organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Anthracen-9-yl)-10-meth­­oxy­benzo[h]quinoline acetone hemisolvate

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
*Correspondence e-mail: liubo4314@yahoo.com.cn

(Received 10 January 2012; accepted 12 July 2012; online 25 July 2012)

The asymmetric unit of the title structure, C28H19NO·0.5C3H6O, comprises one 2-(anthracen-9-yl)-10-meth­oxy­benzo[h]­quinoline mol­ecule and an acteone mol­ecule with an occupany of 0.5. The solvent mol­ecule is disordered around a centre of symmetry. Its occupancy was determined from NMR data and kept fixed during the refinement. The two conjugated ring systems of the mol­ecule are almost perpendicular to each other; the inter­planar angle between the anthracene and quinoline ring systems is 84.9 (2)°.

Related literature

For the structure and synthesys of a related compound, see: Dong et al. (2011[Dong, Z. M., Shi, H. P., Liu, Y. F., Liu, D. S. & Liu, B. (2011). Spectrochim. Acta Part A, 78, 1143-1148.]). For background information on quinoline derivatives, see: Kouznetsov et al. (2005[Kouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141-161.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19NO·0.5C3H6O

  • Mr = 414.48

  • Triclinic, [P \overline 1]

  • a = 9.198 (3) Å

  • b = 10.690 (4) Å

  • c = 11.130 (4) Å

  • α = 95.224 (4)°

  • β = 91.484 (5)°

  • γ = 94.064 (5)°

  • V = 1086.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 4167 measured reflections

  • 3688 independent reflections

  • 2474 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.160

  • S = 1.01

  • 3688 reflections

  • 300 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov et al., 2005). The quinoline ring system occurs in various natural products, especially in alkaloids (Kouznetsov et al., 2005). Some 3-substituted quinoline derivatives can be used as Platelet-derived growth factor (PDGF) receptors (Maguire et al., 1994). In the course of exploring new quinoline derivatives, we obtained the title compound (I), and the synthesis and structure are reported here.

Related literature top

For the structure and synthesys of a related compound, see: Dong et al. (2011). For background information on quinoline derivatives, see: Kouznetsov et al. (2005); Maguire et al. (1994).

Experimental top

The precursor MBQ (10-methoxybenzo[h]quinoline) was synthesized according to Dong et al. (2011). Under a nitrogen atmosphere and at -78°C, a solution of n-butyllithium (0.16 mol) in anhydrous n-hexane (100 ml) was added portionwise with stirring to a solution of 9-bromoanthracene(14.5 g, 56.3 mmol) in anhydrous tetrahydrofuran (100 ml), and stirring continued for 50 min to form 9-Lithiumanthracene. Then a solution of MBQ (7.85 g, 37.5 mmol) in tetrahydrofuran (75 ml) was added dropwise with stirring over 2 h and the mixture was stirred for another 3 h. The resulting orange reaction mixture was poured over 400 g crushed ice and neutralised with 6 M HCl solution, and then the organic solvents, n-hexane and tetrahydrofuran, were removed by evaporation to give the crude product of the title compound as a dark-red solid (11.1 g). The crude product was collected by filtration and then washed well with a hot ethanol-water mixture (1/1 v/v). Finally, recrystallization from acetone gave a pure sample of the title compound as yellow crystals (3.1 g; yield 40.0% based on MBQ). 1H NMR (300 MHz, CDCl3): δ 7.87-7.17 (m, 16H; benzo[h]quinoline and anthracen rings), 3.86, 3.81 (d, 3H; OCH3), 2.18 (s, 3H; [(CH3)2CO]0.5).

Refinement top

Three reflections (001, 010, -101) have been omitted as systematic errors. The site occupancy factor of atoms belonging to the solvent molecule was fixed to give a total occupancy of 0.5, consistent with the area of the acetone CH3 peaks in the 1H NMR spectrum. The anisotropic displacement parameters of the heavy atoms in the disordered solvent molecule have been restrained to approximate an isotropic behaviour by the use of the ISOR command in SHELXL97. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov et al., 2005). The quinoline ring system occurs in various natural products, especially in alkaloids (Kouznetsov et al., 2005). Some 3-substituted quinoline derivatives can be used as Platelet-derived growth factor (PDGF) receptors (Maguire et al., 1994). In the course of exploring new quinoline derivatives, we obtained the title compound (I), and the synthesis and structure are reported here.

For the structure and synthesys of a related compound, see: Dong et al. (2011). For background information on quinoline derivatives, see: Kouznetsov et al. (2005); Maguire et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Suffix A in the atom labels indicates symmetry (i) –x+1, –y+2, –z+1.
2-(Anthracen-9-yl)-10-methoxybenzo[h]quinoline acetone hemisolvate top
Crystal data top
C28H19NO·0.5C3H6OZ = 2
Mr = 414.48F(000) = 436
Triclinic, P1Dx = 1.267 Mg m3
a = 9.198 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.690 (4) ÅCell parameters from 1500 reflections
c = 11.130 (4) Åθ = 2.2–26.5°
α = 95.224 (4)°µ = 0.08 mm1
β = 91.484 (5)°T = 293 K
γ = 94.064 (5)°Block, yellow
V = 1086.6 (6) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
φ and ω scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.977, Tmax = 0.985k = 1212
4167 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.6424P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.58 e Å3
24 restraintsΔρmin = 0.35 e Å3
Crystal data top
C28H19NO·0.5C3H6Oγ = 94.064 (5)°
Mr = 414.48V = 1086.6 (6) Å3
Triclinic, P1Z = 2
a = 9.198 (3) ÅMo Kα radiation
b = 10.690 (4) ŵ = 0.08 mm1
c = 11.130 (4) ÅT = 293 K
α = 95.224 (4)°0.30 × 0.20 × 0.20 mm
β = 91.484 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2474 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.011
4167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06924 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
3688 reflectionsΔρmin = 0.35 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.9385 (2)0.7649 (2)0.19927 (19)0.0487 (6)
O10.8308 (2)0.55815 (19)0.06758 (18)0.0685 (6)
C11.0227 (3)0.8273 (3)0.2862 (2)0.0523 (7)
C21.0377 (4)0.9587 (3)0.3040 (3)0.0806 (11)
H21.09880.99960.36540.097*
C30.9605 (4)1.0255 (3)0.2293 (4)0.0914 (12)
H30.96821.11310.24010.110*
C40.7849 (4)1.0318 (3)0.0594 (4)0.0956 (12)
H40.79131.11940.06840.115*
C50.6963 (4)0.9694 (4)0.0260 (4)0.0922 (12)
H50.64131.01520.07510.111*
C60.5836 (4)0.7764 (4)0.1350 (3)0.0862 (11)
H60.52990.82490.18250.103*
C70.5664 (4)0.6499 (5)0.1524 (3)0.0912 (12)
H70.49870.61160.21030.109*
C80.6485 (3)0.5765 (4)0.0852 (3)0.0751 (9)
H80.63640.48930.09960.090*
C90.7480 (3)0.6299 (3)0.0028 (2)0.0581 (7)
C100.8701 (3)0.9638 (3)0.1371 (3)0.0717 (9)
C110.8621 (3)0.8311 (3)0.1236 (2)0.0528 (7)
C120.6825 (3)0.8358 (3)0.0450 (3)0.0699 (9)
C130.7672 (3)0.7633 (3)0.0278 (2)0.0555 (7)
C141.1068 (3)0.7524 (2)0.3671 (2)0.0486 (7)
C151.0442 (3)0.7100 (2)0.4715 (2)0.0510 (7)
C160.8982 (3)0.7313 (3)0.5034 (3)0.0609 (8)
H160.84140.77610.45460.073*
C170.8410 (4)0.6874 (3)0.6035 (3)0.0732 (9)
H170.74600.70340.62320.088*
C180.9233 (4)0.6178 (3)0.6782 (3)0.0770 (9)
H180.88180.58710.74600.092*
C191.0615 (4)0.5955 (3)0.6525 (3)0.0698 (9)
H191.11410.54860.70240.084*
C201.1291 (3)0.6424 (3)0.5499 (2)0.0551 (7)
C211.2725 (3)0.6238 (3)0.5236 (3)0.0606 (8)
H211.32800.58230.57630.073*
C221.3367 (3)0.6650 (2)0.4208 (3)0.0535 (7)
C231.4854 (3)0.6474 (3)0.3929 (3)0.0662 (8)
H231.54300.60780.44560.079*
C241.5438 (3)0.6870 (3)0.2919 (3)0.0734 (9)
H241.64020.67360.27500.088*
C251.4589 (3)0.7485 (3)0.2122 (3)0.0711 (9)
H251.49980.77500.14240.085*
C261.3194 (3)0.7698 (3)0.2352 (3)0.0605 (8)
H261.26620.81170.18140.073*
C271.2511 (3)0.7294 (2)0.3405 (2)0.0500 (7)
C280.8286 (4)0.4265 (3)0.0294 (3)0.0799 (10)
H28A0.73270.38770.03880.120*
H28B0.89780.38820.07780.120*
H28C0.85380.41540.05380.120*
O20.6026 (8)0.9238 (7)0.5926 (7)0.144 (2)0.50
C290.529 (2)0.9719 (13)0.5379 (16)0.165 (3)0.50
C300.3978 (8)0.9798 (6)0.5752 (6)0.173 (3)
H30A0.35220.89660.57870.260*
H30B0.34291.02400.52030.260*
H30C0.40071.02450.65410.260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0432 (12)0.0504 (13)0.0536 (14)0.0073 (10)0.0003 (10)0.0094 (11)
O10.0708 (14)0.0658 (14)0.0672 (13)0.0075 (10)0.0151 (11)0.0006 (11)
C10.0477 (16)0.0492 (17)0.0597 (18)0.0056 (13)0.0055 (13)0.0038 (13)
C20.084 (2)0.0502 (19)0.104 (3)0.0075 (17)0.033 (2)0.0007 (18)
C30.098 (3)0.0456 (19)0.130 (3)0.0118 (18)0.027 (2)0.012 (2)
C40.089 (3)0.070 (2)0.133 (4)0.012 (2)0.020 (3)0.044 (2)
C50.073 (2)0.102 (3)0.111 (3)0.013 (2)0.017 (2)0.059 (3)
C60.065 (2)0.133 (4)0.065 (2)0.013 (2)0.0119 (17)0.034 (2)
C70.071 (2)0.133 (4)0.069 (2)0.008 (2)0.0160 (18)0.009 (2)
C80.062 (2)0.098 (3)0.063 (2)0.0026 (18)0.0064 (16)0.0007 (18)
C90.0472 (17)0.079 (2)0.0489 (17)0.0050 (15)0.0015 (13)0.0065 (15)
C100.066 (2)0.061 (2)0.091 (2)0.0084 (16)0.0095 (18)0.0239 (18)
C110.0435 (15)0.0582 (18)0.0600 (17)0.0074 (13)0.0043 (13)0.0191 (14)
C120.0557 (19)0.094 (3)0.066 (2)0.0079 (17)0.0020 (15)0.0356 (18)
C130.0417 (15)0.076 (2)0.0515 (17)0.0061 (14)0.0047 (12)0.0193 (15)
C140.0499 (16)0.0417 (15)0.0531 (16)0.0053 (12)0.0082 (13)0.0011 (12)
C150.0535 (17)0.0431 (15)0.0547 (17)0.0050 (12)0.0056 (13)0.0032 (13)
C160.0544 (18)0.0600 (19)0.068 (2)0.0064 (14)0.0024 (15)0.0010 (15)
C170.063 (2)0.078 (2)0.077 (2)0.0023 (17)0.0109 (17)0.0006 (18)
C180.087 (3)0.081 (2)0.062 (2)0.001 (2)0.0133 (18)0.0083 (18)
C190.084 (2)0.071 (2)0.0567 (19)0.0106 (17)0.0004 (17)0.0108 (16)
C200.0614 (19)0.0514 (17)0.0523 (17)0.0072 (14)0.0043 (14)0.0022 (13)
C210.0648 (19)0.0574 (18)0.0607 (19)0.0163 (14)0.0147 (15)0.0072 (14)
C220.0546 (17)0.0458 (16)0.0593 (18)0.0085 (13)0.0083 (14)0.0002 (13)
C230.0550 (19)0.0616 (19)0.082 (2)0.0140 (15)0.0098 (16)0.0014 (17)
C240.0534 (19)0.074 (2)0.093 (3)0.0103 (16)0.0082 (18)0.0024 (19)
C250.064 (2)0.075 (2)0.077 (2)0.0077 (17)0.0115 (17)0.0099 (17)
C260.0601 (19)0.0588 (18)0.0633 (19)0.0075 (14)0.0011 (15)0.0071 (15)
C270.0516 (16)0.0428 (15)0.0550 (17)0.0053 (12)0.0041 (13)0.0006 (13)
C280.086 (2)0.068 (2)0.083 (2)0.0024 (18)0.0104 (19)0.0057 (18)
O20.139 (5)0.144 (5)0.149 (5)0.022 (4)0.012 (4)0.018 (4)
C290.202 (5)0.118 (4)0.164 (5)0.002 (4)0.041 (5)0.026 (4)
C300.213 (5)0.123 (3)0.171 (5)0.003 (4)0.044 (4)0.027 (3)
Geometric parameters (Å, º) top
N1—C11.323 (3)C16—C171.352 (4)
N1—C111.362 (3)C16—H160.9300
O1—C91.358 (3)C17—C181.406 (4)
O1—C281.431 (3)C17—H170.9300
C1—C21.397 (4)C18—C191.343 (4)
C1—C141.495 (3)C18—H180.9300
C2—C31.362 (4)C19—C201.428 (4)
C2—H20.9300C19—H190.9300
C3—C101.391 (5)C20—C211.383 (4)
C3—H30.9300C21—C221.393 (4)
C4—C51.334 (5)C21—H210.9300
C4—C101.433 (4)C22—C271.431 (3)
C4—H40.9300C22—C231.432 (4)
C5—C121.420 (5)C23—C241.348 (4)
C5—H50.9300C23—H230.9300
C6—C71.346 (5)C24—C251.404 (4)
C6—C121.411 (5)C24—H240.9300
C6—H60.9300C25—C261.346 (4)
C7—C81.381 (5)C25—H250.9300
C7—H70.9300C26—C271.430 (4)
C8—C91.379 (4)C26—H260.9300
C8—H80.9300C28—H28A0.9600
C9—C131.425 (4)C28—H28B0.9600
C10—C111.409 (4)C28—H28C0.9600
C11—C131.464 (4)O2—C291.083 (13)
C12—C131.425 (4)C29—C29i1.22 (3)
C14—C271.401 (4)C29—C301.30 (2)
C14—C151.407 (4)C30—H30A0.9600
C15—C161.426 (4)C30—H30B0.9600
C15—C201.433 (4)C30—H30C0.9600
C1—N1—C11118.9 (2)C15—C16—H16119.5
C9—O1—C28117.7 (2)C16—C17—C18120.9 (3)
N1—C1—C2123.1 (3)C16—C17—H17119.6
N1—C1—C14117.8 (2)C18—C17—H17119.6
C2—C1—C14119.1 (2)C19—C18—C17120.5 (3)
C3—C2—C1118.4 (3)C19—C18—H18119.8
C3—C2—H2120.8C17—C18—H18119.8
C1—C2—H2120.8C18—C19—C20121.2 (3)
C2—C3—C10120.5 (3)C18—C19—H19119.4
C2—C3—H3119.8C20—C19—H19119.4
C10—C3—H3119.8C21—C20—C19122.2 (3)
C5—C4—C10119.9 (3)C21—C20—C15119.3 (3)
C5—C4—H4120.0C19—C20—C15118.4 (3)
C10—C4—H4120.0C20—C21—C22122.3 (3)
C4—C5—C12122.7 (3)C20—C21—H21118.9
C4—C5—H5118.6C22—C21—H21118.9
C12—C5—H5118.6C21—C22—C27118.6 (3)
C7—C6—C12120.4 (3)C21—C22—C23122.9 (3)
C7—C6—H6119.8C27—C22—C23118.5 (3)
C12—C6—H6119.8C24—C23—C22121.5 (3)
C6—C7—C8120.6 (3)C24—C23—H23119.3
C6—C7—H7119.7C22—C23—H23119.3
C8—C7—H7119.7C23—C24—C25120.0 (3)
C9—C8—C7121.3 (4)C23—C24—H24120.0
C9—C8—H8119.3C25—C24—H24120.0
C7—C8—H8119.3C26—C25—C24121.0 (3)
O1—C9—C8121.5 (3)C26—C25—H25119.5
O1—C9—C13118.0 (2)C24—C25—H25119.5
C8—C9—C13120.5 (3)C25—C26—C27121.6 (3)
C3—C10—C11118.0 (3)C25—C26—H26119.2
C3—C10—C4121.5 (3)C27—C26—H26119.2
C11—C10—C4120.5 (3)C14—C27—C26122.5 (2)
N1—C11—C10121.2 (3)C14—C27—C22120.1 (3)
N1—C11—C13119.5 (3)C26—C27—C22117.4 (3)
C10—C11—C13119.3 (2)O1—C28—H28A109.5
C6—C12—C5119.5 (3)O1—C28—H28B109.5
C6—C12—C13120.7 (3)H28A—C28—H28B109.5
C5—C12—C13119.8 (3)O1—C28—H28C109.5
C12—C13—C9116.5 (3)H28A—C28—H28C109.5
C12—C13—C11117.7 (3)H28B—C28—H28C109.5
C9—C13—C11125.7 (2)C29i—C29—O2167 (4)
C27—C14—C15120.3 (2)C29i—C29—C3076.3 (19)
C27—C14—C1119.1 (2)O2—C29—C30117 (2)
C15—C14—C1120.5 (2)C29—C30—H30A109.5
C14—C15—C16122.7 (2)C29—C30—H30B109.5
C14—C15—C20119.4 (2)H30A—C30—H30B109.5
C16—C15—C20117.9 (3)C29—C30—H30C109.5
C17—C16—C15121.0 (3)H30A—C30—H30C109.5
C17—C16—H16119.5H30B—C30—H30C109.5
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC28H19NO·0.5C3H6O
Mr414.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.198 (3), 10.690 (4), 11.130 (4)
α, β, γ (°)95.224 (4), 91.484 (5), 94.064 (5)
V3)1086.6 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4167, 3688, 2474
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.160, 1.01
No. of reflections3688
No. of parameters300
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the National Science Foundation (grant No. 21072019) for the support of this work.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Z. M., Shi, H. P., Liu, Y. F., Liu, D. S. & Liu, B. (2011). Spectrochim. Acta Part A, 78, 1143–1148.  CrossRef Google Scholar
First citationKouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141–161.  Web of Science CrossRef CAS Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds