4950 (4)1.01888 (11)0.40288 (7)0.0479 (5)
C41.6259 (4)0.94994 (12)0.41106 (8)0.0589 (5)
H41.76820.94530.43720.071*
C51.5485 (5)0.88751 (12)0.38081 (8)0.0669 (6)
H51.63800.84110.38690.080*
C61.3413 (4)0.89335 (12)0.34193 (8)0.0582 (5)
H61.29130.85100.32170.070*
C71.2044 (3)0.96269 (10)0.33256 (6)0.0433 (4)
C81.2814 (3)1.02555 (10)0.36311 (7)0.0431 (4)
C90.9881 (4)0.96941 (11)0.29046 (7)0.0464 (5)
H90.93760.92650.27080.056*
C100.6616 (3)1.03497 (11)0.23529 (6)0.0471 (5)
H10A0.48281.04940.24700.057*
H10B0.64300.98470.21980.057*
C110.7426 (3)1.09114 (10)0.19477 (7)0.0413 (4)
C120.9465 (4)1.14566 (11)0.20497 (7)0.0503 (5)
H121.03991.14750.23780.060*
C131.0149 (4)1.19732 (11)0.16787 (8)0.0583 (5)
H131.15291.23340.17560.070*
C140.8783 (4)1.19519 (11)0.11950 (8)0.0610 (6)
H140.92121.23050.09450.073*
C150.6775 (4)1.14086 (11)0.10774 (7)0.0550 (5)
H150.58661.13940.07470.066*
C160.6101 (3)1.08823 (10)0.14499 (7)0.0419 (4)
C170.3525 (4)1.00201 (11)0.09022 (7)0.0468 (5)
H170.45101.01910.06290.056*
C180.1456 (3)0.94344 (10)0.08038 (7)0.0438 (4)
C190.0901 (4)0.91471 (12)0.03008 (7)0.0565 (5)
H190.18240.93470.00280.068*
C200.0987 (4)0.85754 (13)0.02086 (8)0.0636 (6)
H200.13340.83850.01260.076*
C210.2384 (4)0.82791 (12)0.06090 (9)0.0604 (6)
H210.36710.78910.05410.072*
C220.1905 (4)0.85472 (11)0.11067 (7)0.0493 (5)
C230.0053 (3)0.91322 (10)0.12070 (7)0.0430 (4)
C240.4979 (4)0.76620 (12)0.14644 (10)0.0709 (6)
H24A0.39960.72240.13410.085*
H24B0.65130.77800.12130.085*
C250.6032 (6)0.74931 (17)0.19800 (12)0.1079 (10)
H25A0.44920.74070.22300.162*
H25B0.71810.70460.19540.162*
H25C0.71020.79180.20880.162*
H2O1.031 (4)1.0877 (14)0.3316 (6)0.090 (8)*
H3O0.172 (4)0.9724 (10)0.1691 (10)0.103 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0646 (9)0.0605 (9)0.0640 (9)0.0055 (7)0.0227 (7)0.0080 (7)
O20.0650 (9)0.0476 (9)0.0632 (9)0.0063 (7)0.0189 (7)0.0030 (7)
O30.0597 (8)0.0607 (9)0.0431 (8)0.0100 (7)0.0075 (6)0.0064 (7)
O40.0606 (8)0.0640 (10)0.0739 (10)0.0166 (7)0.0109 (7)0.0022 (8)
N10.0454 (8)0.0537 (10)0.0400 (8)0.0027 (7)0.0006 (7)0.0008 (7)
N20.0416 (8)0.0480 (9)0.0432 (9)0.0004 (7)0.0005 (6)0.0010 (7)
C10.115 (2)0.0734 (18)0.0933 (19)0.0083 (15)0.0501 (16)0.0043 (15)
C20.0626 (12)0.0727 (16)0.0519 (12)0.0012 (11)0.0152 (10)0.0006 (11)
C30.0471 (10)0.0514 (13)0.0448 (11)0.0009 (9)0.0006 (8)0.0009 (9)
C40.0594 (12)0.0619 (14)0.0536 (12)0.0102 (10)0.0080 (10)0.0044 (11)
C50.0766 (14)0.0535 (14)0.0691 (14)0.0177 (11)0.0043 (12)0.0057 (12)
C60.0705 (13)0.0456 (12)0.0576 (13)0.0023 (10)0.0004 (10)0.0035 (10)
C70.0465 (10)0.0436 (11)0.0400 (10)0.0036 (8)0.0043 (8)0.0056 (9)
C80.0451 (10)0.0412 (11)0.0428 (10)0.0020 (8)0.0031 (8)0.0063 (9)
C90.0510 (10)0.0495 (12)0.0391 (10)0.0096 (9)0.0060 (8)0.0006 (9)
C100.0421 (9)0.0580 (12)0.0405 (10)0.0053 (8)0.0009 (8)0.0031 (9)
C110.0383 (9)0.0430 (10)0.0425 (10)0.0024 (8)0.0036 (7)0.0001 (8)
C120.0482 (10)0.0503 (12)0.0517 (11)0.0047 (9)0.0001 (9)0.0025 (10)
C130.0593 (12)0.0485 (12)0.0672 (14)0.0123 (10)0.0059 (10)0.0003 (10)
C140.0736 (14)0.0491 (13)0.0609 (14)0.0082 (10)0.0093 (11)0.0105 (10)
C150.0641 (12)0.0540 (13)0.0463 (11)0.0020 (10)0.0005 (9)0.0061 (10)
C160.0388 (9)0.0429 (11)0.0440 (10)0.0007 (8)0.0030 (8)0.0002 (8)
C170.0482 (10)0.0528 (12)0.0394 (11)0.0020 (9)0.0032 (8)0.0031 (9)
C180.0439 (9)0.0472 (11)0.0394 (10)0.0044 (8)0.0025 (8)0.0033 (9)
C190.0628 (12)0.0649 (14)0.0411 (11)0.0010 (11)0.0010 (9)0.0038 (10)
C200.0668 (13)0.0709 (15)0.0508 (13)0.0024 (12)0.0115 (10)0.0182 (11)
C210.0501 (11)0.0577 (13)0.0712 (15)0.0023 (10)0.0094 (10)0.0147 (12)
C220.0408 (9)0.0494 (12)0.0573 (13)0.0023 (9)0.0011 (9)0.0023 (10)
C230.0402 (9)0.0468 (11)0.0414 (11)0.0059 (8)0.0009 (8)0.0045 (9)
C240.0572 (12)0.0480 (13)0.1072 (19)0.0059 (10)0.0038 (12)0.0088 (12)
C250.099 (2)0.093 (2)0.134 (2)0.0265 (16)0.0211 (18)0.0369 (18)
Geometric parameters (Å, º) top
O1—C31.365 (2)C10—H10A0.9700
O1—C21.423 (2)C10—H10B0.9700
O2—C81.346 (2)C11—C121.384 (2)
O2—H2O0.8502 (11)C11—C161.393 (2)
O3—C231.343 (2)C12—C131.377 (3)
O3—H3O0.8501 (11)C12—H120.9300
O4—C221.358 (2)C13—C141.368 (3)
O4—C241.427 (2)C13—H130.9300
N1—C91.270 (2)C14—C151.377 (3)
N1—C101.456 (2)C14—H140.9300
N2—C171.277 (2)C15—C161.390 (2)
N2—C161.417 (2)C15—H150.9300
C1—C21.489 (3)C17—C181.443 (2)
C1—H1A0.9600C17—H170.9300
C1—H1B0.9600C18—C231.390 (2)
C1—H1C0.9600C18—C191.400 (2)
C2—H2A0.9700C19—C201.364 (3)
C2—H2B0.9700C19—H190.9300
C3—C41.374 (3)C20—C211.379 (3)
C3—C81.404 (2)C20—H200.9300
C4—C51.380 (3)C21—C221.372 (3)
C4—H40.9300C21—H210.9300
C5—C61.367 (3)C22—C231.407 (2)
C5—H50.9300C24—C251.491 (4)
C6—C71.397 (3)C24—H24A0.9700
C6—H60.9300C24—H24B0.9700
C7—C81.390 (2)C25—H25A0.9600
C7—C91.455 (2)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—C111.510 (2)
C3—O1—C2117.69 (15)C13—C12—C11121.82 (18)
C8—O2—H2O106.0 (17)C13—C12—H12119.1
C23—O3—H3O105.4 (18)C11—C12—H12119.1
C22—O4—C24117.63 (16)C14—C13—C12119.52 (18)
C9—N1—C10118.48 (16)C14—C13—H13120.2
C17—N2—C16122.26 (15)C12—C13—H13120.2
C2—C1—H1A109.5C13—C14—C15120.20 (19)
C2—C1—H1B109.5C13—C14—H14119.9
H1A—C1—H1B109.5C15—C14—H14119.9
C2—C1—H1C109.5C14—C15—C16120.34 (18)
H1A—C1—H1C109.5C14—C15—H15119.8
H1B—C1—H1C109.5C16—C15—H15119.8
O1—C2—C1107.27 (18)C15—C16—C11119.93 (16)
O1—C2—H2A110.3C15—C16—N2122.85 (16)
C1—C2—H2A110.3C11—C16—N2117.21 (15)
O1—C2—H2B110.3N2—C17—C18122.22 (16)
C1—C2—H2B110.3N2—C17—H17118.9
H2A—C2—H2B108.5C18—C17—H17118.9
O1—C3—C4125.73 (17)C23—C18—C19119.22 (17)
O1—C3—C8114.93 (16)C23—C18—C17120.68 (16)
C4—C3—C8119.35 (18)C19—C18—C17120.07 (17)
C3—C4—C5120.62 (18)C20—C19—C18120.32 (19)
C3—C4—H4119.7C20—C19—H19119.8
C5—C4—H4119.7C18—C19—H19119.8
C6—C5—C4120.56 (19)C19—C20—C21120.34 (19)
C6—C5—H5119.7C19—C20—H20119.8
C4—C5—H5119.7C21—C20—H20119.8
C5—C6—C7120.20 (19)C22—C21—C20121.08 (19)
C5—C6—H6119.9C22—C21—H21119.5
C7—C6—H6119.9C20—C21—H21119.5
C8—C7—C6119.32 (16)O4—C22—C21126.19 (18)
C8—C7—C9120.42 (16)O4—C22—C23114.74 (16)
C6—C7—C9120.25 (17)C21—C22—C23119.07 (18)
O2—C8—C7122.08 (15)O3—C23—C18122.37 (16)
O2—C8—C3117.98 (16)O3—C23—C22117.65 (16)
C7—C8—C3119.95 (17)C18—C23—C22119.97 (16)
N1—C9—C7121.94 (17)O4—C24—C25107.5 (2)
N1—C9—H9119.0O4—C24—H24A110.2
C7—C9—H9119.0C25—C24—H24A110.2
N1—C10—C11111.81 (14)O4—C24—H24B110.2
N1—C10—H10A109.3C25—C24—H24B110.2
C11—C10—H10A109.3H24A—C24—H24B108.5
N1—C10—H10B109.3C24—C25—H25A109.5
C11—C10—H10B109.3C24—C25—H25B109.5
H10A—C10—H10B107.9H25A—C25—H25B109.5
C12—C11—C16118.15 (16)C24—C25—H25C109.5
C12—C11—C10122.49 (16)H25A—C25—H25C109.5
C16—C11—C10119.36 (15)H25B—C25—H25C109.5
C3—O1—C2—C1175.91 (19)C14—C15—C16—C111.1 (3)
C2—O1—C3—C45.6 (3)C14—C15—C16—N2179.84 (17)
C2—O1—C3—C8174.61 (16)C12—C11—C16—C152.1 (2)
O1—C3—C4—C5179.47 (19)C10—C11—C16—C15178.31 (17)
C8—C3—C4—C50.4 (3)C12—C11—C16—N2179.06 (15)
C3—C4—C5—C60.5 (3)C10—C11—C16—N20.5 (2)
C4—C5—C6—C70.3 (3)C17—N2—C16—C1530.6 (3)
C5—C6—C7—C80.1 (3)C17—N2—C16—C11150.65 (17)
C5—C6—C7—C9178.64 (18)C16—N2—C17—C18179.38 (15)
C6—C7—C8—O2179.86 (16)N2—C17—C18—C233.8 (3)
C9—C7—C8—O21.6 (3)N2—C17—C18—C19178.20 (17)
C6—C7—C8—C30.0 (3)C23—C18—C19—C200.2 (3)
C9—C7—C8—C3178.53 (15)C17—C18—C19—C20177.81 (17)
O1—C3—C8—O20.2 (2)C18—C19—C20—C210.5 (3)
C4—C3—C8—O2179.99 (17)C19—C20—C21—C220.3 (3)
O1—C3—C8—C7179.72 (15)C24—O4—C22—C215.1 (3)
C4—C3—C8—C70.1 (3)C24—O4—C22—C23174.61 (16)
C10—N1—C9—C7176.94 (14)C20—C21—C22—O4179.98 (19)
C8—C7—C9—N11.0 (3)C20—C21—C22—C230.2 (3)
C6—C7—C9—N1177.52 (17)C19—C18—C23—O3178.33 (16)
C9—N1—C10—C11119.33 (18)C17—C18—C23—O30.3 (3)
N1—C10—C11—C1214.9 (2)C19—C18—C23—C220.3 (3)
N1—C10—C11—C16164.62 (15)C17—C18—C23—C22178.31 (16)
C16—C11—C12—C131.6 (3)O4—C22—C23—O31.6 (2)
C10—C11—C12—C13178.91 (17)C21—C22—C23—O3178.17 (16)
C11—C12—C13—C140.1 (3)O4—C22—C23—C18179.72 (16)
C12—C13—C14—C151.2 (3)C21—C22—C23—C180.5 (3)
C13—C14—C15—C160.6 (3)C22—O4—C24—C25178.99 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.85 (1)1.79 (1)2.5711 (19)151 (2)
O3—H3O···N20.85 (1)1.80 (1)2.5844 (19)152 (2)

Experimental details

Crystal data
Chemical formulaC25H26N2O4
Mr418.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.8315 (4), 17.5414 (14), 25.828 (2)
β (°) 94.356 (3)
V3)2182.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
32150, 3833, 2543
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.05
No. of reflections3833
No. of parameters291
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.8502 (11)1.794 (12)2.5711 (19)151 (2)
O3—H3O···N20.8501 (11)1.803 (12)2.5844 (19)152 (2)
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. MRPK, KUA and SSS thank the Defence Research Development Organization, New Delhi, India, for financial support. JMJ thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Senior Research Fellowship.

References

First citationAslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139–1158.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds