organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­terephthalic acid N,N-di­methyl­formamide disolvate

aInstitut für Physikalische Chemie, Leipziger Strasse 29, 09596 Freiberg, Germany, and bInstitut für Organische Chemie, Leipziger Strasse 29, 09596 Freiberg, Germany
*Correspondence e-mail: florian.mertens@chemie.tu-freiberg.de

(Received 20 February 2012; accepted 10 July 2012; online 21 July 2012)

The asymmetric unit of the title structure, C8H7NO4·2C3H7NO, contains one 2-amino­terephthalic acid and two N,N-dimethyl­formamide mol­ecules. Strong O—H⋯O hydrogen bonds between the acidic carb­oxy H atoms of 2-am­ino­terephthalic acid and the O atoms of both solvent mol­ecules form linear 1:2 complex units. One H atom of the amine group is involved in intra­molecular N—H⋯O hydrogen bonding, whereas the second one takes part in an inter­molecular N—H⋯O connection. Furthermore, the crystal is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For the structure of 2-amino­terephthalic acid dimethyl ester, see: Brüning et al. (2009[Brüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468-o2469.]). For the use of this carb­oxy­lic acid in the synthesis of porous structures, see: Bauer et al. (2008[Bauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G. & Stock, N. (2008). Inorg. Chem. 47, 7568-7576.]). For a co-crystal of 2-amino­terephthalic acid, see: Xiao et al. (2011[Xiao, W., Xue, R. & Yin, Y. (2011). Acta Cryst. E67, o1333.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO4·2C3H7NO

  • Mr = 327.34

  • Monoclinic, P n

  • a = 7.8393 (2) Å

  • b = 9.7462 (2) Å

  • c = 10.9147 (2) Å

  • β = 103.251 (1)°

  • V = 811.72 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 153 K

  • 0.58 × 0.51 × 0.37 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.962

  • 19574 measured reflections

  • 2260 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.05

  • 2260 reflections

  • 223 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.81 (3) 2.03 (3) 2.685 (2) 138 (3)
N1—H1B⋯O4i 0.84 (2) 2.14 (3) 2.960 (2) 169 (3)
O3—H3⋯O1Aii 0.84 1.72 2.5549 (19) 173
O2—H2⋯O1B 0.84 1.74 2.577 (2) 174
C1A—H1AA⋯O4iii 0.95 2.50 3.219 (2) 133
C1B—H1BA⋯O1 0.95 2.42 3.155 (2) 134
C3—H3A⋯O4i 0.95 2.57 3.344 (2) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2007[Bruker (2007). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, carboxylic acids became of great interest concerning the synthesis of porous metal oragnic framework compounds, often using N,N-dimethylformamide as an apropriate solvent. The knowledge of the behavior of the organic linker molecule in the solvent can provide important information about the acidic character and hence the synthesis strategy. Analysing the interaction of the linker molecule with the solvent in the crystal, we can get insight in the structure of the carboxylic acid in solution (DMF). The crystal structure composed of 2-aminoterephthalic acid and N,N-dimethylformamide has monoclinic symmetry (space group: Pn). It is characterised by strong hydrogen bonding between the acidic carboxy H-atoms of 2-aminoterephthalic acid and the O-atoms of the solvent molecules [O2—H2···O1B 1.74 Å, 174 °, O3—H3···O1A 1.742 Å, 173 °]. One hydrogen of the amino group is involved in intramolecular hydrogen bonding [N1—H1A···O1 2.02 (2) Å, 138 (3) °] whereas the second one takes part in intermolecular connection [N1—H2···H1B···O4 2.14 (3) Å, 168 (3) °]. Furthermore, the crystal is stabilized by weak hydrogen bonds of the C—H···O type [d(H···O) = 2.42–2.57 Å]. Due to the given mode of non-covalent intermolecular bonding the crystal structure is composed of linear 1:2 complex units which are associated among one another by N—H···O interactions.

Related literature top

For the structure of 2-aminoterephthalic acid dimethyl ester, see: Brüning et al. (2009). For the use of this carboxylic acid in the synthesis of porous structures, see: Bauer et al. (2008). For a co-crystal of 2-aminoterephthalic acid, see: Xiao et al. (2011).

Experimental top

2-Aminoterephthalic acid (>99%) was purchased from Sigma Aldrich and used without further purification. Crystals of 2-aminoterephthalic acid in N,N-dimethylformamide were obtained by the partial dissolution of 300 mg (1.65 mmol) 2-aminoterephthalic acid in 50 ml acetone and subsequent addition of the appropriate amount of N,N-dimethylfromamide (10 ml, 130 mmol) to completely dissolve the carboxylic acid. Afterwards, acetone was slowly evaporated from the solution. Colourless crystals of 2-aminoterephthalic acid * 2 N,N-dimethylformamide crystallised from the solution after removal of acetone.

Refinement top

The positions of the amino hydrogens H1A and H1B could be obtained from the difference electron-density map. Lengths of the N-H bonds were restrained to a target value of 0.84 (1) Å. The carbon- and oxygen-bound H atoms were placed in calculated positions and were treated as riding on the parent C and O atoms with O-H = 0.84, C-H(aryl)/C-H(formyl) = 0.95 and C-H(methyl) = 0.98 Å; Uiso(H) = k Ueq(C,O), where k = 1.5 for methyl and hydroxyl and k = 1.2 for all other H-atoms.

The large s.u. on the Flack parameter suggested averaging of Friedel pairs. To average Friedel opposites, we used the MERG 4 command in SHELXL97 in the final refinement step.

Structure description top

In recent years, carboxylic acids became of great interest concerning the synthesis of porous metal oragnic framework compounds, often using N,N-dimethylformamide as an apropriate solvent. The knowledge of the behavior of the organic linker molecule in the solvent can provide important information about the acidic character and hence the synthesis strategy. Analysing the interaction of the linker molecule with the solvent in the crystal, we can get insight in the structure of the carboxylic acid in solution (DMF). The crystal structure composed of 2-aminoterephthalic acid and N,N-dimethylformamide has monoclinic symmetry (space group: Pn). It is characterised by strong hydrogen bonding between the acidic carboxy H-atoms of 2-aminoterephthalic acid and the O-atoms of the solvent molecules [O2—H2···O1B 1.74 Å, 174 °, O3—H3···O1A 1.742 Å, 173 °]. One hydrogen of the amino group is involved in intramolecular hydrogen bonding [N1—H1A···O1 2.02 (2) Å, 138 (3) °] whereas the second one takes part in intermolecular connection [N1—H2···H1B···O4 2.14 (3) Å, 168 (3) °]. Furthermore, the crystal is stabilized by weak hydrogen bonds of the C—H···O type [d(H···O) = 2.42–2.57 Å]. Due to the given mode of non-covalent intermolecular bonding the crystal structure is composed of linear 1:2 complex units which are associated among one another by N—H···O interactions.

For the structure of 2-aminoterephthalic acid dimethyl ester, see: Brüning et al. (2009). For the use of this carboxylic acid in the synthesis of porous structures, see: Bauer et al. (2008). For a co-crystal of 2-aminoterephthalic acid, see: Xiao et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-NT (Bruker, 2007); data reduction: SAINT-NT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-plot of the title compound. Ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermoelcular hydrogen bonds are shown as dashed lines. Atom colours: red: oxygen, white (small): hydrogen, blue: nitrogen, white (large): carbon.
2-Aminoterephthalic acid N,N-dimethylformamide disolvate top
Crystal data top
C8H7NO4·2C3H7NOF(000) = 348
Mr = 327.34Dx = 1.339 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 9996 reflections
a = 7.8393 (2) Åθ = 2.8–33.3°
b = 9.7462 (2) ŵ = 0.11 mm1
c = 10.9147 (2) ÅT = 153 K
β = 103.251 (1)°Irregular, colourless
V = 811.72 (3) Å30.58 × 0.51 × 0.37 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2260 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.941, Tmax = 0.962k = 1313
19574 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.133P]
where P = (Fo2 + 2Fc2)/3
2260 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H7NO4·2C3H7NOV = 811.72 (3) Å3
Mr = 327.34Z = 2
Monoclinic, PnMo Kα radiation
a = 7.8393 (2) ŵ = 0.11 mm1
b = 9.7462 (2) ÅT = 153 K
c = 10.9147 (2) Å0.58 × 0.51 × 0.37 mm
β = 103.251 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2260 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2157 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.962Rint = 0.020
19574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2260 reflectionsΔρmin = 0.17 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25655 (18)0.55493 (13)0.50464 (13)0.0305 (3)
O20.43465 (18)0.57438 (14)0.69541 (12)0.0288 (3)
H20.38000.64840.69610.043*
O30.55866 (19)0.12115 (13)0.49500 (12)0.0293 (3)
H30.61190.19630.49840.044*
O40.72462 (18)0.09748 (14)0.69012 (12)0.0289 (3)
N10.2490 (2)0.31517 (16)0.38262 (14)0.0282 (3)
H1A0.214 (3)0.3941 (14)0.385 (3)0.035 (6)*
H1B0.228 (4)0.259 (3)0.323 (2)0.057 (9)*
C10.4280 (2)0.36183 (18)0.59253 (14)0.0197 (3)
C20.3678 (2)0.27585 (15)0.48708 (14)0.0188 (3)
C30.4335 (2)0.14046 (16)0.49115 (14)0.0197 (3)
H3A0.39610.08180.42060.024*
C40.5515 (2)0.09231 (17)0.59659 (14)0.0196 (3)
C50.6101 (2)0.17684 (18)0.70191 (15)0.0227 (3)
H50.69110.14330.77420.027*
C60.5478 (2)0.30979 (17)0.69856 (15)0.0224 (3)
H60.58680.36750.76960.027*
C70.3648 (2)0.50511 (16)0.59147 (16)0.0215 (3)
C80.6191 (2)0.05168 (17)0.59927 (15)0.0217 (3)
O1A0.7117 (2)0.64886 (15)0.48597 (13)0.0359 (3)
N1A0.8832 (2)0.48490 (17)0.59960 (15)0.0275 (3)
C1A0.8124 (3)0.60873 (19)0.58446 (17)0.0288 (4)
H1AA0.84030.67080.65320.035*
C2A0.9926 (3)0.4434 (2)0.7207 (2)0.0346 (4)
H2A10.99820.51830.78150.052*
H2A21.11100.42240.71090.052*
H2A30.94210.36180.75120.052*
C3A0.8513 (3)0.3853 (2)0.49843 (19)0.0342 (4)
H3A10.79600.43090.41920.051*
H3A20.77360.31320.51660.051*
H3A30.96280.34460.49100.051*
O1B0.2883 (2)0.80983 (15)0.70391 (14)0.0362 (3)
N1B0.10043 (19)0.96613 (16)0.59172 (15)0.0258 (3)
C1B0.1865 (2)0.84831 (19)0.60504 (18)0.0284 (4)
H1BA0.16940.78900.53420.034*
C2B0.1191 (3)1.0619 (2)0.6961 (2)0.0347 (4)
H2B10.16081.01270.77560.052*
H2B20.00531.10410.69510.052*
H2B30.20371.13340.68780.052*
C3B0.0088 (3)1.0077 (2)0.47142 (19)0.0334 (4)
H3B10.04451.08680.43920.050*
H3B20.12541.03280.48230.050*
H3B30.01900.93150.41150.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0356 (7)0.0217 (6)0.0287 (7)0.0068 (5)0.0045 (5)0.0052 (5)
O20.0347 (7)0.0224 (6)0.0248 (6)0.0032 (5)0.0028 (5)0.0082 (5)
O30.0399 (7)0.0205 (6)0.0232 (6)0.0087 (5)0.0018 (5)0.0003 (5)
O40.0360 (7)0.0214 (6)0.0246 (6)0.0041 (5)0.0028 (5)0.0039 (5)
N10.0353 (8)0.0219 (6)0.0209 (6)0.0074 (6)0.0069 (5)0.0031 (5)
C10.0210 (7)0.0202 (8)0.0167 (6)0.0003 (5)0.0018 (5)0.0022 (5)
C20.0206 (7)0.0179 (7)0.0167 (6)0.0009 (5)0.0019 (5)0.0005 (5)
C30.0224 (7)0.0186 (7)0.0161 (6)0.0004 (5)0.0002 (5)0.0003 (5)
C40.0229 (7)0.0167 (7)0.0185 (7)0.0016 (5)0.0032 (6)0.0020 (5)
C50.0247 (7)0.0239 (8)0.0171 (6)0.0015 (6)0.0002 (6)0.0011 (6)
C60.0246 (7)0.0236 (7)0.0177 (7)0.0001 (6)0.0023 (6)0.0029 (6)
C70.0237 (7)0.0181 (7)0.0222 (7)0.0007 (6)0.0041 (6)0.0045 (6)
C80.0244 (8)0.0207 (8)0.0191 (7)0.0002 (6)0.0031 (6)0.0033 (6)
O1A0.0498 (9)0.0278 (7)0.0260 (7)0.0144 (6)0.0001 (6)0.0016 (5)
N1A0.0289 (8)0.0272 (8)0.0258 (7)0.0055 (6)0.0050 (6)0.0009 (6)
C1A0.0348 (9)0.0243 (8)0.0262 (8)0.0052 (7)0.0046 (7)0.0012 (6)
C2A0.0313 (9)0.0363 (10)0.0340 (10)0.0089 (8)0.0030 (8)0.0063 (8)
C3A0.0427 (11)0.0266 (9)0.0341 (10)0.0100 (8)0.0104 (8)0.0024 (7)
O1B0.0456 (8)0.0271 (7)0.0320 (7)0.0090 (6)0.0007 (6)0.0055 (5)
N1B0.0258 (7)0.0237 (7)0.0268 (7)0.0012 (6)0.0036 (6)0.0039 (6)
C1B0.0334 (9)0.0226 (8)0.0288 (9)0.0008 (7)0.0065 (7)0.0060 (6)
C2B0.0369 (10)0.0308 (9)0.0333 (9)0.0062 (7)0.0015 (8)0.0121 (8)
C3B0.0313 (9)0.0395 (11)0.0276 (9)0.0061 (8)0.0031 (7)0.0006 (8)
Geometric parameters (Å, º) top
O1—C71.219 (2)N1A—C1A1.323 (2)
O2—C71.326 (2)N1A—C3A1.448 (3)
O2—H20.8400N1A—C2A1.458 (2)
O3—C81.316 (2)C1A—H1AA0.9500
O3—H30.8400C2A—H2A10.9800
O4—C81.221 (2)C2A—H2A20.9800
N1—C21.352 (2)C2A—H2A30.9800
N1—H1A0.820 (10)C3A—H3A10.9800
N1—H1B0.837 (10)C3A—H3A20.9800
C1—C61.407 (2)C3A—H3A30.9800
C1—C21.414 (2)O1B—C1B1.244 (2)
C1—C71.481 (2)N1B—C1B1.323 (2)
C2—C31.413 (2)N1B—C3B1.451 (3)
C3—C41.383 (2)N1B—C2B1.454 (2)
C3—H3A0.9500C1B—H1BA0.9500
C4—C51.403 (2)C2B—H2B10.9800
C4—C81.498 (2)C2B—H2B20.9800
C5—C61.382 (2)C2B—H2B30.9800
C5—H50.9500C3B—H3B10.9800
C6—H60.9500C3B—H3B20.9800
O1A—C1A1.242 (2)C3B—H3B30.9800
C7—O2—H2109.5O1A—C1A—H1AA117.9
C8—O3—H3109.5N1A—C1A—H1AA117.9
C2—N1—H1A114 (2)N1A—C2A—H2A1109.5
C2—N1—H1B116 (2)N1A—C2A—H2A2109.5
H1A—N1—H1B130 (3)H2A1—C2A—H2A2109.5
C6—C1—C2119.41 (14)N1A—C2A—H2A3109.5
C6—C1—C7120.36 (14)H2A1—C2A—H2A3109.5
C2—C1—C7120.23 (14)H2A2—C2A—H2A3109.5
N1—C2—C3117.82 (14)N1A—C3A—H3A1109.5
N1—C2—C1123.73 (14)N1A—C3A—H3A2109.5
C3—C2—C1118.44 (14)H3A1—C3A—H3A2109.5
C4—C3—C2120.82 (14)N1A—C3A—H3A3109.5
C4—C3—H3A119.6H3A1—C3A—H3A3109.5
C2—C3—H3A119.6H3A2—C3A—H3A3109.5
C3—C4—C5120.90 (15)C1B—N1B—C3B121.47 (16)
C3—C4—C8120.03 (14)C1B—N1B—C2B120.93 (16)
C5—C4—C8119.07 (14)C3B—N1B—C2B117.53 (15)
C6—C5—C4118.77 (14)O1B—C1B—N1B124.52 (17)
C6—C5—H5120.6O1B—C1B—H1BA117.7
C4—C5—H5120.6N1B—C1B—H1BA117.7
C5—C6—C1121.65 (15)N1B—C2B—H2B1109.5
C5—C6—H6119.2N1B—C2B—H2B2109.5
C1—C6—H6119.2H2B1—C2B—H2B2109.5
O1—C7—O2122.68 (15)N1B—C2B—H2B3109.5
O1—C7—C1123.64 (14)H2B1—C2B—H2B3109.5
O2—C7—C1113.67 (15)H2B2—C2B—H2B3109.5
O4—C8—O3123.85 (16)N1B—C3B—H3B1109.5
O4—C8—C4121.95 (15)N1B—C3B—H3B2109.5
O3—C8—C4114.17 (14)H3B1—C3B—H3B2109.5
C1A—N1A—C3A121.45 (17)N1B—C3B—H3B3109.5
C1A—N1A—C2A120.58 (16)H3B1—C3B—H3B3109.5
C3A—N1A—C2A117.94 (16)H3B2—C3B—H3B3109.5
O1A—C1A—N1A124.11 (17)
C6—C1—C2—N1177.95 (16)C6—C1—C7—O1177.30 (17)
C7—C1—C2—N11.7 (2)C2—C1—C7—O12.4 (3)
C6—C1—C2—C31.3 (2)C6—C1—C7—O21.5 (2)
C7—C1—C2—C3179.05 (15)C2—C1—C7—O2178.78 (15)
N1—C2—C3—C4178.14 (15)C3—C4—C8—O4179.29 (16)
C1—C2—C3—C41.1 (2)C5—C4—C8—O40.5 (2)
C2—C3—C4—C50.5 (2)C3—C4—C8—O31.0 (2)
C2—C3—C4—C8179.80 (15)C5—C4—C8—O3178.70 (15)
C3—C4—C5—C60.1 (2)C3A—N1A—C1A—O1A1.7 (3)
C8—C4—C5—C6179.68 (16)C2A—N1A—C1A—O1A176.6 (2)
C4—C5—C6—C10.1 (3)C3B—N1B—C1B—O1B176.51 (18)
C2—C1—C6—C50.8 (2)C2B—N1B—C1B—O1B0.4 (3)
C7—C1—C6—C5179.54 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.81 (3)2.03 (3)2.685 (2)138 (3)
N1—H1B···O4i0.84 (2)2.14 (3)2.960 (2)169 (3)
O3—H3···O1Aii0.841.722.5549 (19)173
O2—H2···O1B0.841.742.577 (2)174
C1A—H1AA···O4iii0.952.503.219 (2)133
C1B—H1BA···O10.952.423.155 (2)134
C3—H3A···O4i0.952.573.344 (2)139
Symmetry codes: (i) x1/2, y, z1/2; (ii) x, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H7NO4·2C3H7NO
Mr327.34
Crystal system, space groupMonoclinic, Pn
Temperature (K)153
a, b, c (Å)7.8393 (2), 9.7462 (2), 10.9147 (2)
β (°) 103.251 (1)
V3)811.72 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.51 × 0.37
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.941, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
19574, 2260, 2157
Rint0.020
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.05
No. of reflections2260
No. of parameters223
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT-NT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.81 (3)2.03 (3)2.685 (2)138 (3)
N1—H1B···O4i0.84 (2)2.14 (3)2.960 (2)169 (3)
O3—H3···O1Aii0.841.722.5549 (19)172.7
O2—H2···O1B0.841.742.577 (2)174
C1A—H1AA···O4iii0.952.503.219 (2)132.6
C1B—H1BA···O10.952.423.155 (2)133.6
C3—H3A···O4i0.952.573.344 (2)138.8
Symmetry codes: (i) x1/2, y, z1/2; (ii) x, y1, z; (iii) x, y+1, z.
 

References

First citationBauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G. & Stock, N. (2008). Inorg. Chem. 47, 7568–7576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468–o2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, W., Xue, R. & Yin, Y. (2011). Acta Cryst. E67, o1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds