organic compounds
2-(Anthracen-9-yl)-10-methoxybenzo[h]quinoline acetone hemisolvate
aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China
*Correspondence e-mail: liubo4314@yahoo.com.cn
The 28H19NO·0.5C3H6O, comprises one 2-(anthracen-9-yl)-10-methoxybenzo[h]quinoline molecule and an acteone molecule with an occupany of 0.5. The solvent molecule is disordered around a centre of symmetry. Its occupancy was determined from NMR data and kept fixed during the The two conjugated ring systems of the molecule are almost perpendicular to each other; the interplanar angle between the anthracene and quinoline ring systems is 84.9 (2)°.
of the title structure, CRelated literature
For the structure and synthesys of a related compound, see: Dong et al. (2011). For background information on quinoline derivatives, see: Kouznetsov et al. (2005); Maguire et al. (1994).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812031807/fy2041sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031807/fy2041Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812031807/fy2041Isup3.cml
The precursor MBQ (10-methoxybenzo[h]quinoline) was synthesized according to Dong et al. (2011). Under a nitrogen atmosphere and at -78°C, a solution of n-butyllithium (0.16 mol) in anhydrous n-hexane (100 ml) was added portionwise with stirring to a solution of 9-bromoanthracene(14.5 g, 56.3 mmol) in anhydrous tetrahydrofuran (100 ml), and stirring continued for 50 min to form 9-Lithiumanthracene. Then a solution of MBQ (7.85 g, 37.5 mmol) in tetrahydrofuran (75 ml) was added dropwise with stirring over 2 h and the mixture was stirred for another 3 h. The resulting orange reaction mixture was poured over 400 g crushed ice and neutralised with 6 M HCl solution, and then the organic solvents, n-hexane and tetrahydrofuran, were removed by evaporation to give the crude product of the title compound as a dark-red solid (11.1 g). The crude product was collected by filtration and then washed well with a hot ethanol-water mixture (1/1 v/v). Finally, recrystallization from acetone gave a pure sample of the title compound as yellow crystals (3.1 g; yield 40.0% based on MBQ). 1H NMR (300 MHz, CDCl3): δ 7.87-7.17 (m, 16H; benzo[h]quinoline and anthracen rings), 3.86, 3.81 (d, 3H; OCH3), 2.18 (s, 3H; [(CH3)2CO]0.5).
Three reflections (001, 010, -101) have been omitted as systematic errors. The site occupancy factor of atoms belonging to the solvent molecule was fixed to give a total occupancy of 0.5, consistent with the area of the acetone CH3 peaks in the 1H NMR spectrum. The anisotropic displacement parameters of the heavy atoms in the disordered solvent molecule have been restrained to approximate an isotropic behaviour by the use of the ISOR command in SHELXL97. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).
Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov et al., 2005). The quinoline ring system occurs in various natural products, especially in
(Kouznetsov et al., 2005). Some 3-substituted quinoline derivatives can be used as Platelet-derived growth factor (PDGF) receptors (Maguire et al., 1994). In the course of exploring new quinoline derivatives, we obtained the title compound (I), and the synthesis and structure are reported here.For the structure and synthesys of a related compound, see: Dong et al. (2011). For background information on quinoline derivatives, see: Kouznetsov et al. (2005); Maguire et al. (1994).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Suffix A in the atom labels indicates symmetry (i) –x+1, –y+2, –z+1. |
C28H19NO·0.5C3H6O | Z = 2 |
Mr = 414.48 | F(000) = 436 |
Triclinic, P1 | Dx = 1.267 Mg m−3 |
a = 9.198 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.690 (4) Å | Cell parameters from 1500 reflections |
c = 11.130 (4) Å | θ = 2.2–26.5° |
α = 95.224 (4)° | µ = 0.08 mm−1 |
β = 91.484 (5)° | T = 293 K |
γ = 94.064 (5)° | Block, yellow |
V = 1086.6 (6) Å3 | 0.30 × 0.20 × 0.20 mm |
Bruker SMART APEX CCD diffractometer | 3688 independent reflections |
Radiation source: fine-focus sealed tube | 2474 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
φ and ω scan | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→10 |
Tmin = 0.977, Tmax = 0.985 | k = −12→12 |
4167 measured reflections | l = −13→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0496P)2 + 0.6424P] where P = (Fo2 + 2Fc2)/3 |
3688 reflections | (Δ/σ)max < 0.001 |
300 parameters | Δρmax = 0.58 e Å−3 |
24 restraints | Δρmin = −0.35 e Å−3 |
C28H19NO·0.5C3H6O | γ = 94.064 (5)° |
Mr = 414.48 | V = 1086.6 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.198 (3) Å | Mo Kα radiation |
b = 10.690 (4) Å | µ = 0.08 mm−1 |
c = 11.130 (4) Å | T = 293 K |
α = 95.224 (4)° | 0.30 × 0.20 × 0.20 mm |
β = 91.484 (5)° |
Bruker SMART APEX CCD diffractometer | 3688 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2474 reflections with I > 2σ(I) |
Tmin = 0.977, Tmax = 0.985 | Rint = 0.011 |
4167 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 24 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.58 e Å−3 |
3688 reflections | Δρmin = −0.35 e Å−3 |
300 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.9385 (2) | 0.7649 (2) | 0.19927 (19) | 0.0487 (6) | |
O1 | 0.8308 (2) | 0.55815 (19) | 0.06758 (18) | 0.0685 (6) | |
C1 | 1.0227 (3) | 0.8273 (3) | 0.2862 (2) | 0.0523 (7) | |
C2 | 1.0377 (4) | 0.9587 (3) | 0.3040 (3) | 0.0806 (11) | |
H2 | 1.0988 | 0.9996 | 0.3654 | 0.097* | |
C3 | 0.9605 (4) | 1.0255 (3) | 0.2293 (4) | 0.0914 (12) | |
H3 | 0.9682 | 1.1131 | 0.2401 | 0.110* | |
C4 | 0.7849 (4) | 1.0318 (3) | 0.0594 (4) | 0.0956 (12) | |
H4 | 0.7913 | 1.1194 | 0.0684 | 0.115* | |
C5 | 0.6963 (4) | 0.9694 (4) | −0.0260 (4) | 0.0922 (12) | |
H5 | 0.6413 | 1.0152 | −0.0751 | 0.111* | |
C6 | 0.5836 (4) | 0.7764 (4) | −0.1350 (3) | 0.0862 (11) | |
H6 | 0.5299 | 0.8249 | −0.1825 | 0.103* | |
C7 | 0.5664 (4) | 0.6499 (5) | −0.1524 (3) | 0.0912 (12) | |
H7 | 0.4987 | 0.6116 | −0.2103 | 0.109* | |
C8 | 0.6485 (3) | 0.5765 (4) | −0.0852 (3) | 0.0751 (9) | |
H8 | 0.6364 | 0.4893 | −0.0996 | 0.090* | |
C9 | 0.7480 (3) | 0.6299 (3) | 0.0028 (2) | 0.0581 (7) | |
C10 | 0.8701 (3) | 0.9638 (3) | 0.1371 (3) | 0.0717 (9) | |
C11 | 0.8621 (3) | 0.8311 (3) | 0.1236 (2) | 0.0528 (7) | |
C12 | 0.6825 (3) | 0.8358 (3) | −0.0450 (3) | 0.0699 (9) | |
C13 | 0.7672 (3) | 0.7633 (3) | 0.0278 (2) | 0.0555 (7) | |
C14 | 1.1068 (3) | 0.7524 (2) | 0.3671 (2) | 0.0486 (7) | |
C15 | 1.0442 (3) | 0.7100 (2) | 0.4715 (2) | 0.0510 (7) | |
C16 | 0.8982 (3) | 0.7313 (3) | 0.5034 (3) | 0.0609 (8) | |
H16 | 0.8414 | 0.7761 | 0.4546 | 0.073* | |
C17 | 0.8410 (4) | 0.6874 (3) | 0.6035 (3) | 0.0732 (9) | |
H17 | 0.7460 | 0.7034 | 0.6232 | 0.088* | |
C18 | 0.9233 (4) | 0.6178 (3) | 0.6782 (3) | 0.0770 (9) | |
H18 | 0.8818 | 0.5871 | 0.7460 | 0.092* | |
C19 | 1.0615 (4) | 0.5955 (3) | 0.6525 (3) | 0.0698 (9) | |
H19 | 1.1141 | 0.5486 | 0.7024 | 0.084* | |
C20 | 1.1291 (3) | 0.6424 (3) | 0.5499 (2) | 0.0551 (7) | |
C21 | 1.2725 (3) | 0.6238 (3) | 0.5236 (3) | 0.0606 (8) | |
H21 | 1.3280 | 0.5823 | 0.5763 | 0.073* | |
C22 | 1.3367 (3) | 0.6650 (2) | 0.4208 (3) | 0.0535 (7) | |
C23 | 1.4854 (3) | 0.6474 (3) | 0.3929 (3) | 0.0662 (8) | |
H23 | 1.5430 | 0.6078 | 0.4456 | 0.079* | |
C24 | 1.5438 (3) | 0.6870 (3) | 0.2919 (3) | 0.0734 (9) | |
H24 | 1.6402 | 0.6736 | 0.2750 | 0.088* | |
C25 | 1.4589 (3) | 0.7485 (3) | 0.2122 (3) | 0.0711 (9) | |
H25 | 1.4998 | 0.7750 | 0.1424 | 0.085* | |
C26 | 1.3194 (3) | 0.7698 (3) | 0.2352 (3) | 0.0605 (8) | |
H26 | 1.2662 | 0.8117 | 0.1814 | 0.073* | |
C27 | 1.2511 (3) | 0.7294 (2) | 0.3405 (2) | 0.0500 (7) | |
C28 | 0.8286 (4) | 0.4265 (3) | 0.0294 (3) | 0.0799 (10) | |
H28A | 0.7327 | 0.3877 | 0.0388 | 0.120* | |
H28B | 0.8978 | 0.3882 | 0.0778 | 0.120* | |
H28C | 0.8538 | 0.4154 | −0.0538 | 0.120* | |
O2 | 0.6026 (8) | 0.9238 (7) | 0.5926 (7) | 0.144 (2) | 0.50 |
C29 | 0.529 (2) | 0.9719 (13) | 0.5379 (16) | 0.165 (3) | 0.50 |
C30 | 0.3978 (8) | 0.9798 (6) | 0.5752 (6) | 0.173 (3) | |
H30A | 0.3522 | 0.8966 | 0.5787 | 0.260* | |
H30B | 0.3429 | 1.0240 | 0.5203 | 0.260* | |
H30C | 0.4007 | 1.0245 | 0.6541 | 0.260* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0432 (12) | 0.0504 (13) | 0.0536 (14) | 0.0073 (10) | −0.0003 (10) | 0.0094 (11) |
O1 | 0.0708 (14) | 0.0658 (14) | 0.0672 (13) | 0.0075 (10) | −0.0151 (11) | −0.0006 (11) |
C1 | 0.0477 (16) | 0.0492 (17) | 0.0597 (18) | 0.0056 (13) | −0.0055 (13) | 0.0038 (13) |
C2 | 0.084 (2) | 0.0502 (19) | 0.104 (3) | 0.0075 (17) | −0.033 (2) | −0.0007 (18) |
C3 | 0.098 (3) | 0.0456 (19) | 0.130 (3) | 0.0118 (18) | −0.027 (2) | 0.012 (2) |
C4 | 0.089 (3) | 0.070 (2) | 0.133 (4) | 0.012 (2) | −0.020 (3) | 0.044 (2) |
C5 | 0.073 (2) | 0.102 (3) | 0.111 (3) | 0.013 (2) | −0.017 (2) | 0.059 (3) |
C6 | 0.065 (2) | 0.133 (4) | 0.065 (2) | 0.013 (2) | −0.0119 (17) | 0.034 (2) |
C7 | 0.071 (2) | 0.133 (4) | 0.069 (2) | 0.008 (2) | −0.0160 (18) | 0.009 (2) |
C8 | 0.062 (2) | 0.098 (3) | 0.063 (2) | 0.0026 (18) | −0.0064 (16) | −0.0007 (18) |
C9 | 0.0472 (17) | 0.079 (2) | 0.0489 (17) | 0.0050 (15) | 0.0015 (13) | 0.0065 (15) |
C10 | 0.066 (2) | 0.061 (2) | 0.091 (2) | 0.0084 (16) | −0.0095 (18) | 0.0239 (18) |
C11 | 0.0435 (15) | 0.0582 (18) | 0.0600 (17) | 0.0074 (13) | 0.0043 (13) | 0.0191 (14) |
C12 | 0.0557 (19) | 0.094 (3) | 0.066 (2) | 0.0079 (17) | 0.0020 (15) | 0.0356 (18) |
C13 | 0.0417 (15) | 0.076 (2) | 0.0515 (17) | 0.0061 (14) | 0.0047 (12) | 0.0193 (15) |
C14 | 0.0499 (16) | 0.0417 (15) | 0.0531 (16) | 0.0053 (12) | −0.0082 (13) | −0.0011 (12) |
C15 | 0.0535 (17) | 0.0431 (15) | 0.0547 (17) | 0.0050 (12) | −0.0056 (13) | −0.0032 (13) |
C16 | 0.0544 (18) | 0.0600 (19) | 0.068 (2) | 0.0064 (14) | −0.0024 (15) | 0.0010 (15) |
C17 | 0.063 (2) | 0.078 (2) | 0.077 (2) | 0.0023 (17) | 0.0109 (17) | 0.0006 (18) |
C18 | 0.087 (3) | 0.081 (2) | 0.062 (2) | −0.001 (2) | 0.0133 (18) | 0.0083 (18) |
C19 | 0.084 (2) | 0.071 (2) | 0.0567 (19) | 0.0106 (17) | −0.0004 (17) | 0.0108 (16) |
C20 | 0.0614 (19) | 0.0514 (17) | 0.0523 (17) | 0.0072 (14) | −0.0043 (14) | 0.0022 (13) |
C21 | 0.0648 (19) | 0.0574 (18) | 0.0607 (19) | 0.0163 (14) | −0.0147 (15) | 0.0072 (14) |
C22 | 0.0546 (17) | 0.0458 (16) | 0.0593 (18) | 0.0085 (13) | −0.0083 (14) | −0.0002 (13) |
C23 | 0.0550 (19) | 0.0616 (19) | 0.082 (2) | 0.0140 (15) | −0.0098 (16) | 0.0014 (17) |
C24 | 0.0534 (19) | 0.074 (2) | 0.093 (3) | 0.0103 (16) | 0.0082 (18) | 0.0024 (19) |
C25 | 0.064 (2) | 0.075 (2) | 0.077 (2) | 0.0077 (17) | 0.0115 (17) | 0.0099 (17) |
C26 | 0.0601 (19) | 0.0588 (18) | 0.0633 (19) | 0.0075 (14) | −0.0011 (15) | 0.0071 (15) |
C27 | 0.0516 (16) | 0.0428 (15) | 0.0550 (17) | 0.0053 (12) | −0.0041 (13) | 0.0006 (13) |
C28 | 0.086 (2) | 0.068 (2) | 0.083 (2) | 0.0024 (18) | −0.0104 (19) | −0.0057 (18) |
O2 | 0.139 (5) | 0.144 (5) | 0.149 (5) | 0.022 (4) | −0.012 (4) | 0.018 (4) |
C29 | 0.202 (5) | 0.118 (4) | 0.164 (5) | −0.002 (4) | −0.041 (5) | −0.026 (4) |
C30 | 0.213 (5) | 0.123 (3) | 0.171 (5) | −0.003 (4) | −0.044 (4) | −0.027 (3) |
N1—C1 | 1.323 (3) | C16—C17 | 1.352 (4) |
N1—C11 | 1.362 (3) | C16—H16 | 0.9300 |
O1—C9 | 1.358 (3) | C17—C18 | 1.406 (4) |
O1—C28 | 1.431 (3) | C17—H17 | 0.9300 |
C1—C2 | 1.397 (4) | C18—C19 | 1.343 (4) |
C1—C14 | 1.495 (3) | C18—H18 | 0.9300 |
C2—C3 | 1.362 (4) | C19—C20 | 1.428 (4) |
C2—H2 | 0.9300 | C19—H19 | 0.9300 |
C3—C10 | 1.391 (5) | C20—C21 | 1.383 (4) |
C3—H3 | 0.9300 | C21—C22 | 1.393 (4) |
C4—C5 | 1.334 (5) | C21—H21 | 0.9300 |
C4—C10 | 1.433 (4) | C22—C27 | 1.431 (3) |
C4—H4 | 0.9300 | C22—C23 | 1.432 (4) |
C5—C12 | 1.420 (5) | C23—C24 | 1.348 (4) |
C5—H5 | 0.9300 | C23—H23 | 0.9300 |
C6—C7 | 1.346 (5) | C24—C25 | 1.404 (4) |
C6—C12 | 1.411 (5) | C24—H24 | 0.9300 |
C6—H6 | 0.9300 | C25—C26 | 1.346 (4) |
C7—C8 | 1.381 (5) | C25—H25 | 0.9300 |
C7—H7 | 0.9300 | C26—C27 | 1.430 (4) |
C8—C9 | 1.379 (4) | C26—H26 | 0.9300 |
C8—H8 | 0.9300 | C28—H28A | 0.9600 |
C9—C13 | 1.425 (4) | C28—H28B | 0.9600 |
C10—C11 | 1.409 (4) | C28—H28C | 0.9600 |
C11—C13 | 1.464 (4) | O2—C29 | 1.083 (13) |
C12—C13 | 1.425 (4) | C29—C29i | 1.22 (3) |
C14—C27 | 1.401 (4) | C29—C30 | 1.30 (2) |
C14—C15 | 1.407 (4) | C30—H30A | 0.9600 |
C15—C16 | 1.426 (4) | C30—H30B | 0.9600 |
C15—C20 | 1.433 (4) | C30—H30C | 0.9600 |
C1—N1—C11 | 118.9 (2) | C15—C16—H16 | 119.5 |
C9—O1—C28 | 117.7 (2) | C16—C17—C18 | 120.9 (3) |
N1—C1—C2 | 123.1 (3) | C16—C17—H17 | 119.6 |
N1—C1—C14 | 117.8 (2) | C18—C17—H17 | 119.6 |
C2—C1—C14 | 119.1 (2) | C19—C18—C17 | 120.5 (3) |
C3—C2—C1 | 118.4 (3) | C19—C18—H18 | 119.8 |
C3—C2—H2 | 120.8 | C17—C18—H18 | 119.8 |
C1—C2—H2 | 120.8 | C18—C19—C20 | 121.2 (3) |
C2—C3—C10 | 120.5 (3) | C18—C19—H19 | 119.4 |
C2—C3—H3 | 119.8 | C20—C19—H19 | 119.4 |
C10—C3—H3 | 119.8 | C21—C20—C19 | 122.2 (3) |
C5—C4—C10 | 119.9 (3) | C21—C20—C15 | 119.3 (3) |
C5—C4—H4 | 120.0 | C19—C20—C15 | 118.4 (3) |
C10—C4—H4 | 120.0 | C20—C21—C22 | 122.3 (3) |
C4—C5—C12 | 122.7 (3) | C20—C21—H21 | 118.9 |
C4—C5—H5 | 118.6 | C22—C21—H21 | 118.9 |
C12—C5—H5 | 118.6 | C21—C22—C27 | 118.6 (3) |
C7—C6—C12 | 120.4 (3) | C21—C22—C23 | 122.9 (3) |
C7—C6—H6 | 119.8 | C27—C22—C23 | 118.5 (3) |
C12—C6—H6 | 119.8 | C24—C23—C22 | 121.5 (3) |
C6—C7—C8 | 120.6 (3) | C24—C23—H23 | 119.3 |
C6—C7—H7 | 119.7 | C22—C23—H23 | 119.3 |
C8—C7—H7 | 119.7 | C23—C24—C25 | 120.0 (3) |
C9—C8—C7 | 121.3 (4) | C23—C24—H24 | 120.0 |
C9—C8—H8 | 119.3 | C25—C24—H24 | 120.0 |
C7—C8—H8 | 119.3 | C26—C25—C24 | 121.0 (3) |
O1—C9—C8 | 121.5 (3) | C26—C25—H25 | 119.5 |
O1—C9—C13 | 118.0 (2) | C24—C25—H25 | 119.5 |
C8—C9—C13 | 120.5 (3) | C25—C26—C27 | 121.6 (3) |
C3—C10—C11 | 118.0 (3) | C25—C26—H26 | 119.2 |
C3—C10—C4 | 121.5 (3) | C27—C26—H26 | 119.2 |
C11—C10—C4 | 120.5 (3) | C14—C27—C26 | 122.5 (2) |
N1—C11—C10 | 121.2 (3) | C14—C27—C22 | 120.1 (3) |
N1—C11—C13 | 119.5 (3) | C26—C27—C22 | 117.4 (3) |
C10—C11—C13 | 119.3 (2) | O1—C28—H28A | 109.5 |
C6—C12—C5 | 119.5 (3) | O1—C28—H28B | 109.5 |
C6—C12—C13 | 120.7 (3) | H28A—C28—H28B | 109.5 |
C5—C12—C13 | 119.8 (3) | O1—C28—H28C | 109.5 |
C12—C13—C9 | 116.5 (3) | H28A—C28—H28C | 109.5 |
C12—C13—C11 | 117.7 (3) | H28B—C28—H28C | 109.5 |
C9—C13—C11 | 125.7 (2) | C29i—C29—O2 | 167 (4) |
C27—C14—C15 | 120.3 (2) | C29i—C29—C30 | 76.3 (19) |
C27—C14—C1 | 119.1 (2) | O2—C29—C30 | 117 (2) |
C15—C14—C1 | 120.5 (2) | C29—C30—H30A | 109.5 |
C14—C15—C16 | 122.7 (2) | C29—C30—H30B | 109.5 |
C14—C15—C20 | 119.4 (2) | H30A—C30—H30B | 109.5 |
C16—C15—C20 | 117.9 (3) | C29—C30—H30C | 109.5 |
C17—C16—C15 | 121.0 (3) | H30A—C30—H30C | 109.5 |
C17—C16—H16 | 119.5 | H30B—C30—H30C | 109.5 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C28H19NO·0.5C3H6O |
Mr | 414.48 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.198 (3), 10.690 (4), 11.130 (4) |
α, β, γ (°) | 95.224 (4), 91.484 (5), 94.064 (5) |
V (Å3) | 1086.6 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.977, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4167, 3688, 2474 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.160, 1.01 |
No. of reflections | 3688 |
No. of parameters | 300 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.35 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors are grateful to the National Science Foundation (grant No. 21072019) for the support of this work.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dong, Z. M., Shi, H. P., Liu, Y. F., Liu, D. S. & Liu, B. (2011). Spectrochim. Acta Part A, 78, 1143–1148. CrossRef Google Scholar
Kouznetsov, V. V., Méndez, L. Y. V. & Gómez, C. M. M. (2005). Curr. Org. Chem. 9, 141–161. Web of Science CrossRef CAS Google Scholar
Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800s (Kouznetsov et al., 2005). The quinoline ring system occurs in various natural products, especially in alkaloids (Kouznetsov et al., 2005). Some 3-substituted quinoline derivatives can be used as Platelet-derived growth factor (PDGF) receptors (Maguire et al., 1994). In the course of exploring new quinoline derivatives, we obtained the title compound (I), and the synthesis and structure are reported here.